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Abstract
In this paper we compute the 7-point Seshadri constant on P! x P! for those line bundles where the answer might be
expected to be governed by (—1)-curves. As a consequence we obtain explicit formulas for the symplectic packing
problem for P! x P!. Some exact values for the r-point Seshadri constant outside the region governed by Mori’s
cone theorem are also given. These latter results use a useful new “reflection method”.

In the analysis there is a striking difference between the cases when r is odd and when r is even. When r is
even the problem admits an infinite order automorphism, and there are infinitely many (—1)-curves to consider. In
contrast, when r is odd only a finite number (usually four) types of (—1)-curves are relevant to our answer.
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1. Introduction
1.1. r-point Seshadri constants

Let Y be a smooth projective surface and 7: X — Y the blowup of Y at r very general points py,.. .,
pr € Y. Wedenoteby Ej,. .., E, the exceptional divisors of 7, with E; lying over p;,anduse E = 3, E;
for their sum. Given an ample line bundle L on Y, the r-point Seshadri constant of L is defined to be

e (L) = sup{y >0| 2L - yE is nef}. (1.1)
Equivalently
C-n*L
(L) = inf , 1.2
& (L) lg{ L } (1.2)

where the infimum is over the effective curves C in X which do not contain any E; as a component. We
adopt the convention that C does not have to intersect any of the E;. In such cases (C - n*L)/(C - E),
interpreted as +oo, does not affect the infimum, and this convention allows us to avoid many repetitions
of “for those C which also intersect at least one of the E;”.

To our knowledge r-point Seshadri constants were first introduced by Kiichle [7], for smooth projective
varieties Y of arbitrary dimension. In general very few exact values of €. (L) are known. For instance,
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when Y = P2, computing €, (O (1)) is equivalent to the Nagata conjecture, a problem which is open
for all r > 10 where r not a square.

In this paper we restrict to the surface ¥ = P! x P!. We use L = Oy (e, e») for the line bundle on
P! x P! of bidegree (e, 5). Such a line bundle L is nef if and only if e}, e, > 0, and ample if and only
if 1, ey > 1. By the slope of L we mean e;/e|, allowing oo if e} = 0 and e, # 0.

1.2. Definition of «, and (3,

For a positive integer r we set

L= -8)

ro. 4

_r=H-Nrr-8)

and S, : 1

The numbers «, and B, are the roots of > — ((r —4)/2)t + 1 = 0. When r is even a, and 3, are
mutually inverse units in the ring of integers of Q[+/r(r — 8)]. When r > 10 this ring is a real quadratic
extension of Q, and @, and 8, are of infinite order. The numbers a, and (3, govern the problem of
computing €, (L) on P! x P! in several ways. Here is the first.

1.3. Inner and outer bundles

We call a nef bundle L = Oy (ey, e3) an inner bundle if Z—f € [Br, @], and an outer bundle otherwise.
The motivation for this terminology comes from Figure 1 on page 10. We note that whether any particular
L is an inner or outer bundle depends on the value of 7.

Let py,..., pr € Y be very general points, and 7: X — Y the blowup of Y at py,..., p, asin §1.1.
For a line bundle L on P! x P!, and any y > 0 we set

.
L,:= n*L—yZE,— =1L - yE. (1.3)

i=1

By definition of the r-point Seshadri constant, if y > €, (L) then the class L, is not nef, and therefore
there is an irreducible curve C C X such that L, - C < 0. In §2.4 we give a heuristic argument that if
L is an outer bundle, then one might expect that C is Kx-negative. Thus by the fact that in such a case
one must also have C2 < 0, it would follow that C is a (=1)-curve.

One consequence of our analysis in the paper is that this guess is correct, and we are able to explicitly
compute €, (L) for all outer bundles and all r. The answer appears in §1.5 after discussing (in §1.4)
another appearance of @, and §3,.

A symmetrization procedure. Set F| and F, to be the pullback to X of the fibre classes Oy (1,0) and
Oy (0, 1) respectively, and let V, ¢ H*(X,R) be the subspace of the real Néron-Severi group spanned
by F1, F», and E. Thus V,. is a three-dimensional real vector space, and for vectors v = d{Fy +dy F) —mE
and w = e F| + e F> — nE in V, the intersection pairing between v and w is given by

v-w=djey+dre; —mnr. (1.4)

By (1.3) the class of L, is in V,.. If L,, is not nef the following argument shows that there is always
an effective curve C with class in V. such that L, - C < 0.

Let C’ be an irreducible curve such that L, - C” < 0, and let d{ F} + doF> — X.;_, m; E; be the class
of C’. Since the points py,.. ., p, are general it follows that for any permutation o on {1, ..., r} there
is an irreducible curve C[. with class d|F> + doF> — 3_| m (i) Ei. Moreover, L, - C' = L,, - C.

Let o be an r-cycle, and set C to be the sum C := 3}, C;,.. Then C is an effective curve, of class
rdiFi +rdiF, — (X m;)E € V,,and Ly, - C =r(L, - C’) < 0.

https://doi.org/10.1017/fms.2025.10137 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10137

4 C. Dionne and M. Roth

More generally this symmetrization argument shows that the restriction of the nef and effective cones
to V,. are cones which are still dual in V,.. Thus, to understand €, (L) we may restrict our attention to V..

1.4. Automorphisms of the problem for even r

It is easy to verify that the linear transformation 7, : V,, — V,. given, in the basis Fi, F», and E, by the
matrix

N O

(1.5)

S = O
—_— DY

preserves the intersection form. When r is even we show in Theorem 3.1 that 7, is an automorphism of
the problem, in the sense that if £ € V. is any class, then £ is nef, or effective, or represents a curve with
s irreducible components, if and only if 7, (¢) is respectively nef, effective, or represents a curve with s
irreducible components. These statements are not true when r is odd.

The transformation 7, has eigenvalues «,, 5, and 1, with respective eigenvectors (in coordinates
given by Fy, F;, and E)

— 1 r 2 _ r 1 2 —
Va, = (a/r+]’ a/(:+]’ _7)’ Vg, = (a/‘:+1’ a,+1° _F)a and vy = (_za -2, 1) (1.6)

We note that v is the class of Kx, that v, and vg, are exchanged by the automorphism exchanging

Fy and F;. Additionally, since @8, = 1, vg, may also be written as vg, = ( ﬁ, [%, —%) Thus the

Galois automorphism of Q[+/r(r — 8)] exchanging @, and 3, exchanges v,, and vg, , although we will
not use this fact.

If » > 10 then «, and B, are units of infinite order, and thus 7, also has infinite order. Starting with
a nef or effective class and iterating 7, then allows us to produce infinitely many other nef or effective
classes. This is the key to our computation of €, (L) for even r and outer bundles L.

