- 1. Suppose that $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation.
 - (a) If \vec{x} is a vector in \mathbb{R}^n , and \vec{v} a vector in the kernel of T, explain why $T(\vec{x}) = T(\vec{x}+\vec{v})$.
 - (b) Conversely, if \vec{x}_1 and \vec{x}_2 are vectors in \mathbb{R}^n , and if $T(\vec{x}_1) = T(\vec{x}_2)$, explain why there is a vector \vec{v} in the kernel of T with $\vec{x}_2 = \vec{x}_1 + \vec{v}$. (HINT: What does T do to $\vec{x}_2 \vec{x}_1$?)
 - (c) If \vec{b} is a vector in \mathbb{R}^m , and \vec{x}_1 a vector in \mathbb{R}^n with $T(\vec{x}) = \vec{b}$, explain why the solutions to the equation $T(\vec{x}) = \vec{b}$ are all of the form $\vec{x} = \vec{x}_1 + \vec{v}$, with \vec{v} in ker(T).
- 2. Suppose that T is the linear transformation $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ given by

$$T(x,y) = (6x - 3y, 2x - y, 4x - 2y).$$

Notice that the image of T is the line in \mathbb{R}^3 spanned by (3, 1, 2).

- (a) Find and describe the kernel of T.
- (b) Find all the points in \mathbb{R}^2 that map to (3, 1, 2) under T.
- (c) Find all the points in \mathbb{R}^2 that map to (-6, -2, -4) under T.
- (d) Sketch (in \mathbb{R}^2), the answers from parts (a), (b), and (c).
- (e) Explain how your sketch relates to the computations in question (1) above.
- 3. Suppose that A is a 3×2 matrix, and B is a 2×3 matrix.
 - (a) Explain why the 3×3 matrix AB can never be invertible. (HINT: what are the possibilities for the dimension of the image of AB?)
 - (b) Find an example where the 2×2 matrix *BA* is invertible.
 - (c) If BA is invertible, what must be the dimension of ker(A), and what must be the dimension of ker(B)? Explain why.

4. I don't know if you've seen these before, but there are identities among sin and cos concerning angle addition. That is, if α and θ are two angles, there is a way to write $\sin(\alpha + \theta)$ in terms of sin's and cos's of α and θ , and the same thing for $\cos(\alpha + \theta)$. There are purely geometric proofs of these identies using triangles, but here's a linear algebra proof:

Let T_{α} be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 which is rotation counterclockwise by α , and T_{θ} the counterclockwise rotation by θ .

- (a) Explain what the linear transformation $T_{\alpha} \circ T_{\theta}$ does to \mathbb{R}^2 .
- (b) Compute the matrix for $T_{\alpha} \circ T_{\theta}$ by multiplying the matrices for T_{α} and T_{θ} .
- (c) On the other hand, from the description in part (a), you can write down directly the matrix for $T_{\alpha} \circ T_{\theta}$. What is that matrix?
- (d) Since the matrices from parts (b) and (c) are equal (they describe the same linear transformation) what identities among sin and cos must be true?
- (e) Using a similar idea, find formulas for $\sin(3\theta)$ and $\cos(3\theta)$ in terms of $\sin(\theta)$ and $\cos(\theta)$.
- 5. Here are three short problems on matrix squaring and images:
 - (a) Find a 2 × 2 matrix A with im(A) = ker(A) as subspaces of \mathbb{R}^2 .
 - (b) If A is a 10×10 matrix with $A^2 = 0$ (the zero matrix), show that rank $(A) \leq 5$.
 - (c) If A is an $n \times n$ matrix with $A^2 = A$, show that the only vector that ker(A) and im(A) have in common is the zero vector.