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A banana manifold is a Calabi-Yau threefold fibered by Abelian
surfaces whose singular fibers contain banana configurations: three
rational curves meeting each other in two points. A nano-manifold
is a Calabi-Yau threefold X with very small Hodge numbers:
h1,1(X) + h2,1(X) ≤ 6. We construct four rigid banana nano-
manifolds ˜︁XN , N ∈ {5, 6, 8, 9}, each with Hodge numbers given
by (h1,1, h2,1) = (4, 0).

We compute the Donaldson-Thomas partition function for ba-
nana curve classes and show that the associated genus g Gromov-
Witten potential is a genus 2 meromorphic Siegel modular form of
weight 2g − 2 for a certain discrete subgroup P ∗

N ⊂ Sp4(ℝ).
We also compute the weight 4 modular form whose pth Fourier

coefficient is given by the trace of the action of Frobenius on
H3

ét( ˜︁XN ,ℚℓ) for almost all prime p. We observe that it is the unique
weight 4 cusp form on Γ0(N).

1. Introduction: the geography, enumerative geometry, and
arithmetic of Calabi-Yau threefolds

In this paper, a Calabi-Yau threefold (CY3) is a smooth, projective threefold
X over ℂ with KX

∼= 𝒪X and H1(X,ℂ) = 0. We are interested three aspects
of a CY3 X. Namely, geography (the Hodge numbers of X), enumerative
geometry (curve counting on X), and arithmetic (for rigid X, counting points
over 𝔽p gives rise to a weight 4 modular form).

In this paper, we construct four new CY3s which are interesting from all
three points of view.

1.1. Geography

The Hodge numbers of a CY3 X are determined by the two values h1,1(X)
and h2,1(X) which have geometric significance: h1,1(X) is the Picard number
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of X and h2,1(X) is the dimension of the space of deformations of X. The
geography problem for CY3s asks which pairs of numbers (h1,1, h2,1) occur
as the Hodge numbers of a CY3. There has been some recent interest in
the physics community in the existence of CY3s with small Hodge numbers.
Candelas, Constantin, and Mishra [8] list all known (at the time) CY3s with
height h1,1 + h2,1 ≤ 24. We call a CY3 with height satisfying

h1,1 + h2,1 ≤ 6

a nano-manifold. We construct four new examples of rigid nano-manifolds of
height 4.

Theorem 1. There exist CY3s ˜︁XN , N ∈ {5, 6, 8, 9} with

h1,1( ˜︁XN ) = 4, h2,1( ˜︁XN ) = 0.

There is an Abelian surface fibration ˜︁XN → ℙ1, with four singular fibers,
whose generic fiber is an Abelian surface of Picard number three. Pic( ˜︁XN ) is
spanned by the class of the fiber and the three divisor classes of the generic
fiber. ˜︁XN has fundamental group of order N (c.f. Theorem 10).

Remark 2. The CY3 of smallest known height was found by Freitag-Manni
[12, 13] and has (h1,1, h2,1) = (2, 0). The list in [8] includes a modest number
of nano-manifolds but our ˜︁XN are new examples of height 4. There are no
examples with height 3 on the list. It is unknown if there exists a rigid CY3
with Picard number 1 (and hence height 1).

1.2. Enumerative geometry

The enumerative geometry of a CY3 X is the study of curve counting on X.
There are several equivalent curve counting theories on a CY3. We are par-
ticularly interested in Donaldson-Thomas (DT) invariants, Gromov-Witten
(GW) invariants, and Gopakumar-Vafa (GV) invariants.

1.2.1. DT theory As usual, we may define the DT invariants of a CY3 X
as the Behrend function weighted Euler characteristic of the Hilbert scheme

DTn,β(X) = e(Hilbn,β(X), ν).

Here Hilbn,β(X) is the Hilbert scheme of subschemes of X supported in the
class β ∈ H2(X) and having holomorphic Euler characteristic n, and e(−, ν)
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denotes topological Euler characteristic weighted by Behrend’s constructible
function ν [3].

For a basis of divisor classes D1, . . . , Dr, we define the DT partition func-
tion by

ZX(p, q1, . . . , qr) =
∑︂
n,β

DTn,β(X) (−p)n qβ·D1
1 · · · qβ·Dr

r .

The nano-manifolds ˜︁XN are of banana type which makes it possible to
compute the DT partition function of ˜︁XN for all fiber curve classes. To be of
banana type means that ˜︁XN → ℙ1 is the compactification of a group scheme˜︁X◦

N → ℙ1 by banana configurations.
A banana configuration in a CY3 is a union of three smoothly embedded

(−1,−1) rational curves C1, C2, C3 whose intersection consists of two points
{p, q}. Moreover, the group structure on the smooth locus of the singular fiber
where a banana configuration occurs is ℂ∗ × ℂ∗ and it acts on the banana
configuration and its formal neighborhood (see [6]).

There is a basis of divisor classes for ˜︁XN given by ˜︁F , ˜︁Δ, ˜︁S′, ˜︁S where ˜︁F
is the class of the fiber, and ˜︁Δ, ˜︁S′, ˜︁S are classes which, when restricted to a
generic fiber, span the Picard group and have intersection form

(︂−2N2 0 0
0 0 N
0 N 0

)︂
.

We assign variables z, y, q, Q to the divisors ˜︁F , ˜︁Δ, ˜︁S′, ˜︁S respectively and we
compute the DT partition function for fiber curve classes, i.e. we compute
the z → 0 limit of Z ˜︁XN

(p, z, y, q, Q).

Theorem 3. Define positive integers c(a,m) as the Fourier coefficients of
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the ratio of theta functions θ4(q2, y)/θ1(q4, y)2, namely:

(1)
∞∑︂

a=−1

∑︂
m∈ℤ

c(a,m)qaym =
∑︁

m∈ℤ q
m2(−y)m(︂∑︁

m∈ℤ+ 1
2
q2m2(−y)m

)︂2 .

Then the DT partition function of ˜︁XN , for fiber curve classes is given by

Z ˜︁XN
(p, y, q, Q) =

∏︂
k∈ΘN

∏︂
m,r,s,t

(︂
1 − pmqNr/kQksyNt

)︂−c(4rs−t2,m)

where in the sum m, r, s, t are integers with r, s, r + s + t ≥ 0 and if r = s =
t = 0 then m > 0, and ΘN is the 4-tuple given by

Θ5 = (5, 5, 1, 1), Θ6 = (6, 3, 2, 1), Θ8 = (4, 4, 2, 2), Θ9 = (3, 3, 3, 3).

Remark 4. The methods developed in [6] to compute the fiber curve class
DT partition function of the ordinary banana manifold applies equally well to
the banana nano-manifolds ˜︁XN . The primary difference is that in the ordinary
banana manifold, the three banana curves of any singular fiber span the fiber
curve classes whereas the classes of the banana curves in the singular fibers of˜︁XN are more complicated and vary from singular fiber to singular fiber. For
this reason, it is more convenient to express the partition function in terms
of the divisor classes and it accounts for the differences between the formula
in this paper versus the one in [6].

1.2.2. GW theory We define the genus g GW potential for fiber curve
classes by

F
˜︁XN
g (Q, q, y) =

∑︂
β∈H2( ˜︁XN )

π∗β=0

⟨ ⟩ ˜︁XN

g,β Qβ·˜︁Sqβ·˜︁S′
yβ·

˜︁Δ

where ⟨ ⟩ ˜︁XN

g,β is the genus g GW invariant of ˜︁XN in the class β.
The following is a consequence of Theorem 3:

Corollary 5. The genus g GW potential of ˜︁XN is given by

(2) F
˜︁XN
g (Q, q, y) =

∑︂
k∈ΘN

F ban
g (Qk, qN/k, yN )
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where for g ≥ 2, F ban
g (Q, q, y) is a meromorphic Siegel modular form of weight

2g − 2 with

Q = e2πiσ, q = e2πiτ , y = e2πiz, for ( τ z
z σ ) ∈ ℍ2

where ℍ2 is the genus 2 Siegel upper half space. Namely, F ban
g is the Maass

lift of the index 1, weight 2g − 2 Jacobi form

αg · ϕ−2,1(q, y) · E2g(q)

where E2g(q) is the weight 2g Eisenstein series, ϕ−2,1(q, y) is the unique weak
Jacobi form of weight −2 and index 1, and αg = |B2g |

2g(2g−2)! (c.f. [6, § A.4] for
notation).

We show that (up to a change of variables) the GW potentials F
˜︁XN
g

are Siegel modular forms for a certain subgroup of Sp4(ℝ) as follows. For
N ∈ {5, 6, 8, 9} consider the group

(3) PN = Sp4(ℚ) ∩

⎛⎜⎜⎜⎜⎜⎝
ℤ N

dN
ℤ 1

dN
ℤ 1

N ℤ

1
dN

ℤ ℤ 1
N ℤ 1

NdN
ℤ

N
dN

ℤ N ℤ ℤ 1
dN

ℤ

N ℤ N2

dN
ℤ N

dN
ℤ ℤ

⎞⎟⎟⎟⎟⎟⎠
where dN = gcd ΘN . Explicitly, d5 = 1, d6 = 1, d8 = 2, and d9 = 3. We
additionally consider the involution

(4) ιN =

⎛⎜⎜⎜⎝
0

√
N 0 0

1√
N

0 0 0
0 0 0 1√

N

0 0
√
N 0

⎞⎟⎟⎟⎠ ∈ Sp4(ℝ)

and observe that conjugation by ιN preserves PN . We can therefore produce
an index 2 normal extension of PN

P ∗
N = PN ∪ ιNPN

and prove the following

Corollary 6. Up to a change of variables (see Section 5.3), the GW potentials
F

˜︁XN
g for g ≥ 2 are meromorphic Siegel modular forms of weight 2g − 2 for

the discrete subgroup P ∗
N ⊂ Sp4(ℝ).
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The involution ιN induces the transformation (Q, q, y) ↦→ (q 1
N , QN , y),

which is a symmetry of F
˜︁XN
g after the change of variables. We note that

this is reminiscent of the behaviour of Siegel paramodular forms where in
particular, invariance under (Q, q, y) ↦→ (q 1

N , QN , y) is a key property [15,
§ 3.1].