When r > 10 we have 0 < 8, < 1 < @,. Thus, in forward iterations of 7, vectors generally converge
(modulo scaling) to v, , and under backwards iterations to vg, . As a consequence if  is even then
both v,, and vg, are limits of nef classes, and are therefore also nef. They are also square-zero classes,

2

Vg, = 0= vér, and so on the boundary of the nef cone.

A function on the square zero cone. Before proceeding to the results for €, (L) we make two more
digressions. For a nef line bundle L = Oy (e, e;) we define the numerical bound, n, (L) by

n(L) =2 = e, a7

The value n,- (L) is precisely the value of y so that L§ = 0. In other words, 7, (L) is the value of y
which puts L, on the cone of square-zero classes. The number 7, (L) is therefore also an upper bound
for the Seshadri constant: €, (L) < n,(L).

For a vector v € V, with v2 = 0, and not a multiple of v, or vg,, we put

log( 32 )

Toga) (1.8)

or(v) =

This formula is justified by the following properties (see §6.2). For such a vector v, ¢, (1v) = ¢, (v)
forany A € R, 1 # 0; ¢, (T (v)) = ¢,(v) + n for all n € Z; and if ¥ is the vector obtained from v by
the automorphism switching F and F3, then ¢, (¥) = —¢, (v). Thus, ¢, is a map from the square-zero
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cone (up to scaling, and minus the lines spanned by v, and vg,) to R which takes symmetries of the
problem to similar symmetries on R.

1.5. Seshadri constants for outer bundles

Here we concentrate on the cases r > 9. When r < 7 the blowup of P! x P! at r general points is Fano,
and the answers in those cases have a different character than the general case. In addition, one minor
aspect of our description below is not valid for r = 8. These cases are discussed in §5.

In order to describe the answers in the even case, here and in the symplectic packing problem, it
will be convenient to define several sequences {s, , }nez by giving the terms s_; ,, So.», and sy, and
defining all other terms by the recursion equation coming from the characteristic polynomial of 7}:

-2
Spr = VT(Sn—l,r - Sn—z,r) + Sn-3,r- (1.9)

We define the sequence {p,., }nez by p-1.» =0, por =0, p1.» = r, and determine all other p, , by
the recursion (1.9). Similarly we define {my, ; }nez by m_1, = 1, mo, = -1, m;, = 1, and (1.9). We
note that m,, , =m_, , and p, , = p_1_n foralln € Z.

Theorem 1.1 (Seshadri Constants for Outer Bundles). Suppose that L = Oy (e}, e2) with e}, ey > 1,
and that L is an outer bundle, that is, that Z—? ¢ [Br,ar].
Ifrisodd, r 2 9. Then

e ifi_? < %’
. W ifee (25,51, (1.10)
E ) .
r % ,f% € [ar,%l],
el iszngZ—?.

If r is even, r 2 10. Set v = (e1,e2,—n,-(L)) € V,, that is, set vi to be the class of L, with
v=n,(L), and put n = ¢, (vp) + %J, where | x| denotes the largest integer < x. Then

e1Pnrt+e2Pn-1,r
Fimy, ’

& (L) = (L.11)

The explanation for (1.11) is as follows. Consider the classes Cy,» = (Pu—1.r, Pn.r» —Mn.r) defined
by the sequences {py r}nez and {my  }nez. Then Cy, = (0,0, 1) is the class of E, and for all n € Z,
Cnr =T"(Co,). In Theorem 3.3 we show that when r is even the C, , generate the effective cone of
curves in V,. whose slopes lie outside of [S,, a;]. It follows that for an outer bundle L one of these
curves determines €, (L). The formula with ¢, above is one possible method of locating the correct n,
and intersecting with C,, ,- then gives (1.11).

For the proofs of the results in the even case see §3, and for the odd case, §4.

1.6. Applications to the symplectic packing problem

We recommend [10, §1] and [2] for a discussion of the history of this problem and the reasons for its
interest. Here we give a brief outline oriented towards our application of the previous results to the
symplectic packing problem for P! x P!,

Let (M, wy) be a closed symplectic manifold of real dimension 4, and let B; c R* denote the
ball of radius A centred at 0, equipped with the restriction of the standard symplectic form on R*:
wps = dx; Adyy +dxy A dys.
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For a given r, consider all possible symplectic embeddings of r disjoint copies of B, into M, and
denote by 7,(M) the supremum of the volumes which can be filled by such embeddings (i.e., the
supremum of r7%A%, over those A for which there exists such a symplectic embedding of r disjoint
B, into M). Finally, set v,.(M) = v,(M)/Vol(M), where the volume of M, like the volume of B,, is
computed using the volume form wps A wps.

Two basic questions are: (1) What is v, (M) for different values of r?; and (2) for which r does
v, (M) =1?1If v, (M) < 1 one says that there is a packing obstruction, while if v, (M) = 1 one says that
there is a full packing.

Let Y be a smooth projective surface, and L a real ample class on Y. The first Chern class ¢ (L) can be
represented by a Kéhler form wy,, which, when written out in terms of the underlying real coordinates,
is a real symplectic form. We consider the packing problem for the real manifold M underlying Y, with
symplectic form wy. To align our notation with the notation in the rest of the paper, we will use v, (L)
for the value of v, (M) in this situation.

A remarkable discovery of [10] is that (—1)-curves in X provide obstructions to full packings. Even
more striking is that this obstruction looks much like the Seshadri constant, except with the test curves
C in (1.2) limited to (—1)-curves. To set this up we first extend definition (1.7) to any such pair (¥, L)
by setting 17, (L) = y/L2/r = \/Vol(M)/r. Then we set

~ . JC-r"L
& (L) = mln(lrclf{ﬁ},n,(L)) (1.12)

where this time the infimum is over irreducible (—1)-curves C in X distinct from the exceptional divisors
E;. Following our convention in §1.1, if there is no such (—1)-curve C which intersects any of the E;
the infimum is interpreted as co, and then é.(L) = n, (L).

&(L)
7 (L)
the case ¥ = P2, but the obstruction argument does not depend on this. Even more remarkably, a result
of Biran, [ 1, Theorem 6.A], asserts that there is a class of surfaces, which includes P? and ruled surfaces,

e (L) \?
where one has v, (L) = (I;(L)) for all L.

The Seshadri constants in Theorem 1.1 were obtained using (—1)-curves, or their symmetrized
versions. As a result we can compute €. (L) and so, thanks to the result of Biran cited above, v, (L), for
all real ample line bundles on Y = P! x P!; equivalently, by [8, Theorem 1.1], for all symplectic forms on
the underlying real manifold. As before we list the results for > 9; the results for » < 8 appear in §7.2.

