1. The linear transformation $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ is given by the matrix

	2	0	6	1	, which has RREF	[1]	0	3	0]
A =	3	1	11	0	, which has RREF	0	1	2	0	,
	-3	0	-9	1		0	0	0	1 _	

which is something that you don't have to prove.

- (a) Find a basis for the image of T.
- (b) The vector $\vec{b} = \begin{bmatrix} 5\\5\\0 \end{bmatrix}$ is in the image. Find the linear combination of basis vectors from (a) which gives \vec{b} . Use this to find a vector \vec{x} in \mathbb{R}^4 with $T(\vec{x}) = \vec{b}$.
- (c) Find a basis for the kernel of T.
- (d) Write down all the solutions to $T(\vec{x}) = \vec{b}$, with \vec{b} the vector from part (b). You shouldn't have to do any complicated calculations to figure this out.
- (e) Find all solutions to the system of equations

2x	+		+	6z	+	w	=	5
3x	+	y	+	11z			=	5
-3x			+	-9z	+	w	=	0

using the "old" method – the way of solving equations that we learned in the first weeks of class.

- (f) Explain the connection between (d) and (e).
- 2. If A is an $n \times m$ matrix, and B an *invertible* $n \times n$ matrix,
 - (a) What is the relation between ker(A) and ker(BA)? How do you know?
 - (b) What is the relation between the dimension of im(A) and the dimension of im(BA)? Explain your argument.
 - (c) What is the relation between rank(A) and rank(BA)? Explain your argument.

3. Summary 3.3.9, on page 133, gives some equivalent characterizations of an invertible $n \times n$ matrix A. Here are some of them:

(i) A is invertible

÷

(vi) $\ker(A) = \vec{0}$.

- (vii) The column vectors of A form a basis of \mathbb{R}^n .
- (viii) The column vectors of A span \mathbb{R}^n
- (ix) The column vectors of A are linearly independent.

I'd like to understand why all those things are the same. For an $n \times n$ matrix A,

- (a) Explain why (vi) and (ix) are the same thing. (This involves thinking about what vectors in the kernel tell you about the column vectors).
- (b) Explain why (vi) and (viii) are the same thing. (The rank-nullity theorem is a good thing to think about here).
- (c) Explain why (vii) is the same as (viii) and (ix) together.
- (d) Explain why (i) is the same as (vi) and (viii) together. (The definition of what it means for a transformation to be invertible might help).
- (e) If you know that any one of these properties is true, do the arguments above show you that all the others have to be true too?