1.2.3. GV theory The genus g, curve class β GV invariant of a CY3 X

is an integer valued curve counting invariant ng
β(X) which has been given a

geometric definition by Maulik and Toda [21]. The GV invariants are conjec-
turally equivalent to the DT/GW invariants by the Gopakumar-Vafa formula
which can alternatively be used to give a (non-geometric) definition. Either
by assuming the Gopakumar-Vafa formula holds for ˜︁XN , or by using the
non-geometric definition, we may use our computation of the DT partition
function to compute the (fiber class) GV invariants of ˜︁XN .

The curve classes of a smooth fiber of ˜︁XN → ℙ1 generate (over ℚ) the fiber
curve classes of ˜︁XN . Consequently, the fiber curve classes inherit a quadratic
form || · || coming from the intersection pairing on a smooth fiber.

Proposition 7. Assuming that the Gopakumar-Vafa formula holds for ˜︁XN ,
the Gopakumar-Vafa invariants of ˜︁XN in an effective fiber class β with
2||β|| = a, are given by

ng
β( ˜︁XN ) = ϵN (β)ng

a

where

ϵN (β) =
∑︂
k∈ΘN

ϵN,k(β), ϵN,k(β) =
{︄

1 if k
⃓⃓⃓
(β · ˜︁S) and N

k

⃓⃓⃓
(β · ˜︁S′)

0 otherwise,

and the integers ng
a are given by

∞∑︂
a=−1

∞∑︂
g=0

ng
a (y

1
2 + y−

1
2 )2gqa+1 =

∞∏︂
n=1

(1 + yq2n−1)(1 + y−1q2n−1)(1 − q2n)
(1 + yq4n)2(1 + y−1q4n)2(1 − q4n)2 .

We remark that in the usual banana manifold, the GV invariants in an
effective fiber class β only depend on the quadratic form induced by the
generic fiber whereas for ˜︁XN , they also depend mildly on divisibility condi-
tions through the number ϵN (β) ∈ {1, 2, 3, 4}.
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1.3. Arithmetic

Let X be a rigid CY3 defined over ℚ. Then there is a continuous system of two
dimensional representations of Gℚ = Gal(ℚ,ℚ) on H3

ét(Xℚ,ℚl). It was shown
by Gouvêa-Yui [14] and Dieulefait [11] using the proof of Serre’s conjectures
by Khare-Wintenberger [17, 18] that this system of Galois representations is
modular. In particular, there exists a weight 4 modular cusp form

fX(q) =
∞∑︂
n=1

anq
n

uniquely characterized by the condition that

(5) ap = tr(Frobp

⃓⃓⃓
H3

ét(X𝔽p
,ℚl))

for almost all primes p. Moreover, tr(Frobp) can be determined by the Lef-
schetz fixed point formula in terms of #X𝔽p and so the arithmetic of counting
points in X over 𝔽p gives rise to a modular form fX(q)1.

Theorem 8. The rigid CY3 ˜︁XN is defined over ℚ. The corresponding modu-
lar form f ˜︁XN

(q) is the unique weight 4 cusp form on the congruence subgroup
Γ0(N). It can be expressed as the eta product

f ˜︁XN
(q) =

∏︂
k∈ΘN

η(qk)2

where η(q) = q1/24 ∏︁
n≥1(1 − qn) is the Dedekind eta function, and ΘN is as

in Theorem 3.

The proof of this theorem, given in Appendix A, reduces our case to a
previously known case. Namely, we show that

f ˜︁XN
(q) = fXVer

N
(q)

where XVer
N are the rigid CY3s studied by Verrill [27, Appendix] who carried

out the requisite point counts to determine fXVer
N

(q).
The banana nano-manifold ˜︁XN → ℙ1 has four singular fibers over points

p1, . . . , p4 ∈ ℙ1 and thus there is an associated elliptic curve EN given by the
1Modularity for rigid CY3s defined over ℚ is analogous to the famous modularity

theorem of Wiles-Taylor for elliptic curves over ℚ. In that case the associated
modular form fE(q) is weight 2.
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double branched cover of ℙ1 ramified over p1, . . . , p4. We have observed the
following curious proposition which we will prove in Appendix A.

Proposition 9. There is a model for EN defined over ℚ such that the asso-
ciated weight 2 modular form fEN (q) is given by

fEN (q) =
∏︂

k∈ΘN

η(q2k)

so that fEN (q)2 = f ˜︁XN
(q2).

There is also an elliptic curve associated to any rigid CY3 X, namely the
intermediate Jacobian J(X) which is given by

0 → H3(X,ℤ) i−→ H3,0(X)∗ → J(X) → 0

where the embedding i is given by integrating the Calabi-Yau form over 3-
cycles. This raises the natural

Question 9.1. Is EN
∼= J( ˜︁XN )?

More generally, we ask the following

Question 9.2. Let X be a rigid CY3 defined over ℚ and let E = J(X) be
its intermediate Jacobian. When does there exist a model for E defined over
ℚ such that the equation

fX(q2) = fE(q)2

holds?

1.4. Plan of the paper

In Section 2 we give our construction of ˜︁XN which is given as a free quotient
of a crepant resolution of a certain fiber product of extremal rational elliptic
surfaces. In Section 3 we use toric geometry to prove some key facts about
our construction. In Section 4, we find a basis for curve classes and for di-
visors on ˜︁XN and compute their intersection numbers. In Section 5, we use
the techniques of [6] to compute the DT invariants of ˜︁XN and we use that
computation to get the GW and GV invariants. In Appendix A, we prove
Theorem 8 by using étale cohomology techniques to reduce our computation
to a related computation done by Verrill [27].
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2. The construction of ˜︂𝑿𝑵

Let SN → ℙ1 be one of the four unique rational elliptic surfaces having four
singular fibers of type (Ik1 , Ik2 , Ik3 , Ik4) where ΘN = (k1, k2, k3, k4) is given
below:

N
Singularity
Type ΘN

Mordell-Weil
Group GN

Modular
group ΓN

5 (5, 5, 1, 1) ℤ5 Γ1(5)
6 (6, 3, 2, 1) ℤ6 Γ1(6)
8 (4, 4, 2, 2) ℤ4 × ℤ2 Γ1(4) ∩ Γ(2)
9 (3, 3, 3, 3) ℤ3 × ℤ3 Γ(3)

The surface SN is a compactification of the universal elliptic curve over
the modular curve

ℙ1 − {4 points} ∼= ℍ/ΓN

where ℍ is the upper half-plane and ΓN ⊂ SL2(ℤ) is the congruence subgroup
listed above. SN admits an action of GN , the associated Mordell-Weil group
of sections listed above. The modular curve can be regarded as parameterizing
elliptic curves E equipped with an injective homomorphism GN → E. Note
that the order of GN is N . SN is an extremal elliptic surface: it admits no
deformations preserving the singularity type [22, 2].

We will henceforth often suppress the N subscript of SN and GN . Let

S′
sing = S/G, S′ → S′

sing

be the quotient and its minimal resolution. The action of G on S is free away
from the nodes of the singular fibers and it is easy to see that the stabilizer
of the nodes in an Ik fiber is ℤN/k. It then follows that S′ is isomorphic to
S where the isomorphism is induced from an automorphism of the base ℙ1

which reverses the order of the singular fibers2. Indeed, the quotient of an Ik
fiber in S is an irreducible nodal rational curve in S′

sing with a ℤN/k quotient
singularity at the node. We denote this type of fiber by I

ℤN/k

1 .
Let

Xsing = S ×ℙ1 S′
sing,

2This phenomenon fails for two other the extremal rational surfaces with singu-
larity types (9, 1, 1, 1) and (8, 2, 1, 1) which is why our construction doesn’t work
for those types.
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Xcon = S ×ℙ1 S′.

It follows from the previous analysis that

Xsing → ℙ1 and Xcon → ℙ1

are Abelian surface fibrations with four singular fibers of type

Ik × I
ℤN/k

1 and Ik × IN/k

respectively for k ∈ ΘN .
The threefolds Xsing and Xcon are singular CY3s. Xcon has 4N singularities

occurring at the points
ni × n′

j ∈ Ik × IN/k

where ni ∈ Ik and n′
j ∈ IN/k are nodes. The singularities of Xcon are all

conifold singularities whereas the singularities of Xsing are more complicated
but are locally hypersurface singularities given by the equation {ab = xlyl}
where l = N/k.

We illustrate Xsing and Xcon below in the case of N = 6:

It follows from the previous analysis of the stabilizers of G that the diag-
onal copy of G in G × G acts freely on S ×ℙ1 S′, transitively permuting the
N conifold points in each singular fiber.

One of our main technical results is that there is a projective conifold
resolution of Xcon given by blowing up an explicit (non-Cartier) Weil divisor
passing through all the conifold points. Namely, let

Γ ⊂ Xcon
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be the proper transform of γ ⊂ Xsing where γ is the (fiberwise) graph of the
quotient map

f : S → S′
sing.

Theorem 10. Let Γ ⊂ Xcon be as above and let

XN = BlΓ(Xcon)

be the blow-up of Xcon along Γ. Then XN is a non-singular CY3 with
h2,1(XN ) = 0 and h1,1(XN ) = 4N . Moreover the quotient of XN by the
diagonal copy of GN ˜︁XN = XN/GN

is a CY3 with h2,1( ˜︁XN ) = 0 and h1,1( ˜︁XN ) = 4.

Proof. The most difficult part of the proof of the above theorem is showing
that blowing up Γ yields a conifold resolution. We defer that to the next
section.