2
The obstruction result of [10] is that one always has v, (L) < ( ) . The paper is concerned with

Theorem 1.2 (Formulas for the symplectic packing constant). Let L be a real ample line bundle of type
(e1,e) (i.e., ey and ey are positive real numbers).
Ifrisodd, r 2 9. Then

; 2
% s l‘fi_? < +1°
(2e+(r—1)ex)” . 2 2
18re|e2 2 lfi_? € [m’ (\ﬁ—l)2]’
. ~1 2
vr(L) = 1 if % e [(W{I)Z,WT)], (1.13)
-1 2e5)? . ~1)2
el i e (9, 1),
re rrt e
i lfT < ﬁ.
If ris even, r 2 10. Then
1 lf% € [ﬁr, a/r]
vr(l) = (1.14)

r(e (L) lfi—f ¢ [Br, ar | (with €, (L) computed by the rule in (1.11)).

281 e
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1.7. Conditions for full packings

Define sequences {gn r }nez bY -1 = 1, gor =0, g1.» = 1, and the recursion (1.9). For this sequence
one has g, = q_n,» for all n. Taking into account the cases r < 8 (see §5), and reversing the formulae
in Theorem 1.2, we get the following answer to question (2).

Theorem 1.3 (Conditions for full packings). If r is odd. Then v,(L) = 1 if and only if r >

2 2
max((,/% + 1) ,(,/% + 1) ,9).
If ris even. Then v, (L) = 1 if and only if

2 2
G r= —(e1 +er) , or

eiez
(ii) ris a value for which % is equal to

qn+l1,r

for some n.
dn,r

For a given (e, e3), there is at most one value of r for which case (ii) occurs, see Theorem 6.4.

The lower bounds on r differ in the even and odd cases. Consequently by picking a line bundle with
an extreme slope, we can find examples of line bundles L with ranges where full packings exist only for
even r. Here are two examples with similar slopes.

Example 1.4. For the first, we give an example where case (i7) above does not occur. If L = Oy (2,401)
then by Theorem 1.3 there is

o no full packing for any r < 405;
o a full packing for every r > 443; and
o for r € [406,442] a full packing only for even r.

Example 1.5. Similarly, If L = Oy (1,200) then we find by Theorem 1.3 that there is

o no full packing for any r < 399;
o a full packing for every r > 441; and
o for r € [400, 440] a full packing only for even r > 406 and for r = 400.

<
=

In this second example r = 400 is an “unusual” r, that is, appears because of case (if).

This phenomenon seems very surprising to the authors, even knowing the proofs of the formulas. For
instance, returning to the first example, there is a full packing when » = 410. If we look for a packing
with r = 409, then we could start with a packing for » = 410 and use 409 of the balls. Admittedly, that is
not yet a full packing, but surely it would be possible to increase the radius and move the centres just a
little bit to make up for it, and not have the balls intersect . . . ? Of course, the results above say that it is
not possible. As a consistency check, Theorem 1.2 gives v4g9(L) = gggggé ~ 0.9976297 . . ., larger than
the ratio % ~ 0.99756097 . . . obtained using 409 out of the 410 balls but without increasing the radius.

The proofs for the above results on symplectic packing, using the previous results about Seshadri

constants, appear in §7.

1.8. Results for inner bundles

One implication of the SHGH conjecture (see, for example, [3, §1.4]) and our analysis of which (-1)-
curves affect Seshadri constants is that there should be a portion of the nef cone which is round.
Specifically, for r > 9, we should have ¢,(L) = v, (L) for all L whose slopes are in, respectively,

2
[By, a,] if r is even, and [ﬁ, (‘/;2_1) ] if r is odd.
If this description of the nef cone is correct, then the boundary of the nef cone, for slopes in the
ranges indicated above, consists of classes & which are nef, square-zero (i.e., £> = 0) and Kx-positive:

Kx - € > 0. In this paper we call such classes inner square-zero nef classes.
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Finding such classes is quite useful. By definition, if £ is nef, then there are no effective classes on
the half plane £<°. If & is Kx-positive, this half plane will contain a large proportion of Kx-positive
classes, and it is exactly these classes whose existence we usually have the greatest difficulty in ruling
out. In addition, if £ = 0 it means that & is on the boundary of the nef cone, and so provides the strongest
condition on restricting effective classes.

One of the contributions of this paper is to construct such inner square-zero nef classes for all r > 9.
To our knowledge, this is the first construction of such classes on the blowup of P! x P! at r general
points. These classes are constructed in §9, using a new “reflection method”. If » is even we obtain,
using 7}, infinitely many such classes, but if r is odd we only construct finitely many. In §10 we use
pullback maps to construct other infinite families of such classes when r is even.

Given such a class &, say of the form & = (e, €3, —\/2e1e2/r) (the last coordinate is determined by
the condition that ¢> = 0), then €,(L) = 1, (L) for the bundle L = Oy (ey, e2). We are thus able to
exhibit classes which achieve the predicted value of the Seshadri constant.

1.9. Relation with other work, 1

Seshadri constants on P! x P! and the related symplectic packing problem were studied in the 2005
Ph.D. thesis of W. Syzdek, the published version of which appears as [12].

In [12] Syzdek finds the same curves C, , (from §1.5) which we use to compute the Seshadri
constant in the even case. More precisely, our C, , are each the disjoint union of r(—1)-curves (for
instance C,, , = T'(E), and E is the disjoint union of the r exceptional divisors), and Syzdek finds
instead the classes of these (—1)-curves. Specifically, our curve C,.r with n > 1 is the symmetric orbit
of the curve called Mp,,,, in [12, Proposition 3.9], with [ = 5> % and with the bidegrees switched. These
curves (Cy,_», or its components D) impose the same conditions on the r-point Seshadri constants.

The approach in [12] cannot rule out that there may be other curves which affect the Seshadri constant
when f;—? ¢ [Br,a,], and so for the corresponding line bundles can only give an upper bound on €, (L),
and an upper bound on the symplectic packing number. In our argument we can conclude that these
upper bounds are the actual values. The extra piece of information in our method is that we know that
the iterates T, (F,) are nef, and duality of the nef and effective cones then eliminates the possibility of
other such curves.

In the case that r is odd the (—1)-curves we find also already appear in [12, Table 4]. For instance,
our curve of bidegree (’ , 1) is the curve of bidegree (k + n + 3, 1) in Table 4 when r = 2k +2n + 7.
Theorem 3.17 of [12] seems to claim, in the case r is odd, that the curves in [12, Table 4] compute the

2
(«ﬁz—l)Z’ («ﬁz D
since we cannot rule out the possibility that there may be curves C with C?> < 0 and C - Kx > 0 which
could impose a stronger condition on the Seshadri constant. In fact, we have had to do some work in
§4.2-8§4.3 to show that if such a curve exists, it at least could not affect line bundles with i—f ¢ [Br,ar].