Assuming the conifold resolution exists, we compute the Hodge numbers
as follows. First we show that XN is rigid. For any CY3 given as a conifold
resolution Z → Zcon, the deformations of Z are given by the deformations of
Zcon which do not smooth any of the singularities [24, § 3.1]. In the case of
Xcon = S ×ℙ1 S′, all deformations arise from deformations of S, S′, or from
composing the map S → ℙ1 with a Möbius transformation of the base [26].
But since S and S′ are extremal elliptic surfaces, any such deformation results
in smoothing one or more of the conifold singularities [22]. Therefore, XN is
rigid and h2,1(XN ) = 0.

The topological Euler characteristic of Xcon can be computed as follows.
Since the generic fibers of Xcon → ℙ1 are Abelian surfaces and have Euler
characteristic 0, the Euler characteristic of Xcon is equal to the sum of the
Euler characteristics of the singular fibers. The Euler characteristic of a vari-
ety with a ℂ∗ ×ℂ∗ action having isolated fixed points is equal to the number
of fixed points [4]. Then since the singular fibers admit ℂ∗×ℂ∗ action whose
only fixed points are the singularities, we find

e(Xcon) = number of conifold singularities
= 4N.

The conifold resolution XN → Xcon replaces each conifold singularity with
a ℙ1 and so we find that e(XN ) = 8N . Then since for any CY3 X, e(X) =
2h1,1(X) − 2h2,1(X) we see that h1,1(XN ) = 4N as was asserted. Finally
since GN acts freely, the Euler characteristic of ˜︁XN is 8 and subsequently,
h1,1( ˜︁XN ) = 4.
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2.1. Schoen nano-manifolds

We briefly digress to discuss some nano-manifolds closely related to ˜︁XN . Con-
sider

XSch
N = SN ×ϕ S

′
N

where the notation means that we take the fiber product of SN → ℙ1 with
the composition S′

N → ℙ1 ϕ−→ ℙ1 where ϕ : ℙ1 → ℙ1 is a generic Möbius
transformation.

The fiber product of any two rational elliptic surfaces such that the sin-
gular fibers of each surface do not coincide (such as XSch

N ) is called a Schoen
manifold and is a smooth CY3 with h1,1 = h2,1 = 19. The 19 deformations
are given by the 8 deformations of each rational elliptic surface along with
the 3 dimensional family of Möbius transformations of the base.

Consider the quotient of XSch
N by the free action of the diagonal GN ⊂

GN ×GN : ˜︁XSch
N = XSch

N /GN .

These manifolds are a part of a more general class of non-simply connected
Calabi-Yau threefolds studied by Bouchard and Donagi [5].

Proposition 11. ˜︁XSch
N is a nano-manifold of height 6 with

h1,1( ˜︁XSch
N ) = h2,1( ˜︁XSch

N ) = 3.

Moreover, ˜︁XSch
N and ˜︁XN are related by a conifold transition.

Proof. The deformations of ˜︁XSch
N are those deformations of the universal cover

XSch
N which preserve the GN action. Since XSch

N is a Schoen manifold, the de-
formations are exactly the deformations of S, the deformations of S′ and the
deformations of ϕ [26]. Then, since S and S′ are extremal they have no defor-
mations preserving the GN action [22]. Consequently, the only deformations
of XSch

N are the deformations of ϕ. Therefore h2,1( ˜︁XSch
N ) = 3 and since

e(XSch
N ) = e( ˜︁XSch

N ) = 0

we have h1,1( ˜︁XSch
N ) = 3. Under the deformation taking a generic ϕ to the

identity, ˜︁XSch
N deforms to Xcon/GN which has ˜︁XN as a conifold resolution.

The enumerative geometry of the Schoen nano-manifolds ˜︁XSch
N is expected

to be interesting. On one hand, it is related to the enumerative geometry
of ˜︁XN by the usual conifold transition formulas. On the other hand, the
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enumerative geometry of ˜︁XSch
N should be related to the enumerative geometry

of the CHL model
(K3 × E)/GN

where GN acts symplectically on K3 and by translation on the elliptic curve
E. The DT invariants of these models were studied in [7].3

3. Local toric geometry, resolutions, and intersections

In this section, we use toric geometry to analyze Γ ⊂ Xcon in a formal
neighborhood of the singular points and prove (among other things) that
XN = BlΓ Xcon is a conifold resolution of Xcon.

Remark 12. The existence of some projective conifold resolution of Xcon is
provided by Schoen [26]. However, the group GN does not act on the conifold
resolutions provided by Schoen’s method (which in this case is a sequence of
blowups of components in the singular fibers). Blowing up Γ is much more
difficult to analyze than blowing up smooth components of the singular fibers
because Γ is in general not smooth, but it has the crucial advantage of yielding
a GN invariant conifold resolution.

Since Γ ⊂ Xcon is a divisor, it is Cartier away from the 4N conifold singu-
larities and hence the blow-up does nothing away from the singularities. Thus
understanding XN = BlΓ(Xcon) reduces to the local problem of understand-
ing Γ in a neighborhood of each singular point. This is still difficult since Γ
is defined as the proper transform of γ ⊂ Xsing and is hence given by a clo-
sure (for example, it turns out that Γ is necessarily singular and non-normal
although we will not need to prove that here).

For each k ∈ ΘN let
l = N/k

so that the corresponding singular fibers in Xsing and Xcon are of type Ik×Iℤl
1

and Ik×Il respectively. At the node in Iℤl
1 , the surface S′

sing is formally locally
modelled on

S loc
sing

∼= 𝔸2/ℤl

∼= Spec
(︁
ℂ[x, y]ℤl

)︁
∼= Spec

(︁
ℂ[xl, yl, xy]

)︁
3The argument connecting these two models is a folklore degeneration argument

that we learned from G. Oberdieck.
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∼= Spec
(︁
ℂ[a, b, c]/(ab− cl)

)︁
and the map to the base is locally modelled on the map

S loc
sing → 𝔸1

given by (x, y) ↦→ xy, i.e. (a, b, c) ↦→ c.
Let

S loc → S loc
sing

be the minimal resolution. Note that the exceptional fiber is a chain of (l−1)
ℙ1s.

The local model of Xsing at a singular point in the Ik × Iℤl
1 fiber is then

X loc
sing = 𝔸2 ×𝔸1 S loc

sing

= Spec
(︁
ℂ[x, y, a, b, c]/(ab− cl, xy − c)

)︁
= Spec

(︁
ℂ[x, y, a, b]/(ab− xlyl)

)︁
and Xcon → Xsing is locally modelled on

X loc
con → X loc

sing where X loc
con = 𝔸2 ×𝔸1 S loc.

We note that the graph of the quotient map 𝔸2 → S loc
sing in the fiber

product is the Weil divisor γ ⊂ X loc
sing with ideal

(a− xl, b− yl) ⊂ ℂ[x, y, a, b]/(ab− xlyl).

The threefolds X loc
sing and X loc

con are both toric, the former is an affine toric
variety with 1 singularity and the latter is a quasi-projective toric variety
with l conifold singularities. Indeed, 𝔸2/ℤl and its minimal resolution S loc

are well known to be toric with fans in ℝ2 given by cones generated by the
vectors {(0, 1), (l, 1)} and {(0, 1), (1, 1), . . . , (l, 1)} respectively. Moreover the
map 𝔸2/ℤl → 𝔸1 is also toric and hence the fiber products X loc

sing and X loc
con

are also toric. This description allows us to easily determine the fans which
we denote Fsing and Fcon respectively.

As with any toric CY3, the fans Fsing and Fcon consist of cones in ℝ3 which
are generated by vertices in the z = 1 plane allowing us to depict the fans
by collections of polygons in the z = 1 plane. The fan Fsing is a single cone
over the rectangle with vertices (0, 0, 1), (0, l, 1), (1, 0, 1), and (1, l, 1). The
fan Fcon is the union of the cones over the l squares with vertices (0, i− 1, 1),
(0, i, 1), (1, i − 1, 1), and (1, i, 1) for i = 1, . . . , l. We illustrate this below for
the case of l = 3:
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In the above pictures (which live in the z = 1 plane), the cones of the fans
are given by the cones over the grey polygons. The dual polytope is depicted
in red and corresponds to the torus invariant points, curves, and divisors4.
For example, the plane perpendicular to the ray (1, 3, 1) in the left picture
corresponds to the torus invariant (Weil) divisor given by the ideal

(y, b) ⊂ ℂ[x, y, a, b]/(ab− x3y3).

This divisor is a copy of 𝔸2 with coordinates x and a and the intersection
of γ with it is given by the curve a = x3 which we draw schematically in
orange. The proper transform of γ ⊂ X loc

sing, namely Γ ⊂ X loc
con, can intersect

the exceptional curves of X loc
con → X loc

sing in complicated ways, which we depict
in the right hand picture with a squiggly orange curve.

4The faces of the dual polytope should be perpendicular to the rays in the fan,
so the red polytope does not lie in the z = 1 plane. We depict a projection of the
dual polytope to the plane.
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To deal with the potential complications of Γ and its blowup, we find a
family of divisors that interpolates between Γ and a toric divisor. Let Dϵ ⊂
X loc

sing be the Weil divisor given by the ideal

(yl − ϵb, a− ϵxl) ⊂ ℂ[x, y, a, b]/(ab− xlyl).

Then D1 = γ and D0 is the torus invariant divisor with ideal (yl, a). D0
has support on the torus invariant divisor with ideal (y, a) which corresponds
to the ray generated by (1, 0, 1) in the fan. Note that D0 has multiplicity l

since on the interior of D0 where b, x ̸= 0, we have a = xlylb−1 = unit ·
yl.

Let D′
ϵ ⊂ X loc

con be the proper transform of Dϵ ⊂ X loc
sing. For the toric case of

ϵ = 0, D′
0 can be determined by the combinatorics of the fan. Indeed, as with

any torus invariant divisor, D0 ⊂ X loc
sing is determined by an integer valued

function on the vectors generating the rays of the fan. In this case, the function
takes the values (0, 0, 0, l) at the generators ((0, 0, 1), (0, l, 1), (1, l, 1), (1, 0, 1))
respectively. D0 is not Cartier: if it were, its associated values on the vectors
generating the fan would be the restriction of a linear function on the cone. It
is however Cartier away from the singular point. This is reflected in the fact
that the values are the restrictions of linear functions on the 2-dimensional
faces of the cone. Since Fcon is obtained from Fsing by adding various new gen-
erators to the 2-dimensional faces of Fsing, the proper transform D′

0 is given by
the function on the generators obtained by restricting the linear function on
the faces of Fsing to the new generators. Namely, D′

0 is given by the function
taking values 0 on the generators (0, j, 1) and l− j on the generators (1, j, 1)
for j = 0, . . . , l.