As part of question (2) in §1.6, one may ask for an rg so that for » > rg one has v,-(L) = 1. In general,
as the examples in §1.7 suggest, it is the odd r which determine ry. Our bound in Theorem 1.3 is sharp.
Setting s = =2, and assuming s > 2 to simplify the discussion, we get that there is a full packing for all

r greater than (\/_ + l)2 25 +2V2s + 1. In contrast, [12] (Definition 3.2, formula for Ry witha =1,
= 5) gives a slightly worse estimate of

3+ 25+ 352 (1+s)\/2(1+s

2s

Seshadri constant for all (e, e;) with i—f ¢ ]. We do not know how to justify this claim

( +\/_)s+(l+ 2)+0(%) as s — oo.

Finally, we should note that the dichotomy of behaviour between even and odd r, one aspect of the
problem which we find surprising, already appears in [12]. For instance, in the estimates Ry and r( in
[12, Definition 3.2].

In summary, the improvements in this paper over the results of [12] are: (1) When r is even to give
exact values of €, (L) for outer bundles L and exact values of v, (L) for all ample L; (2) When r is odd
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to justify the calculation of €, (L) for outer bundles L and to give the exact region where v, (L) = 1.
We are thus able give a complete answer to the symplectic packing problem for P' x P!. (3) To produce
inner square-zero nef classes for all r > 9. Thus, to produce inner bundles where the Seshadri constant
can be computed exactly.

The authors also think that the introduction of the numbers a, and (3,, the realization that the problem
has an infinite order automorphism when r is even, r > 8, and the graphical reasoning from §2.1-§2.
greatly simplify the analysis of the problem.

1.10. Relation with other work, 11

The paper [5] gives lower bounds on €, (L) for those L whose Seshadri constant is not affected by (—1)-

curves. When r is odd, this means line bundles L with Z—f € [(\/72_1)2’ (\/72—1)2]. Then [5. Theorem 5]

gives the lower bound €, (L) > n, (L) - (1 - i)% When r is even, the results of [5] apply to all inner
bundles, and [5, Theorem 4] gives the lower bound €, (L) > n, (L) - (1 — i) 2

As discussed in §1.8 in this case we are able to find inner bundles L where €, (L) = n,(L). Using
these bundles and convexity of the Seshadri constant then gives lower bounds on €, which are better
than the lower bound above on various regions of the intervals above. See the discussion in §10.2.

Limitations of this paper. In the study of Seshadri problems on blowups of rational surfaces, and in
particular the Nagata conjecture, the sticking point is our inability to either rule out all Kx-positive
curves C with C? < 0, or exhibit one which exists. Unfortunately this paper is no exception.

However, the construction of the inner square-zero nef classes in §9-§ 10 does eliminate a large range
of such classes, and seems to the authors to be a useful step forward.

Second, the most precise results about Seshadri constants in this paper are for outer bundles, those
bundles L = Oy (e, e3) with i—f ¢ [Br,ar]. As r — oo we have B, — 0 and @, — oo. Thus, as r
increases, the region of our ignorance also increases, and the region of complete understanding shrinks
to zero.

1.11. Organization of the paper

In §2 we describe a graphical way of representing and arguing about the problem and give a heuristic
argument that irreducible curves affecting the Seshadri constant of outer bundles should be (—1)-curves.
This picture also explains the appearance of @, and 3, in the problem.

In §3 we show that T, is an automorphism of the problem when r is even, calculate the nef and
effective cones for classes whose slope is outside of [8,, @, ], and compute the Seshadri constants for
outer bundles for even r > 10. In §4 we compute the Seshadrl constants for outer bundles for odd r > 9.
In §5 we give the results for all r, even and odd, with r <

In §6 we study the slopes q;‘“ ~ which show up in the exceptlonal case (ii) in the symplectic packing
problem (§1.3), as well as establish the properties of the map ¢, defined in (1.8).

In §7 we use the results of the previous sections to establish the results on symplectic packings,
Theorems 1.2 and 1.3. In §8 we give the reflection theorem, a method of producing nef classes using
certain types of specializations. In §9 we use the reflection theorem to construct inner square-zero nef
classes in both the odd and even cases. Finally in §10 we use pullback maps to produce other families
of inner square-zero nef classes when r is even, and an interesting family of bounds when 8 | .

2. The square-zero cone and graphical arguments
2.1. The square-zero cone

Let X be the blowup of P! x P! at r general points. As in §1.3, let V, ¢ H?>(X,R) be the real subspace
spanned by the pullbacks F|, F, of the fibre classes from P! x P!, and the sum E of the exceptional
divisors. We are interested in studying the restriction of the nef and effective cones to V..

https://doi.org/10.1017/fms.2025.10137 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10137

10 C. Dionne and M. Roth

LetC=d\Fy+d)F) —mE beaclassin V,. If di < 0 or d» < 0 then C is neither effective nor nef.
If dy, d>» > 0, but m < 0, then C is effective but not nef. The real interest is therefore when d;, d», and
m > 0, and we restrict to that octant from now on.

In that octant a key object of interest for us is the square-zero cone, those classes & € V,. such that
§2 = 0. A picture of this cone in the octant where d;, d», m > 0 is shown in Figure | below.

N

O({ke,r bwnrales

Figure 1. The square-zero cone, r > 9.

In the picture, the plane on the base is the subspace spanned by F| and F3, that is, the image of the
real Néron-Severi group of P! x P! under the pullback map to X. The curved shape is the square-zero
cone, and it meets the base plane in the rays spanned by F; and F>.

The plane at the top of the picture is the subspace of classes orthogonal to Kx, that is, those classes
¢ sothat £ - Kx = 0. The Kx-negative classes lie below the plane, and the Kx-positive classes lie above.

When r < 7 this plane lies strictly above the square-zero cone, when r = 8 this plane is tangent to
the cone, and when r > 9 this plane intersects the cone in two rays. These rays are the rays spanned by
the vectors v, and vg, defined in (1.6).

Table 1. Intersections

of classes.
ve vg Kx
ve | 0 =20

VBTO
Kx| 0 0 8-r

The intersection matrix for v, , vg, and Kx (= vy in the notation in (1.6)) is shown in Table | above,
and is easily verified from the formulas for those classes, and the formula (1.4) for the intersection form.

This is perhaps the quickest way to check that v,, and vg, span the rays above. The table shows that
they are both square-zero classes, and orthogonal to Kx. Note that when » = 8 we have vy, = vg, =
—%K x; this is the case where the plane K is tangent to the square-zero cone.

The projection of the rays spanned by v, and vg onto the base plane are rays of slopes @, and g,
respectively. Those rays in the base plane whose slopes are outside of [S,, ;] are the outer bundles,
and those with slopes in the interval [8,, @, ] are the inner bundles (§1.3).

2.2. Three graphical arguments

There are several places in the paper where an argument can be simply expressed by a picture which
would otherwise require a chain of uninformative inequalities. This graphical way of thinking has also
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guided our approach to the problem. In this subsection we explain our graphical notation, and several
elementary facts which can be seen from this point of view.