Note that D′
0 ⊂ X loc

con is still non-Cartier: on the cone in Fcon generated by
((0, i− 1, 1), (0, i, 1), (1, i− 1, 1), (1, i, 1)), D′

0 take values (0, 0, l− i+ 1, l− i).
On this cone, which corresponds to the T -invariant affine neighborhood of
the ith conifold point in X loc

con, D′
0 is the sum of the divisors taking values

(0, 0, 1, 0) and (0, 0, l − i, l − i) on the generators. The latter is principal and
hence doesn’t affect the blowup. The blowup of the former gives the conifold
resolution obtained by adding the 2-dimensional face spanned by (0, i− 1, 1)
and (1, i, 1) to the fan. Thus

X loc = BlD′
0
(X loc

con)

is smooth and is given by the fan F colored grey in the picture below:
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The fan F of X loc, the dual polytope, and the multiplicities of D′′
0 .

Let D′′
0 ⊂ X loc be the proper transform of D′

0. The values of D′′
0 on the

generators of the fan F are depicted in blue in the above picture and the dual
polytope is depicted in red.

The exceptional locus of X loc → X loc
sing is given by c1 ∪ b1 ∪ · · · ∪ bl−1 ∪ cl,

a chain of 2l − 1 ℙ1s. The l curves c1, . . . , cl are the expectional curves of
the conifold resolution X loc → X loc

con and the l − 1 curves b1, . . . , bl−1 are the
proper transforms of the exceptional curves of X loc

con → X loc
sing.

We can now compute the intersection numbers D′′
0 · ci and D′′

0 · bi. Let
D[r, s, 1] denote the torus invariant divisor corresponding to the ray generated
by (r, s, 1). So then

D′′
0 =

l∑︂
k=0

(l − k)D[1, k, 1].
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Now the intersection of the proper curves bi and ci with D[r, s, 1] can be
computed using standard toric geometry. The intersection number is 0 if the
curve and divisor are disjoint and 1 if they meet in a single point. If the curve
is contained in the divisor, one can find a linearly equivalent divisor (by
adding a suitable global linear function on the fan) such that no component
of the new divisor contains the curve and then easily compute the intersection
number. The results are

bi ·D[1, k, 1] =

⎧⎪⎨⎪⎩
1 if k = i + 1
−1 if k = i

0 otherwise.

ci ·D[1, k, 1] =

⎧⎪⎨⎪⎩
1 if k = i− 1
−1 if k = i

0 otherwise.

We then get

bi ·D′′
0 = l − (i + 1) − (l − i)

= −1
ci ·D′′

0 = l − (i− 1) − (l − i)
= 1.

We summarize the above discussion in the following lemma.

Lemma 13. Let X loc = BlD′
0
(X loc

con). Then X loc is a smooth toric CY3. The
exceptional set of the resolution X loc → X loc

sing is a chain of 2l − 1 curves
c1∪b1∪· · ·∪bl−1∪cl where the ci’s are the exceptional curves of X loc → X loc

con
and the bi’s are the proper transforms of the exceptional curves of X loc

con →
X loc

sing. Let D′′
0 ⊂ X loc be the proper transform of D′

0. Then the intersection
numbers of D′′

0 with the exceptional curves are given by

D′′
0 · ci = +1, for i = 1, . . . , l,(6)

D′′
0 · bi = −1, for i = 1, . . . , l − 1.(7)

We next show that the above lemma holds for the whole family of divisors
parameterized by ϵ. This will allow us to convert the toric result about X loc

into a global result for X since the divisor Γ = D′
ϵ=1 is well defined globally.

Let
𝔻 ⊂ 𝔸1 ×X loc

sing
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be the Weil divisor with ideal

(yl − ϵb, a− ϵxl) ⊂ ℂ[x, y, a, b, ϵ]/(ab− xlyl).

Let 𝔻′ be the proper transform of 𝔻 under 𝔸1 × X loc
con → 𝔸1 × X loc

sing and
consider

𝕏loc = Bl𝔻′(𝔸1 ×X loc
con).

By the functoriality of blowups, the fiber of 𝕏loc → 𝔸1 over ϵ is given by
BlD′

ϵ
(X loc

con). We’ve shown that BlD′
0
(X loc

con) is non-singular, so it follows that
BlD′

ϵ
(X loc

con) is non-singular for generic ϵ. Then since there is a ℂ∗ action on 𝕏loc

given by (x, y, a, b, ϵ) ↦→ (x, y, λa, λ−1b, λϵ) we see that BlD′
ϵ
(X loc

con) must be
non-singular for all ϵ. In fact, since the singularities are all conifolds and the
resolutions are conifold resolutions, we have 𝕏loc = X loc ×𝔸1. Let 𝔻′′ ⊂ 𝕏loc

be the proper transform of 𝔻′. Then D′′
ϵ · ci and D′′

ϵ · bi are independent of ϵ
since they are given by deg(𝒪(𝔻′′)|ϵ×ci) and deg(𝒪(𝔻′′)|ϵ×bi).

In particular, when ϵ = 1, the divisor D′
ϵ=1 ⊂ X loc

con is a local model
for Γ ⊂ Xcon and then the local results for D′

ϵ=1 imply the following global
results:

Proposition 14. Let Γ ⊂ Xcon be as defined in § 2. Let XN = BlΓ(Xcon)
and let us also denote by Γ ⊂ XN the proper transform of Γ ⊂ Xcon. Then
XN is a smooth CY3 and

(8) Γ · c = 1

for any exceptional curve c of X → Xcon and

(9) Γ · b = −1

for any curve b given by the proper transform of an exceptional curve of
Xcon → Xsing.

4. Divisors, curves, and intersection numbers on 𝑿𝑵

We now study the cohomology classes of XN and ˜︁XN . In particular we find a
ℚ basis for curve classes and divisor classes and we compute their intersections
numbers.

As shown in [26, eqn 3.2], the divisor classes of XN necessarily consist of
the divisor classes of the generic fiber and the fiber classes. Here (following
[26]) the “generic fiber” is the fiber over the generic point η ∈ ℙ1 in the sense
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of schemes. The Picard group of the generic fiber is spanned by the three
divisors

S = S ×ℙ1 {0}, S′ = {0} ×ℙ1 S′, and Γ.

The fiber divisor classes are given by the general fiber F and the irreducible
components of the singular fibers.

We now develop notation for the curves and divisors in the singular fibers
of XN → ℙ1. As discussed in Section 2, for each k ∈ ΘN there is a correspond-
ing singular fiber of XN → ℙ1 which is the proper transform of Ik×Il ⊂ Xcon
where we recall that

l = N

k
.

Fibers of this type are called multi-banana fibers and were studied by Kana-
zawa-Lau [16] and Morishige [23]. We label5 such a fiber by F (k).

The singular fiber F (k) ⊂ XN is a non-normal toric surface and its formal
neighborhood ˆ︁F (k) has a universal cover which is a formal toric Calabi-Yau
threefold ˆ︁U modelled on the toric CY3 whose fan in ℝ3 consists of the cones
generated by

(i, j, 1), (i + 1, j, 1), (i + 1, j + 1, 1), (i, j) ∈ ℤ× ℤ,

and
(i, j, 1), (i, j + 1, 1), (i + 1, j + 1, 1), (i, j) ∈ ℤ× ℤ.

An element (s, t) ∈ ℤ× ℤ in the group of deck transformations of ˆ︁U → ˆ︁F (k)
acts on the generators of the cones by translation by (sk, tl, 0) (see [23, § 2.2]
for more details). We then may choose a fundamental domain for the ℤ× ℤ

action on the cones, namely the cones given above with i ∈ {0, . . . , k−1} and
j ∈ {0, . . . , l− 1}. The quotient of ˆ︁F (k) by the action of GN is then given by
the quotient of ˆ︁U by ℤ × ℤ where now (s, t) acts by translation by (s, t, 0)
on the generators of the cones. This quotient is the formal neighborhood of a
banana fiber, ˆ︁Fban in the notation of [6]:

ˆ︁F (k)/GN
∼= ˆ︁Fban.

We label the torus invariant divisors in F (k) by Dij(k), i = 1, . . . , k, j =
1, . . . , l and the torus invariant curves by aij(k), bij(k), and cij(k). We do this
such that the zero section meets Dkl(k) and the b and c curves coincide with

5If k is repeated in ΘN we will use primes to further distinguish so that the
labels will be in (1, 2, 3, 6), (1, 1′, 5, 5′), (2, 2′, 4, 4′), or (3, 3′, 3′′, 3′′′).
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the b and c curves in the local model. In particular, cij(k) are the exceptional
curves of the conifold resolution XN → Xcon, bij(k) for j ̸= l are the proper
transforms of the exceptional curves of Xcon → Xsing, and bil(k) is the proper
transform of the curve

ni × Iℤl
1 ⊂ Ik × Iℤl

1 ⊂ Xsing.

Finally, aij(k) is the proper transform of

ai × nj ⊂ Ii × Il ⊂ Xcon

where ai is the ith curve in Ii and nj is the jth node in Il.
We illustrate this in figure below for N = 6, k = 3, and l = 2 (we suppress

the k from the notation in the diagram):

A fundamental domain for the toric diagram (gray) and dual polytope (red) forˆ︁F (3), the formal neighborhood of the singular fiber F (3) ⊂ X6.

Note that in the above example, the fan and dual polytope of the local
model appears k = 3 times, each with l = 2. The intersection of Γ with F (3)
is depicted in orange.