We restrict ourselves to the octant dy, d», m > 0 of §2.1. The nef and effective cones are stable under
scaling by positive real numbers, and so it is sufficient to consider Figure | up to scaling, which we
represent as a diagram of the type in Figure 2.

VB Va

0 Br ar 0

Figure 2. Figure | up to scaling.

In this picture the curve represents the square-zero cone, the line on the bottom the portion of the
nef cone spanned by Fy and F>, and the upper line the plane K5 . We label a class (e, 2, 0) along the
bottom by its slope i—f, so that F| corresponds to slope 0 and F to slope co.

The signs + and — in this diagram are a reminder that classes inside the square-zero cone have positive
self-intersection, and classes outside have negative self-intersection, and we will omit them from further
diagrams. We will also sometimes omit the line for K.

Here are three arguments we will use frequently. We first give the associated pictures, and then
explain what the statements are.

. & cL () & @ C

£ :
@ ®) Gipz'L (©

Figure 3. Three graphical arguments.

(a) If & is a class on the square-zero cone, then the hyperplane &+ is the tangent line to the cone at £.

This is the well-known fact that if a variety Q is given as the zeros of a quadratic form (-, -) on some
vector space, then for any point x € Q, the tangent plane to Q at x consists of those vectors v such that
(x,v) =0 (since then {x + €v, x + ev) vanishes to first order in €).

The classes which intersect & positively are below this line, and the ones which intersect & negatively
are above.

(b) If C is a class with C* < 0, then the hyperplane C* is spanned by &\ and &>, where &, & are the
two points on the square-zero cone whose tangent lines contain C.

By (a) the intersection of both &, and &, with C is zero, therefore all classes on the plane spanned
by & and &, intersect C in zero. By reason of dimension, this plane is all of C*. The classes above the
line, including C itself, intersect C negatively, and the classes below intersect C positively.

(c) If &€ is a class on the square-zero cone which is nef (i), then no effective class C which is to the
right of & (ii) can effect the Seshadri constant of a line bundle L which is to the left of ¢ (iii), and
similarly with right and left reversed in (ii) and (iii).
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The visual interpretation of (1.1) is that one starts at 7* L, and moves upwards in the direction of —F
until L,, (:= n*L — yE) either runs into a plane of the type C*+ with C 2 < 0 or hits the square-zero cone
(e.g., see (¢3) in Figure 4 below). In the first case, €, (L) is computed by C (if C* is the first such plane
encountered) and in the second case €, (L) is the maximum possible value, 7. (L).

With reference to Figure 4 below, the argument for (c) is then that, since £ is nef, the class C must
be below £+ (c1). But this means that £; and &, the points on the square-zero cone whose tangent lines
contain C, must both be to the right of ¢ (c2). Therefore the line spanned by & and &, exits the square-
zero cone to the right of & (at worst at & if C is on £*) and so C* (for this C) cannot affect the Seshadri
constant of L (¢3).

é;i

7 L (c1) L (c2) n*L (c3)

Figure 4. Argument for Figure 3(c).

2.3. Reasons for interest in the square-zero cone

The square-zero cone is a natural upper (respectively, lower) bound for the nef cone (respectively the
effective cone). The nef cone can extend at most up to the square-zero cone, although it is not clear
how close it can get, and the effective cone extends past the square-zero cone, although it is not clear
how far.

Second, if & is a class on the square-zero cone which is nef, then not only is & an example of an
extreme nef class (one which reaches the maximum possible boundary), but, by §2.2(c) above, & also
splits the problem of understanding the nef and effective cones into two pieces. Essentially, there is no
information transfer across the dotted line in Figure 3(c); knowledge about nef or effective classes on
one side does not allow one to conclude anything about nef or effective classes on the other side. An
exception to this principle is when one can use 7, to transport information from one part of the cone to
another.

Finally, we note that a square-zero class & which is nef is not only an example of an extreme nef class,
but it is also an example of an extreme effective class. If £ is nef, the effective cone must lie below the
tangent line at & as in Figure 3(a), and so at & the effective cone is pinched down to &. That is, at such a
point the boundaries of the nef and effective cones coincide.

2.4. A heuristic argument

In this section we provide an argument, with several gaps, which suggests the following principle :

If L is an outer bundle on P' x P!, and if €, (L) # 1, (L), then the Seshadri constant of L is computed
by a (—1) curve (equivalently, by the symmetrization of a (—1)-curve).

The argument is the following. Consider L, (:= n*L — yE) for increasing y. Since L is an outer
bundle, L, exits the square-zero cone before it crosses the line K, as in Figure 5. If €. (L) # 1,-(L) then
€-(L) is computed by some irreducible curve C’, with symmetrization C (as in §1.3). By [4, Theorem
2.6.2(f)] C must be quite close to the square-zero cone.
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VB Va

0 Br ar 7T>:<L o

Figure 5. Situation of the heuristic argument.

Thus the line C* (as in Figure 3(b)) must be quite small, and so C quite close to the point where L,
exits the square-zero cone. This suggests that C will also be below the line K3, and so Kx-negative. If
so, then C”’ is also Kx-negative (all curves in the symmetrization have the same intersection with Kx).

Therefore we have (C’)?> < —1 and C” - Kx < —1. On a smooth irreducible surface X, and with C”
an irreducible curve, one always has (C’ + Kx) - C’ > —2. Thus both inequalities above are equalities,
and C’ is a (—=1)-curve.

Despite the gaps in the argument above, the conclusion is correct. When r is even we show in
Corollary 3.4 that both v, and vg, are nef classes. As a result, first, by §2.2(c) only curves C whose
slopes are outside [f;, @,] can affect the Seshadri constant of an outer bundle. Second, since v,, and
v, are nef, any symmetric effective curve C must be below the tangent lines to v,, and vg, (§2.2(a)),
and therefore a curve C with slope outside [B,, @, ] is Kx-negative, as suggested in §2.4.

In the case that r is odd (and r # 9) the classes v, and vg, are not nef, and we require a different
argument to show that Kx-positive curves (or Kx-null curves) cannot influence the Seshadri constant
of any outer bundle. This argument appears in §4.2—-§4.3.

3. Evenr,r > 10
3.1. Theorem on automorphisms when r is even

The following result is the key to our analysis of the Seshadri constants of outer bundles when r is
even.

Theorem 3.1. Let 7: X —> P! x P! be the blowup of P' x P! at r general points, p1, ..., p,, with r
even. Asin §1.3 let V., ¢ H*>(X,R) be the subspace generated by the fibre classes F) and F», along with
the sum of the exceptional divisors E. Then

(a) The linear transformation T, : V, — V,. given, in the basis F\, F,, E by

0
;

S = O
—_ NN —

-1 -1
is an automorphism of V,., preserving the intersection form.

(b) The eigenvalues of T, are a,, B, and 1, with respective eigenvectors v ., vg,, and Kx, where v,
and vg, are the vectors given in (1.6).

(c) If ¢ € V. is any class, then & is nef, or effective, or represents a curve with s irreducible com-
ponents if and only if T, (&) is respectively nef, effective, or represents a curve with s irreducible
components.

Thus, by (c), when r is even T, induces an automorphism of the nef and effective cones restricted
to V.. This automorphism is of infinite order whenever r > 8.
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Proof. (a) The identity

01 0 o1 o]l0 1 0 01 0
L 5 rifto ol|l 5 r{=|10 0],
0-1-1|100-r]l0o-1-1 00 -r

where ¢ denotes matrix transpose, shows that 7, preserves the intersection form on V..

(b) The characteristic polynomial of 7} is (12 — (r —4/2)t +1)(1—1), where now ¢ denotes a variable,
and therefore the eigenvalues of 7, are «,, B, and 1. It is straightforward to verify that Kx is an
eigenvector of eigenvalue 1. Using the identity a? = (r — 4/2)a,—1 as s, and in the form 2(a,+1)-ra, =
—2(a, + 1)a,, we compute that

1 L @ 1
01 O ar+1 ar+l ar+l ay+1
—4
1 r r a, _ (VT)(I’_I _ (l,% - @y
2 a+l |~ a,+1 = a,+1 Ul .+l |
0-1-1 _2 2 o —2(ar+1)ay _2
r ro oap+l r(a,+1) r

and s0 T (v, ) = @y Vo, . Similarly T, (vg, ) = B, vg, .

The real value of the theorem is in part (¢). The idea of the argument is that the proper transform
of each fibre of type F) passing through a point p; is a (—1)-curve. Blowing down these r-different
(~1)-curves gives another way to realize X as a blowup of P! x P!. Comparing the two descriptions as
blowups and switching the factors of P! x P! gives T}..

To carry this out, consider the linear series |Oy (5, 1)| on Y = P! x P!, of dimension r + 1. The
curves in the series have self-intersection r, and intersection number 1 with curves in |Oy (1, 0)|. When
the r points are general, the series |7*Oy (5, 1) — E| (i.e., the proper transforms of the curves in the
series passing through the points) is therefore a basepoint free pencil of curves on X. The curves have
self-intersection 0, and intersection number 1 with Fj.

The pencils |F1| and |7*(Oy (5, 1) — E| give a birational morphism u: X — P! x P'. This map
blows down the curves of class F; — E;,i = 1,.. ., r, since these classes have intersection number 0 with
the curves in each pencil. Since y is birational, and since the Picard ranks of X and P! x P! are r + 2
and 2 respectively, these are the only curves blown down.

Thus y also expresses X as the blowup of P! x P! at r points, say at g1.. . ., g,. (The map y is only
really well-defined when we have fixed bases for these pencils; we will do this below.) Let F7, Fz' and
E’ be the pullback of the fibre classes via yu, and the sum of the exceptional divisors of u respectively.
The matrix expressing the change of coordinates on V,. from the second basis to the first is

Fl’ Fz/ E’

Fil1 % r
/= F0 1 0|
E{0 -1 -1

Since this matrix represents the identity transformation on V,., albeit between two different bases, a vector
v (in the basis F/, Fz’ ,and E’) is nef, or effective, or represents a curve with s irreducible components if
and only if the vector 7)/(v) (in the basis Fi, F,, and E) respectively is nef, or effective, or represents a
curve with s irreducible components.

If py, ..., pr are in very general position, then ¢1,. .., g, are also in very general position. We will
check this below, but first show how this is enough to finish the argument.
If p1,..., pr,and q1, ..., g, are in very general position, then a class d; F; + doF> — mE is nef,

effective, or represents a curve with s irreducible components if and only if the class dy F| + dy F) — mE’
has the respective property.

https://doi.org/10.1017/fms.2025.10137 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10137

Forum of Mathematics, Sigma 15

Thus the matrix

F\ F

» E F/ Fj, E’ F K E

Fill %r Fifl %I’ FI[1 00
T/:= K0 1 0/=/m[0 1 0f-Fl0 10
Elo -1 -1] El0 -1 -1] £7]0 01

gives a linear transformation V, — V,. in the basis (F|, F;, E) preserving each of those properties.

The transformation 7, is a reflection. The transformation S, which fixes £ and switches F; and
F> (i.e., the transformation induced by the automorphism of P! x P! switching the factors) is also a
reflection, and also preserves all the properties we are interested in. The product S, - 7" is T, and
therefore 7, preserves classes which are nef, or effective, or which represent curves with s irreducible
components, as claimed.

Thus, to complete the proof of (c) it is sufficient to verify that gy, . . ., g, are in very general position
if p1, ..., p, are. This is clear when r = 2 (any two points not on the same fibres are in very general
position), and so from now on we assume that » > 4.

By acting by Aut(P') x Aut(P') we may assume that p; = ([1: 0], [1:0]), po = ([0: 1],[0: 1]),
and p3 = ([1: 1], [1 : 1]). Similarly we may choose a basis for the pencils |F| and |7*(Oy (5, 1) — E|
so that under the map u, g1 = ([1 : 0], [1 : 0]), g2 = ([0 : 1],[0 : 1]), and g3 = ([1 : 1],[1 : 1]),
where ¢; is the image of F| — E;. This choice is enough to fix the map u uniquely.

Let U c (P' x P')"~3 be the Zariski open subset set of the configuration space of r — 3 points
(p4a,...,pr) sothat pi,..., p, (with py, p2, and p3 as above) are distinct, and such that the curves in
|Opiyp1 (5, 1)| passing through py... ., p, form a pencil whose generic member is irreducible.

By 7T above, %Fl’ + Fz’ — E’ = F>, and thus the points ¢q1,. .., g, (with g1, g2, g3 also as above) are
sufficiently independent so that the linear series |5 F| + F; — E’| is a basepoint-free pencil of curves,
generically irreducible.

Thus the process (p1,...,pr) — (q1,...,q,) induces a map

I: (P' xP)Y 3 — (P' xPH)3

such that /(U) € U. Moreover, the identity 5 F|+F;—E’ = I shows that I(q4, ..., q;) = (P4, ..., pr),
that is. that / is an involution.
Therefore given a family V,, C U, n € N, of proper closed subsets of U, the set

W= U (V, UI(V,))

neN

is a countable union of proper closed subsets of U, stable under /. Thus if (p4,...,p,) ¢ W, then
(q45--->qr) = I(p4,...,pr) € W. Therefore, if p;,..., p, are very general, then so are qi,..., ¢,.
This finishes the proof of (c).