The 4N + 4 divisor classes given by

{F, S, S′,Γ, Dij(k)}k∈ΘN , i=1,...,k, j=1,...,l
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admit four obvious relations, namely∑︂
i,j

Dij(k) = F

for each k ∈ ΘN . Since the Picard number of XN is 4N , there are no further
relations.

We obtain the following intersection numbers easily since in each case,
the curve and divisor are either disjoint or intersect transversely in a single
point:

S · aij(k) = S′ · bij(k) = S · cij(k) = S′ · cij(k) = 0.

and

S′ · aij(k) =
{︄

1 if i = k,
0 if i ̸= k,

S · bij(k) =
{︄

1 if j = l,
0 if j ̸= l.

By Equations (8) and (9) in Proposition 14, we have

Γ · cij(k) = 1,
Γ · bij(k) = −1 for j ̸= l.

Thus to get all the intersection numbers of the fiber curves with {S, S′,Γ}, it
remains to compute Γ · aij(k) and Γ · bil(k). To determine these, we use the
curve classes

f = S · F, f ′ = S′ · F
which are the fiber curve classes of the elliptic fibrations S → ℙ1 and S′ → ℙ1.
We may write these classes in terms of aij(k), bij(k), cij(k) since they are given
as the total transform of the curves Ik × {0} and {0} × Il respectively in the
fiber F (k) ⊂ XN . These curves are illustrated in the above diagram in blue.

Since Ik × {0} is homologous to Ik × nj where nj is any node, and the
total transform of Ik × nj is the union⋃︂

i

cij(k) ∪ aij(k)
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we get the following relation for any fixed k and j:

f =
k∑︂

i=1
cij(k) + aij(k).

Similarly, for any k and i we get

f ′ =
l∑︂

j=1
cij(k) + bij(k).

Taking a representative for f ′ and f in the generic fiber, we see that6

f ′ · Γ = 1, f · Γ = N.

Combining, we get

1 = f ′ · Γ

=
l∑︂

j=1
(cij(k) + bij(k)) · Γ

= l − (l − 1) + bil(k) · Γ

which implies
bil(k) · Γ = 0

for any i and k.
We note that aij(k) · Γ is independent of i since the action of the first

factor of GN ×GN preserves Γ and permutes the i indices of aij(k). Then for
any j and k we have

N = f · Γ

=
k∑︂

i=1
(cij(k) + aij(k)) · Γ

= k + kaij(k) · Γ
6We remark that the picture of the intersection of f and Γ in the diagram is

misleading. The curve f should meet Γ twice in each of D12, D22, D32 for a total of
N = 6.
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where the last equality holds for all i, j, k. Thus we get

aij(k) · Γ = l − 1.

We summarize these results in the following

Lemma 15. The intersection numbers of the fiber curve classes aij(k), bij(k),
and cij(k) with the divisors S, S′,Γ are given by the following table:

ϵ S′ · ϵ S · ϵ Γ · ϵ
aij(k)

{︂
1 if i = k
0 if i ̸= k

}︂
0 l − 1

bij(k) 0
{︂

1 if j = l
0 if j ̸= l

}︂ {︂
0 if j = l
−1 if j ̸= l

}︂
cij(k) 0 0 1

We are primarily interested in curve and divisor classes on ˜︁XN = XN/GN .
Let

π : XN → ˜︁XN

be the quotient map. We note that for each k, GN acts simply transitively on
the sets {aij(k)}, {bij(k)}, {cij(k)}, and {Dij(k)}. In particular the classes

ã(k) = π∗(aij(k)), b̃(k) = π∗(bij(k)), c̃(k) = π∗(cij(k))

are independent of the choice of i and j. We also define

˜︁Γ = π∗(Γ), ˜︁S = π∗(S), ˜︁S′ = π∗(S′)

and finally we define ˜︁F to be the class of the fiber of ˜︁XN → ℙ1. Note that
the pushforward behaves a little differently for this class:

˜︁F = 1
N π∗(F ).

The divisor classes { ˜︁F , ˜︁S, ˜︁S′, ˜︁Γ} span Pic( ˜︁XN ) and to compute their in-
tersection numbers with the fiber curve classes ˜︁a(k), ˜︁b(k), ˜︁c(k) we use the
following.

If D is any divisor class on XN , ˜︁ϵ is a curve class on ˜︁XN , and ˜︁D = π∗(D)
then

˜︁D · ˜︁ϵ = π∗(D) · ˜︁ϵ
= π∗(D · π∗˜︁ϵ)
= D · π∗˜︁ϵ
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so to compute ˜︁S · ˜︁a(k) for example, we need to compute

S · π∗(˜︁a(k)) = S ·
∑︂
i,j

aij(k)

and this can be read off from the table in Lemma 15. Carrying this out we
get the following table of intersections on ˜︁XN .

˜︁ϵ ˜︁S′ · ˜︁ϵ ˜︁S · ˜︁ϵ ˜︁Γ · ˜︁ϵ˜︁a(k) l 0 N(l − 1)˜︁b(k) 0 k −k(l − 1)˜︁c(k) 0 0 N

Geometrically, the classes ˜︁a(k),˜︁b(k),˜︁c(k) are represented by the three
banana curves in the fiber ˜︁F (k) = F (k)/GN . It will be convenient to consider
a slightly different basis of curve and divisor classes. Namely, consider the
curve classes ˜︁a(k) + ˜︁c(k), ˜︁b(k) + ˜︁c(k), ˜︁c(k)

and the divisor class ˜︁Δ = ˜︁Γ −N ˜︁S′ − ˜︁S.
Lemma 16. The intersection numbers for the above classes are given in the
following:

˜︁ϵ ˜︁S′ · ˜︁ϵ ˜︁S · ˜︁ϵ ˜︁Δ · ˜︁ϵ˜︁a(k) + ˜︁c(k) l 0 0˜︁b(k) + ˜︁c(k) 0 k 0˜︁c(k) 0 0 N

4.1. The intersection form of a smooth fiber

The divisor classes

Γ, S, S′, Δ = Γ −NS′ − S

on XN and the corresponding classes

˜︁Γ, ˜︁S, ˜︁S′, ˜︁Δ
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on ˜︁XN restrict to a fiber to give curve classes

γ = Γ · F, f = S · F, f ′ = S′ · F, δ = Δ · F

on XN , and correspondingly

˜︁γ = ˜︁Γ · ˜︁F , ˜︁f = ˜︁S · ˜︁F , ˜︁f ′ = ˜︁S′ · ˜︁F, ˜︁δ = ˜︁Δ · ˜︁F
on ˜︁XN .

Viewed as divisor classes on a smooth fiber E × E′ ⊂ XN or (E ×
E′)/GN ⊂ ˜︁XN , these classes are endowed with an intersection form. Geo-
metrically, we may explicitly write these cycles:

f = {(x, 0) ∈ E ×E′}, f ′ = {(0, x′) ∈ E ×E′}, γ = {(x, g(x)) ∈ E ×E′}

where g : E → E′ is the quotient map.
The self-intersection of f, f ′, γ are all zero since translation by a generic

element in E × E′ creates a disjoint homologous cycle. The remaining inter-
sections are transverse and easily counted using the above descriptions. They
are given by

f · f ′ = 1, f · γ = N, f ′ · γ = 1.

It follows then for δ = γ −Nf ′ − f that

δ · f = 0, δ · f ′ = 0, δ · δ = −2N

so in the basis (δ, f, f ′) for Pic(E × E′) the intersection form is⎛⎜⎝−2N 0 0
0 0 1
0 1 0

⎞⎟⎠ .

All classes α ∈ {f, f ′, γ} have the property that

π∗π∗α = GN orbit of α
= Nα

so for ˜︁α, ˜︁β ∈ { ˜︁f, ˜︁f ′, ˜︁γ, ˜︁δ} we have

˜︁α · ˜︁β = Nα · β
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since

α · β = π∗(α · β)
= 1

N π∗(π∗π∗α · β)
= 1

N (π∗α · π∗β)
= 1

N ˜︁α · ˜︁β.
Thus we’ve proved the following

Lemma 17. The classes ˜︁δ, ˜︁f, ˜︁f ′ given by the restriction of the divisor classes˜︁Δ, ˜︁S, ˜︁S′ in ˜︁XN to a smooth fiber have intersection pairing given by the matrix⎛⎜⎝−2N2 0 0
0 0 N

0 N 0

⎞⎟⎠ .

It is also useful to write the classes of the banana curves ˜︁a(k),˜︁b(k),˜︁c(k) ⊂˜︁F (k) in terms of the curve classes ˜︁δ, ˜︁f, ˜︁f ′.

Lemma 18. The following equations of curve classes hold

˜︁a(k) + ˜︁c(k) = 1
k
˜︁f

˜︁b(k) + ˜︁c(k) = 1
l
˜︁f ′

˜︁c(k) = − 1
2N

˜︁δ.
Proof. It suffices to show that both sides of each equation have the same
pairing with the divisors ˜︁S′, ˜︁S, and ˜︁Δ. The pairings of ˜︁f, ˜︁f ′, ˜︁δ with ˜︁S, ˜︁S′, ˜︁Δ
are given by the intersection pairing in Lemma 17. In particular, the only
non-zero pairings are

1
k
˜︁f · ˜︁S′ = N

k
= l

1
l
˜︁f ′ · ˜︁S = N

l
= k

− 1
2N

˜︁δ · ˜︁Δ = − 1
2N (−2N2) = N.