When r = 8, Ty is a unipotent matrix consisting of a single Jordan block. When r > 10, a, is a real
number with @, > 1. Thus 7, is of infinite order for all » > 8. ]

Remarks 3.2. (1) The process of blowing down, and switching factors in the proof of Theorem 3.1(c)
gives an automorphism 7, of all of H>(X,R) (or H>(X,Z)), and not just V,.. In H>(X,R) the orthogonal
complement to V;. is the subspace 0- Fi +0 - F> — 3.7, m; E; with 3, m; = 0. On this subspace one can
check that T, acts as multiplication by —1.

(2) When r > 9, P? blown up at r general points (and P! x P! blown up at an odd number of points)
has many such infinite order Cremona “relabelling” automorphisms acting on H> of the blowup. The
great advantage in the case of P! X P! blown up at an even number of points is that 7} preserves the
subspace of equal multiplicity curves. No such automorphisms exist in the cases of P? blown up at r
general points, nor for P! x P! blown up at an odd number of points.
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In the case of P2, the corresponding space V; is two dimensional, spanned by the hyperplane class H
and E. Since H is on the boundary of the nef cone, any such automorphism has to take H to H. But to
preserve the intersection form, the automorphism must now take E to + £, and in order to preserve the nef
cone, it must take E to +E. Thus, on P? blown up at any number of points, any such automorphism which
preserves the equal multiplicity subspace acts as the identity on V.. We will see in §4.3 that, other than
switching the factors, there is no such automorphism for P! x P! blown up at an odd number of points.

(3) Parts (a) and (b) of Theorem 3.1 still hold when r is odd. However, since 7, does not preserve
nef or effective classes when r is odd, this transformation is meaningless for our problem.

Theorem 3.3 (nef cone for outer bundles, r even). Let X be the blowup of P! x P! arr general points,
with r > 10 even. Then the nef cone in V,, restricted to the half plane Kf(o is spanned by v o, , vg,, and
the classes T (F), with n € Z.

Proof. Forn € Z set &, := T (F3). Since F, is a nef, square-zero class, intersecting Kx negatively, by
Theorem 3.1 each of the &, is also a nef square-zero class intersecting Kx negatively.

Since F> - vg, = %, we conclude from Table 1 that when writing F> € V, in the basis vq,, vg,,
and Kx, the coefficient of v, is r’TS . a‘r’jrl. Thus, since «, is the dominant eigenvalue of 7., we have

(r=8(a,+1) . 1
= ——F—lim —&,,
rea, n—co

ar

and so v, is nef. Similarly, vg, is nef. We have already checked that both classes are square-zero.

Therefore the intersection of the nef cone and K ;O contains the convex hull of v,,, vg,, and the

classes &,, n € Z, as in Figure 6(a) below.

(@) (b)

Figure 6. Argument for Theorem 3.3.

Next, forn € Z set C,, :== T*(E). Since F} - E = 0 and F, - E = 0, that is, since £_; - Cp = 0 and
&y - Co =0, and since T, preserves intersections, we have &,_1 - C, =0and &, - C,, =0 for all n € Z.

By 2.2(b) this means that for each n, the nef cone cannot pass the line spanned by &, and &,. Thus
(as illustrated in Figure 6(b)) the intersection of the nef cone with K ;0 can be no larger than the cone
spanned by v, , vg,, and the &,, n € Z. O

Corollary 3.4 (Case of even r in Theorem 1.1). Let X be the blowup of P' x P! at r general points, with
r > 10 even.

(a) The classes v, and vg, are nef.
(b) For any ample bundle L = Oy (ey, e3) with 2—? ¢ [Br, @], the Seshadri constant of L is computed
by Cy, where n is an integer such that L,, (1) is between &, and &, on the square zero cone.

Proof. Part (a) was established in the proof of Theorem 3.3, and is included here for reference. Part (b)
is immediate from the visual interpretation of (1.1) (as in §2.2(c)), and the description of the nef cone
in Theorem 3.3.
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In more detail, the line segment L,,, y > 0, meets the square-zero cone when y = 1, (L). By Theorem
3.3 if L is an outer bundle the line L,, exits the nef cone through a secant line spanned by &, and &,,_
for some n (unique unless L,, (1) is one of the &,,), as illustrated in Figure 7. Thus L,, (1) is between
&, and &,,-1, and can be used to identify n.

Figure 7. Diagram for Corollary 3.4 (b).

The proof of Theorem 3.3 shows that this secant line is also the line C;r, and therefore C,, computes
the Seshadri constant of L. O

3.2. Calculating the Seshadri constant of an outer bundle, r even

Given a line bundle L = Oy (e, e3) in order to use Corollary 3.4(b) to compute €, (L) one needs to find
the correct value of n, and then find C,,.

Since C,, = T/*(E), the coordinates of the C, satisfy the recursion relation coming from the char-
acteristic polynomial of 7}, that is, satisfy (1.9). It follows that, as in §1.5, if one defines sequences
{Pntnez and {my}nez by p-1 =0, po =0, py =r,and m_; = 1, mg = =1, m; = 1, and the recursion
(1.9), that for all n the class of C,, is (py—1, pn,—mn). If L = Oy (ey, e2), € (L) is then computed by
(1.11), for the right value of n.

One can use several methods to find #. If one considers the square zero cone in the region where d,
dy > 0 (including m < 0, that is, not just in the octant m > 0 from §2.1) and removes the rays spanned
by v, and vg, , then up to scaling by R what remains is the union of two disjoint open intervals. The
map ¢, defined by (1.7) gives a diffeomorphism of each of these intervals with R, converting the action
of 7, into addition by 1, and converting the operation of swapping the fibre classes into multiplication
by —1 (see §6.3).

It is straightforward to check that ¢, (F3) = %, from which it follows that ¢, (&,) = n+ % foralln € Z.
Thus, if L,, (z) is between &, and &, on the square zero cone, we have n + % > ‘Pr(Lq,(L)) >n- %
and so (as long as Ly, (1) # &), n = |@r(Ly, (1)) +31. I Ly (1) = &, then this formula produces n + 1
instead of n, but in this case €-(L) = n,(L), and both C,, and C,,.; compute this answer. This is the
method given in Theorem 1.1.

The previous method has the advantage of giving a formula for n; however, it is not very useful
computationally. Evaluating ¢, correctly requires a high degree of precision in real number calculations,
too large to be of much use in general. Instead, it is computationally more efficient to find » so that the
slope of L is between the slopes of &, and &,,_1.

As in §1.7, define a sequence {q,}nez by g-1 = 1, g0 = 0, g1 = 1, and the recursion (1.9). Then

&n =TI (F2) = (qns qn+1s —1/2q"+‘q") for all n € Z, and thus the slope of &, is % (this is the reason
for case (ii) in Theorem 1.3).

If L = Oy (e, ez), with e < €3 and e # 0, then the relevant value of n is the smallest n > 1 so that
dnsl o Z—f, that is, the smallest n > 1 so that e»g, — e1¢n+1 = 0. Computing the ¢g,,’s and checking the

q"
previous condition only involves integer arithmetic.
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If instead e; > e, one can either use the fact that, by symmetry, €, (L) = €(Oy (e2, 1)) and the
method above, or use a similar argument for negative n.