The pairing with the classes on the left are given by Lemma 16 which are the
same.
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5. Computation of the enumerative invariants of ˜︂𝑿𝑵

5.1. Review of the partition function of banana manifolds

The fiber curve DT partition function of the generic banana manifold Xban
was computed in [6] with a combination of motivic and topological vertex
methods. The method works for any other CY3 of banana type including˜︁XN . What is needed is a CY3 X with an Abelian surface fibration X → ℙ1

whose singular fibers F1, . . . , Fr are banana fibers, so that in particular the
formal neighborhoods ˆ︁Fi are isomorphic to ˆ︁Fban see [6, § 4]. The result is that
the fiber curve DT partition function is a product over the contributions from
singular fibers

ZX =
r∏︂

i=1
Z ˆ︁Fi

where each Z ˆ︁Fi
is, up to a change of variables, given by

Z ˆ︁Fban
(p,Q1, Q2, Q3) =

∑︂
d⃗,m

DTm,βd⃗
(−p)mQd1

1 Qd2
2 Qd3

3

=
∏︂
d⃗,m

(1 − pmQd1
1 Qd2

2 Qd3
3 )−c(d⃗2,m)

where if a, b, c are the banana curves in ˆ︁Fban,

βd⃗ = d1a + d2b + d3c.

Moreover, the coefficients c(d⃗2,m) are defined as in Equation (1) and d⃗2 is
by definition

d⃗2 = 2d1d2 + 2d2d3 + 2d3d1 − d2
1 − d2

2 − d2
3.

Finally, in the above product we require d1, d2, d3 ≥ 0 and if d1 = d2 = d3 = 0
we require m > 0.

5.2. The DT partition function of ˜︂𝑿𝑵

In the case of ˜︁XN , we have four singular fibers, indexed by k ∈ ΘN given by

ˆ︁F (k)/GN
∼= ˆ︁Fban
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and containing banana curves ˜︁a(k),˜︁b(k),˜︁c(k). Therefore

Z ˜︁XN
=

∏︂
k∈ΘN

Z ˆ︁F (k)/GN

and Z ˆ︁F (k)/GN
= Z ˆ︁Fban

up to a change of variables which we determine as
follows.

The contribution of a class

˜︁βd⃗(k) = d1˜︁a(k) + d2˜︁b(k) + d3˜︁c(k)

to the DT partition function contributes by definition to the coefficient of the
monomial

y
˜︁βd⃗(k)·˜︁Δ q

˜︁βd⃗(k)·˜︁S′
Q

˜︁βd⃗(k)·˜︁S .
By writing

˜︁βd⃗(k) = d1(˜︁a(k) + ˜︁c(k)) + d2(˜︁b(k) + ˜︁c(k)) + (d3 − d1 − d2)˜︁c(k)

we can easily rewrite the above monomial using the table in Lemma 16. It is
given by

y
˜︁βd⃗(k)·˜︁Δ · q ˜︁βd⃗(k)·˜︁S′ ·Q˜︁βd⃗(k)·˜︁S = yN(d3−d1−d2) · qld1 ·Qkd2

=
(︁
qly−N

)︁d1 (︁
Qky−N

)︁d2 (︁
yN

)︁d3

where we recall that l = N/k. So

Z ˆ︁F (k)/GN
(p, y, q, Q) = Z ˆ︁Fban

(p,Q1, Q2, Q3)

where

(10) Q1 = qly−N , Q2 = Qky−N , Q3 = yN .

Combining, we’ve shown that

Z ˜︁XN
(p, y, q, Q) =

∏︂
k∈ΘN

∏︂
d⃗,m

(︂
1 − pmyN(d3−d1−d2)qld1Qkd2

)︂−c(d⃗2,m)
.

Letting
r = d1, s = d2, t = d3 − d1 − d2
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and observing that
d⃗2 = 4rs− t2

we then have the formula for Z ˜︁XN
as stated in Theorem 3 and thus have

concluded its proof.

5.3. GW potentials of ˜︂𝑿𝑵

In this section we prove Corollary 5. We begin by computing the genus g,
fiber curve, GW potential of ˜︁XN :

F
˜︁XN
g (Q, q, y) =

∑︂
β∈H2( ˜︁XN )

π∗β=0

⟨ ⟩ ˜︁XN

g,β Qβ·˜︁Sqβ·˜︁S′
yβ·

˜︁Δ.

Our calculation follows closely the computation in [6, App A]. The reduced
GW potential F ′

g is defined by removing the β = 0 term from F
˜︁XN
g :

F ′
g(Q, q, y) = F

˜︁XN
g (Q, q, y) − F

˜︁XN
g (0, 0, 0).

The GW/DT correspondence conjectured in [20] and recently proven by Par-
don in [25], asserts that

∞∑︂
g=0

F ′
g(Q, q, y)λ2g−2 = log

(︄
Z ˜︁XN

(p, y, q, Q)
Z ˜︁XN

(p, 0, 0, 0)

)︄

under the change of variables p = eiλ. Applying this to the DT partition
function of ˜︁XN we get

∞∑︂
g=0

F ′
g(Q, q, y)λ2g−2 = log

(︄ ∏︂
k∈ΘN

∏︂
m,r,s,t

(1 − pmqlrQksyNt)−c(4rs−t2,m)

)︄
(11)

=
∑︂
k∈ΘN

∑︂
m,r,s,t

c(4rs− t2,m)
∞∑︂
n=1

1
n
pnmqnlrQnksynNt

where the indices (m, r, s, t) in the product and sum are given by integers
satisfying r, s, r+ s+ t ≥ 0 and (r, s, t) ̸= (0, 0, 0). Now c(d,m) = 0 if d < −1
[6, Prop 14] from which one can show that an equivalent indexing condition
is given by r, s ≥ 0 and t > 0 if r = s = 0.
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In Appendix A of [6] it is shown that

(12)
∞∑︂
g=0

c2g−2(d)λ2g−2 =
∑︂
m∈ℤ

c(d,m)eimλ

where c2g−2(d) is defined by

ψ2g−2(q, y) =
∞∑︂
n=0

∑︂
t∈ℤ

c2g−2(4n− t2)qnyt

and where ψ2g−2(q, y) is the weak Jacobi form of weight 2g − 2 and index 1
given by

ψ2g−2(q, y) = ϕ−2,1(q, y) ·

⎧⎪⎨⎪⎩
1 g = 0
℘(q, y) g = 1

|B2g |
2g(2g−2)!E2g(q) g > 1

(see [6, App A] for further explanation). Applying the substitution p = eiλ to
Equation (11) and using Equation (12) we find

∞∑︂
g=0

F ′
g(Q, q, y)λ2g−2

=
∑︂
k∈ΘN

∑︂
r,s,t

∞∑︂
n=1

1
n
qnlrQnksynNt

∞∑︂
g=0

c2g−2(4rs− t2)n2g−2λ2g−2

so that

F ′
g(Q, q, y) =

∑︂
k∈ΘN

∑︂
r,s,t

c2g−2(4rs− t2) Li3−2g(qlrQksyNt).

For g > 1 we can add back in the constant terms using for example [20, § 2.1]
to get

F
˜︁XN
g (Q, q, y)

(13)

=
∑︂
k∈ΘN

(︄
c2g−2(0) · −B2g−2

4g − 4 +
∑︂
r,s,t

c2g−2(4rs− t2) Li3−2g(QksqlryNt)
)︄
.
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Let

F ban
g (Q, q, y) = c2g−2(0) · −B2g−2

4g − 4 +
∑︂
r,s≥0

∑︂
t

c2g−2(4rs− t2) Li3−2g(Qsqryt)

where the sum over t is for t ∈ ℤ unless r = s = 0 in which case the sum
is t ∈ ℕ. It is shown in Appendix A of [6] that F ban

g (Q, q, y) is the genus
2 Siegel modular form given by the Maass lift of ψ2g−2(q, y). Then we can
rewrite Equation (13) as

F
˜︁XN
g (Q, q, y) =

∑︂
k∈ΘN

F ban
g (Qk, ql, yN )

which completes the proof of Corollary 5.

Proof of Corollary 6. Let us define the function

ℱ ˜︁XN
g (Q, q, y) =

∑︂
k∈ΘN

F ban
g (QNk, q

N
k , yN )

which is clearly related to the GW potential F ˜︁XN
g through the simple change of

variables Q ↦→ QN . We will prove Corollary 6 by establishing the automorphic
properties of ℱ ˜︁XN

g .

Lemma 19. If F (Q, q, y) is a Siegel modular form on Sp4(ℤ), then for N

and k positive integers, F (QNk, q
N
k , yN ) is a Siegel modular form of the same

weight for the subgroup

LN,k = Sp4(ℚ) ∩

⎛⎜⎜⎜⎜⎝
ℤ k ℤ k

N ℤ 1
N ℤ

1
k ℤ ℤ 1

N ℤ 1
Nk ℤ

N
k ℤ N ℤ ℤ 1

k ℤ

N ℤ Nk ℤ k ℤ ℤ

⎞⎟⎟⎟⎟⎠ .

Proof. Recall that Q = e2πiσ, q = e2πiτ , y = e2πiz where Ω = ( τ z
z σ ) is an

element of the genus 2 Siegel upper half space ℍ2. The diagonal matrix

h = diag(N,Nk, k, 1)

acts on ℍ2 in the standard way by

Ω ↦→ h · Ω =
(︄
N 0
0 Nk

)︄
Ω
(︄
k 0
0 1

)︄−1

=
(︄

N
k τ Nz

Nz Nkσ

)︄
.
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If F (Ω) = F (Q, q, y) is a Siegel modular form on Sp4(ℤ), then F (h · Ω) =
F (QNk, q

N
k , yN ) is a Siegel modular form of the same weight on Sp4(ℚ) ∩

(h−1 Sp4(ℤ)h). For the particular matrix h above, it is straightforward to
verify that

LN,k = Sp4(ℚ) ∩ (h−1 Sp4(ℤ)h).

Recalling that F ban
g (Q, q, y) is a Siegel modular form of weight 2g − 2 on

Sp4(ℤ), the above lemma implies that ℱ ˜︁XN
g is a Siegel modular form of weight

2g − 2 for the group
∩k∈ΘNLN,k

which one can easily show is exactly the subgroup PN ⊂ Sp4(ℚ) defined by
Equation (3). Finally, we note that by the standard action of Sp4(ℝ) on ℍ2,
the involution ιN (defined in Equation (4)) induces the transformation

(Q, q, y) ↦→ (q
1
N , QN , y)

under which ℱ ˜︁XN
g is evidently invariant. It follows that ℱ ˜︁XN

g is a Siegel mod-
ular form for the index 2 normal extension P ∗

N ⊂ Sp4(ℝ), which completes
the proof of Corollary 6.

5.4. GV invariants of ˜︂𝑿𝑵

In [6] it is shown that if a, b, c ⊂ ˆ︁Fban are banana curves the GV invariants
ng
β( ˆ︁Fban) of an effective class

β = d1a + d2b + d3c

only depend on g and the quantity

a = d⃗2 = 2d1d2 + 2d2d3 + 2d3d1 − d2
1 − d2

2 − d2
3

and then ng
β( ˆ︁Fban) = ng

a where the integers ng
a are given by the formula

∞∑︂
a=−1

∞∑︂
g=0

ng
a (y

1
2 + y−

1
2 )2gqa+1 =

∞∏︂
n=1

(1 + yq2n−1)(1 + y−1q2n−1)(1 − q2n)
(1 + yq4n)2(1 + y−1q4n)2(1 − q4n)2 .

Now consider an effective curve class on ˆ︁F (k) ⊂ ˜︁XN given by

β = d1˜︁a(k) + d2˜︁b(k) + d3˜︁c(k).
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Recall that we have a quadratic form || · || on fiber curve classes induced from
the intersection form on a smooth fiber. We compute ||β|| as follows:

||β|| = ||d1(˜︁a(k) + ˜︁c(k)) + d2(˜︁b(k) + ˜︁c(k)) + (d3 − d1 − d2)˜︁c(k)||
= ||d1 · 1

k
· ˜︁f + d2 · 1

l
· ˜︁f ′ + (d3 − d1 − d2) · −1

2N · ˜︁δ||
= 2d1d2 · 1

kl
·N + (d3 − d1 − d2)2 · 1

4N2 · (−2N2)

= 1
2
(︁
4d1d2 − (d3 − d1 − d2)2

)︁
= 1

2
(︁
2d1d2 + 2d2d3 + 2d3d1 − d2

1 − d2
2 − d2

3
)︁
.

And thus if we let a = 2||β|| then ng
β( ˆ︁F (k)) = ng

a.
Then for a general effective fiber curve class β on ˜︁XN with a = 2||β|| we

have

(14) ng
β( ˜︁XN ) = ϵN (β)ng

a

where ϵN (β) is the number of singular fibers F (k) ⊂ ˜︁XN on which β is
represented by an integral class.

For example the class

˜︁a(N) + ˜︁c(N) = 1
N

· ˜︁f
= k

N
(˜︁a(k) + ˜︁c(k))

is represented by an effective curve in F (N), but is not represented by a curve
in F (k) when k ̸= N , so in this case, ϵN (˜︁a(N) + ˜︁c(N)) = 1.

Lemma 20.
ϵN (β) =

∑︂
k∈ΘN

ϵN,k(β)

where

ϵN,k(β) =
{︄

1 if k
⃓⃓⃓
(β · ˜︁S) and l

⃓⃓⃓
(β · ˜︁S′)

0 otherwise.

Proof. An integral class on F (k) given by

β = d1˜︁a(k) + d2˜︁b(k) + d3˜︁c(k)
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can be written as

β = d1 · 1
k
· ˜︁f + d2 · 1

l
· ˜︁f ′ + (d3 − d1 − d2) · −1

2N · ˜︁δ
and thus satisfies

β · ˜︁S′ = d1l, β · ˜︁S = d2k, β · ˜︁Δ = (d3 − d1 − d2)N

and so in particular k divides β · ˜︁S and l divides β · ˜︁S′. Moreover, N divides
β · ˜︁Δ for any effective fiber curve class.

Conversely, suppose that β is an effective fiber curve class satisfying k
⃓⃓⃓

(β · ˜︁S) and l
⃓⃓⃓
(β · ˜︁S′). Then β is represented by an integral curve class on

F (k) since we may define the integers

d1 = 1
l
β · ˜︁S′, d2 = 1

k
β · ˜︁S

and then
d3 = 1

N
β · ˜︁Δ + d1 + d2.

Lemma 20 and Equation (14) then complete the proof of Proposition 7.

Appendix A. Rigid CY3s related by finite quotients and
small resolutions (with Mike Roth)

Recall that for a rigid CY3 X defined over ℚ there exists a weight 4 modular
cusp form

fX(q) =
∞∑︂
n=1

anq
n

uniquely characterized by the condition that

ap = tr(Frobp

⃓⃓⃓
H3

ét(X𝔽p
,ℚl))

for almost all primes p.
In [27, Appendix] Verrill considered rigid CY3s which are closely related to

our banana nano-manifolds ˜︁XN . Namely, let XVer
N be (any) projective conifold

resolution of the fiber product SN×ℙ1SN (Schoen [26] proved that there exists



562 Jim Bryan et al.

projective resolutions of any self-fiber product of a rational surface). Then
XVer

N is a rigid CY3 with h1,1(XVer
N ) =

∑︁
k∈ΘN

k2. Verrill uses a particular
model for SN which is defined over ℚ and proves that

fXVer
N

(q) =
∏︂

k∈ΘN

η(qk)2

independent of the choice of the conifold resolution7

XVer
N

π1−→ SN ×ℙ1 SN .

We remark that Saito and Yui use the Shimura isomorphism and the fact
that SN → ℙ1 is the universal curve over the modular curve for the group
ΓN to argue that fXVer

N
(q) is a weight 4 cusp form for the group ΓN (see [27,

Thm 5.3]).
We note that the quotient of SN ×ℙ1 SN by GN acting on the second

factor is
SN ×ℙ1 Ssing = Xsing.

Thus ˜︁XN and XVer
N are related by the following sequence of maps

(15) XVer
N

π1−→ SN ×ℙ1 SN
q1−→ Xsing

π2←− XN
q2−→ ˜︁XN

where the maps π1 and π2 are crepant resolutions and q1 and q2 are both
quotients by the action of the finite group GN .

We will show that the above maps and varieties are defined over ℚ and
that they induce an isomorphism

H3
ét(XVer

N ,ℚl) ∼= H3
ét( ˜︁XN ,ℚl)

which is compatible with the action of Frobenius so that in particular

fXVer
N

(q) = f ˜︁XN
(q).

Let V be a variety defined over ℂ. We recall that the both the ordinary
cohomology groups H i(V,ℚ), and the groups H i

c(V,ℚ) of cohomology with
compact support carry weight filtrations, increasing filtrations F0 ⊆ F1 ⊆
F2 ⊆ · · · of ℚ-subspaces. We denote by GrmH i(V ) (or Grm H i

c(V )) the
7The existence of a projective conifold resolution follows from a theorem of

Schoen. However, Schoen’s argument does not guarantee that the conifold reso-
lution is defined over ℚ. We will address this issue in Lemma 22.
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quotient Fm/Fm−1. Given a map π : V → V ′ of varieties, the pullback maps
on cohomology are compatible with the weight filtrations, and so induce maps
of the graded pieces.

Moreover, if one has an exact sequence of cohomology groups, for instance
an excision sequence

· · · −→ H i−1(Z) −→ H i
c(U) −→ H i(V ) −→ H i(Z) −→ · · ·

then for any m the sequence of graded pieces

· · · → GrmH i−1(Z) → Grm H i
c(U) → Grm H i(V ) → Grm H i(Z) → · · ·

is again exact. This is a consequence of the fact that the maps on cohomology
are not only compatible with the filtrations, but are strictly compatible [9,
Proposition 1.1.11].

Lemma 21. Let V and V ′ be projective threefolds defined over ℂ and
π : V −→ V ′ a birational map. Let Z ⊂ V be the exceptional locus of π
and Z ′ = π(Z).

(a) Suppose that Z and Z ′ have the property that Gr3 H2(Z) = Gr3 H3(Z)=
0 and that Gr3 H2(Z ′) = Gr3 H3(Z ′) = 0. Then the pullback map
π∗ : H3(V ′) −→ H3(V ) induces an isomorphism on Gr3.

(b) The vanishing conditions in (a) hold in each of the following cases:

(b1) For the morphism π2 : XN −→ Xsing above;
(b2) When π : V −→ V ′ is a conifold resolution (e.g., π1 : XVer

N −→
SN ×ℙ1 SN ).

Proof. Let
U = V − Z, U ′ = V ′ − Z ′,

and note that π induces an isomorphism U ∼= U ′.
The excision exact sequences for U = V −Z and U ′ = V ′−Z ′ are compat-

ible with the maps π∗ on cohomology and lead to the following commutative
diagram with exact rows:

H2(Z ′) H3
c (U ′) H3(V ′) H3(Z ′)

H2(Z) H3
c (U) H3(V ) H3(Z)

π∗

i

≀ π∗ π∗ π∗
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Passing to Gr3 and using the vanishing hypotheses, this diagram becomes

0 H3
c (U ′) Gr3 H3(V ′) 0

0 Gr3 H3
c (U) Gr3 H3(V ) 0

i

≀ π∗ π∗

Consequently the map Gr3 H3(V ′) → Gr3 H3(V ) is an isomorphism.
We next check the vanishing conditions for π2 : XN → Xsing. In this case

Z ′ ⊂ Xsing is given by the union of the curves Ik × n′ where Ik ⊂ S are the
singular fibers and n′ ∈ S′

sing is the nodal point in the corresponding fiber.
Since Z ′ is complex one-dimensional, H3(Z ′) = 0. Since Z ′ is proper, all
weights of H i(Z ′) are ≤ i, by [10, Théorème 8.2.4]. In particular all weights
of H2(Z ′) are ≤ 2 and so Gr3 H2(Z ′) = 0.

The exceptional locus Z → Z ′ is a union of components in the singular
fibers of XN which by the local toric description of Section 3 is a normal
crossing divisor. The class of Z in the Grothendieck group of varieties is a
polynomial in 𝕃 = [𝔸1], the class of the affine line. It follows that the weight
polynomial of Z is supported in even degrees and in particular, we have that
Gr3 H3(Z) = 0. Since Z is proper, Gr3 H2(Z) = 0 as above.

Finally, we check the vanishing conditions for a conifold resolution. Here
Z ′ is a finite set of points and so has no cohomology above H0, and Z is
a curve, and so the degree 3 parts of H2 and H3 vanish as in the previous
case.

Lemma 22. The morphisms and varieties given in Equation (15) are all
defined over ℚ.

Proof. As we make explicit in Appendix B, both Verrill’s model for SN → ℙ1

and the group action GN × SN → SN are defined over ℚ. Consequently,
SN ×ℙ1 SN , Xsing = SN ×ℙ1 (SN/GN ) and the morphism q1 are all defined
over ℚ. The map q1 is the composition of XN → Xcon and Xcon → Xsing. This
later map is induced by the minimal resolution S′

N → SN/GN on the second
factor which is defined over ℚ because we may take S′

N to be the so-called G-
Hilbert scheme which is a component of the Hilbert scheme of substacks of the
stack quotient [SN/GN ] and the morphism to be the Hilbert-Chow morphism
(the Hilbert scheme of substacks of a stack defined over ℚ is defined over ℚ).
The morphism XN → Xcon is given by the blowup of Γ which is a divisor
defined over ℚ since it is the proper transform of the graph of a morphism
defined over ℚ.
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Finally, we need to see that Verrill’s conifold resolution XVer
N → SN×ℙ1SN

is defined over ℚ (this issue does not appear to be addressed in the original
paper). Schoen proves the existence of a projective resolution of any S ×ℙ1

S self-product of a rational elliptic surface with singular fibers of In type
and Verrill quotes this result. However, Schoen’s argument (first blow up the
diagonal and then successively blow up irreducible components of the singular
fibers) does not guarantee that the result is defined over ℚ since components
of the singular fibers may not be defined over ℚ (indeed they are not in
general in our case). We may nevertheless find a conifold resolution defined
over ℚ as follows. The diagonal, the GN -orbits of the diagonal, and H-orbits
of the diagonal for subgroups H ⊂ GN are all Weil divisors defined over ℚ.
We can obtain a projective conifold resolution of SN ×ℙ1 SN defined over ℚ

by successively blowing up those Weil divisors and their proper transforms in
various orders. The specifics of this process depend on N , which is not hard
to determine with explicit analysis of the singular fibers. Explicitly, for N = 5
it suffices to first blowup the diagonal and then blowup the proper transform
of the ℤ5 orbit of the diagonal. For N = 6, first blow up the diagonal, then
blow up the proper transform of the ℤ2-orbit of the diagonal, then blowup
the proper transform of the ℤ3-orbit of the diagonal. For N = 8, first blowup
the ℤ2-orbit of the diagonal and then blowup the proper transform of the
ℤ4-orbit of the diagonal. For N = 9, blowing up the full ℤ3 × ℤ3 orbit of the
diagonal works.

We will also use the following standard result which may be easily proved
using the Leray-Serre spectral sequence.

Lemma 23. Let G be a finite group acting on V . Then H i(V/G) ∼= H i(V )G
where the inclusion H i(V/G) ∼= H i(V )G ↪→ H i(V ) is given by p∗ where
p : V → V/G.

We now complete the proof of Theorem 8. We examine the maps on
cohomology induced by (15):

H3(XVer
N ) π∗

1←− H3(SN ×ℙ1 SN )
q∗1←−↩ H3(Xsing)

π∗
2−→ H3(XN )

q∗2←−↩ H3( ˜︁XN )

Restricting to the weight 3 graded piece of the above and using the fact that
XVer

N , XN , and ˜︁XN are non-singular projective threefolds we get

H3(XVer
N ) π∗

1←− Gr3 H3(SN×ℙ1SN )
q∗1←−↩ Gr3 H3(Xsing)

π∗
2−→ H3(XN )

q∗2←−↩ H3( ˜︁XN )

By Lemma 21 π∗
2 and π∗

1 are isomorphisms on the degree 3 pieces. By
Lemma 23, q∗1 and q∗2 are both injective. Since XVer

N and ˜︁XN are both rigid
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CY3s, H3(XVer
N ) and H3( ˜︁XN ) are both isomorphic to ℚ ⊕ ℚ and hence the

injection (π∗
1)−1 ◦ q∗1 ◦ (π∗

2)−1 ◦ q∗2 is an isomorphism

H3( ˜︁XN ) ∼= H3(XVer
N ).

Fix a prime l. Then by the comparison theorem [1, Lecture 11, Theo-
rem 4.4] H3

ét(X̃N ,ℚl) ∼= H3(X̃N ,ℚ) ⊗ℚ ℚl and H3
ét(XVer

N ,ℚl) ∼= H3(XVer
N ,

ℚ) ⊗ℚ ℚl. The isomorphisms provided by the comparison theorem are com-
patible with pullbacks, and so the map (π∗

1) ◦ q∗1 ◦ (π∗
2)−1 ◦ q∗2 also induces an

isomorphism

H3
ét(X̃N ,ℚl) ∼= H3

ét(XVer
N ,ℚl).

As a consequence of Lemma 22, the maps π1, π2, q1, and q2 are all defined
over ℚ, and so this isomorphism on cohomology groups is also an isomorphism
of Gal(ℚ/ℚ) representations. Thus we have the equality

fX̃N
(q) = fXVer

N
(q).

This completes the proof of Theorem 8.
It remains to prove Proposition 9. The four singular fibers of SN → ℙ1

occur at points p1, . . . , p4 ∈ ℙ1 which are given explicitly in [27, Table 2]. In
all cases, p1 = ∞, and the cross-ratio of the four points is given by

λ = p3 − p2

p3 − p4

If EN is the double cover of ℙ1 branched at {p1, . . . , p4}, then the j-invariant
of EN is given by

j(λ) = 28 (λ2 − λ + 1)3

λ2(1 − λ)2

Thus, one can compute j(λ) in each case, and use the LMFDB [19] to find a
suitable model of EN over ℚ whose corresponding weight 2 cusp modular form
fEN (q) satisfies fEN (q)2 = f ˜︁XN

(q2). The data is presented in the following
table, where the labels for the ℚ-model of EN are those coming from the
L-function and modular form database (LMFDB):
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N j(λ)
ℚ-model
of EN

Weierstrass form
of ℚ-model fEN (q)

5 488095744
125 20.a1 y2 = x3 + x2 − 41x− 116 η(q10)2η(q2)2

6 1556068
81 24.a3 y2 = x3 − x2 − 24x− 36 η(q12)η(q6)η(q4)η(q2)

8 1728 32.a3 y2 = x3 − x η(q8)2η(q4)2

9 0 36.a3 y2 = x3 − 27 η(q6)4

Appendix B. Explicit ℚ-models for the surfaces 𝑺𝑵

For reference, we include some basic explicit data for the models over ℚ of
the surfaces SN studied by Beauville [2] and by Verrill [27]. In this model, the
surface SN is given by the minimal resolution of a hypersurface SN ⊂ ℙ2×ℙ1

with equation fN (x, y, z, λ, μ) = 0, which is homogeneous of degree 3 and 1
in the variables (x, y, z) ∈ ℙ2 and (λ, μ) ∈ ℙ1 respectively. Projection onto ℙ1

gives a pencil of cubics and projection onto ℙ2 realizes SN as the blowup of
ℙ2 at the basepoints of the pencil.

In each case the Mordell-Weil group GN is finite, and we include here
explicit equations for the group action GN × SN → SN (which to our knowl-
edge does not appear anywhere else in the literature). Departing notationally
from Beauville and Verrill, we choose to index the cases by the order N of
the Mordell-Weil group. Note that the N = 3 and N = 4 cases do not arise
in the main body of the paper, as they do not lead to a construction of a
banana nano-manifold.

N fN GN Generator(s) for the GN action

3 μ(x2y + y2z + z2x) − λxyz ℤ3 (x, y, z) ↦→ (y, z, x)

4 μ(x + y)(xy − z2) − λxyz ℤ4 (x, y, z) ↦→ (xy,−z2, xz)

5 μx(x− y)(y − z) − λxyz ℤ5 (x, y, z) ↦→ (y(x− z),−yz, z(x− y))

6 μ(x + y + z)(xy + yz + zx) − λxyz ℤ6 (x, y, z) ↦→ (xy, yz, xz)

8 μx(x2 + z2 + 2zy) − λz(x2 − y2) ℤ4 × ℤ2 (See below)

9 μ(x3 + y3 + z3) − λxyz ℤ3 × ℤ3 (x, y, z) ↦→ (y, z, x)

(x, y, z) ↦→ (x, ωy, ω2z), ω3 = 1

In the case of N = 8, the following maps of order 4 and 2, respectively,
generate the ℤ4 × ℤ2 action
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⎛⎜⎝x

y

z

⎞⎟⎠ ↦→

⎛⎜⎝ (x− y)(x− z)2(x2 + z(2y + z))
(x− y)(x− z)(x3 − x2z + xz(2y + z) + z(2y2 + 2yz + z2))

−(x + y)(x2 + z(2y + z))2)

⎞⎟⎠
⎛⎜⎝x

y

z

⎞⎟⎠ ↦→

⎛⎜⎝ x(y + z)(x2 + yz)2(x2 + z(2y + z))
(x2 + yz)(x6 + 3x4yz + y3z3 + x2z(y3 + 6y2z + 3yz2 + z3))

−x2z(y + z)3(x2 + z(2y + z))

⎞⎟⎠
In the case of N ∈ {3, 6, 9}, the generators of the action can be determined

by inspection. The remaining cases require a straightforward calculation us-
ing the group law of a generic fiber of SN → ℙ1. This smooth cubic curve
intersects its Hessian curve in 9 inflection points, one of which can be chosen
as the origin. An analysis of the cubic pencil fN = 0 determines the sections,
and the translation morphism by a given section can thus be determined from
the group law as a birational automorphism of ℙ2.
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