3.3. Automorphisms preserving V,

In light of the utility of 7, it is interesting to ask if there are other integral linear automorphisms of
V., which preserve all aspects of the problem (i.e., which preserve the intersection form, the nef and
effective cones, and the canonical class). Let G denote the group of such automorphisms.

In the proof of Theorem 3.1(c) we have seen that S,, the automorphism switching F; and F, and
fixing E, is in G. The following argument shows that 7, and S, generate G. Since S, 7,.S;! = T-! (and
S, = S;1), effectively this means that, up to switching F; and F>, there are really no linear automorphisms
of the problem other than the 7}".

Proof of claim. Suppose that g € G, and consider g(&p). Since g preserves the intersection form, the
canonical class, and the nef cone, g(&p) is a square-zero nef class which intersects Kx negatively. By
Theorem 3.3 this means that g(&p) must be a multiple of one of the &,. Since g is an integral linear
transformation (i.e., coming from an action on V, 7, the underlying integral lattice), and since each
&, is the integral generator on the ray it spans, we conclude that g(&y) = &, for some unique n € Z.
Multiplying on the left by 77" we may assume that g(&p) = &o.

Now consider g(£-1) and g(£1). By the previous reasoning, we must have g(¢_1) = & and g(é1) = &;

for unique i, j € Z. Since g preserves the intersection form, we have &y-&; = g(&p)-g(é-1) =&o0-é-1 =1
and similarly &y - §; = 1.
But, it is easy to verify that the only m for which & - &, = 1 are m = —1, 1. Therefore either

g(§-1) =€ and g(€1) = &1, 0org(€-1) = &1 and g(&1) = &-1.

In the first case, g now fixes £_1, &y, and &, and so must act as the identity on V,., since these three
classes span V.. In the second case, TS, is also a transformation which fixes &y and swaps £_1 and &;.
Multiplying g on the left by 7,.S, then reduces us to the first case. Thus, in both cases g is in the group
generated by 7, and S,.. O

4. Oddr,r > 9
4.1. Portrait of the outer nef cone, r odd

Figure 8(a) below shows, for odd r, r > 11, the (—1)-curves, or symmetrizations of (—1)-curves, which
can affect the Seshadri constants of line bundles. In contrast to the case when r is even, there are only
four such curves; these are labelled Ci,. .., C4 below. The picture is somewhat cluttered, so in (b) and
(c) we show separately the two curves C4 and C3 on the right hand side of (a).

ct Va

VB

. . <3
= (55 1,-n 55k -y =y

Cp=0r0,-1) O.r.-1)=Cy cf

s

r+l
2

\
A

(@) (b) (c)

Figure 8. Curves affecting outer bundles, odd r > 9.

The curve Cy of class (0, r, —1) is the union of the proper transforms of the fibres of type F, through
each of the p;, that is, it is the union of the r(—1)-curves F» — E;,i = 1, ..., r. The plane C4l intersects
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the square-zero cone in rays spanned by the classes F» and (2, r, —2). A picture of C4, and C 4L appears
in Figure 8(b).

The linear series |Oy (1, %)| has dimension r, curves in the series have self-intersection r — 1, and
smooth curves in the series are rational. When the r points are general, |7*QOy (1, £ _1) — E| therefore

consists of a single smooth rational curve of self-intersection —1; that is, the class C3 = (1, 5~ L —1)is
represented by an irreducible (—1)-curve.
The plane C3l intersects the square-zero cone in rays spanned by the classes
(VF - 1)° (F+1D? o1
l,——,-(1-—)| and |1, ———,-(1+ —=)]. 4.1
(- p) ;i) 1)

When r is odd, r > 11, the class v, is strictly above the plane C L and thus (in contrast to the case

when r is even) in those cases neither v,, nor vg, are nef. The planes C;- and C 4l intersect in the ray

spanned by the class (1, % —1), of slope 5~ 1 The existence of the effective classes C3 and Cy gives

the following inequalities on Seshadri constants for a line bundle L = Oy (e1, e2).
oIf 2 e [Wrob- \f D, 2] then €, (L) < Hﬂ (inequality imposed by C3);
o If L ;’1 <g then € (L) < e (inequality 1mposed by Cy).

Our goal in this section is to show that the above inequalities, and the symmetric inequalities involving
C and C», are equalities whenever j—f ¢ (B, a,). That is, our goal is to prove the following result.

Theorem 4.1 (Case of odd r in Theorem 1.1). Suppose that r is odd, r > 9, that L = Opiypi (€1, €2)
with ey, ex > 1, and that L is an outer bundle, that is, that 62 ¢ (Br,ar). Then

ife g 2
€2 l'f81 <}"+1’

2 -1 e
(L) e|+(2rr ez lfﬁ € [—Hz_l ,,Br], “2)
€ = .
-1 2 e
e

el lf‘r+l <

4.2. Outline of the argument

The essential claim of the theorem is that there is no effective curve C which, for an outer bundle L,
imposes a stronger condition on the Seshadri constant of L than those imposed by Cy, ..., C4.

When r = 9 the picture is slightly different from that of the general case shown in Figure 8(a). The
difference is that v o, (respectively vg,) is on the line C3L (respectively Czi). Specifically,

1 (V9-1)? 1
Vag = 3 I’T’_(l_@) ,

(i.e., one-third of the first class in (4.1)) and similarly for vg,. In the case » = 9 we show in Corollary 4.4
that v, and vg, are nef. Thus, by the principle of 2.2(c), no curve C with slope in (89, ar9) can affect
the Seshadri constant of an outer bundle. This establishes the theorem for » = 9.

For r > 11 we may make several reductions. First, by symmetry it is enough to restrict to the case
that e; < e;. Second, the effective classes C which could effect a Seshadri constant must satisfy Cc?<0
and be Kx-positive (any irreducible class, or symmetrization of an irreducible class as in §1.3, which
is not Cy,. .., C4 must be below the planes Ct,.. ., C4l, and to also satisfy C? < 0 must therefore be
above the plane Ky;).
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We are not able to show that such curves C don’t exist. However, if one does exist, we are able to
show that for any nef bundle L = Oy (ey, e3) Wlth > a,, that

C-n*L S (r—1)61+2€2 _ Cs- "L

C-E 2r Cs-E

That is, we are able to show that there are no such curves C which impose a stronger condition on a
bundle of slope > «, than that imposed by Cs, and this is enough to establish the theorem.

The nonexistence of such a C is the result of an estimate on how strong a condition such a C could
put on a bundle of slope a,, combined with an estimate on the size of a,. This preliminary material
appears below. The concluding arguments of the proof, using these steps, appears in §4.3.

Proposition 4.2 (Weak lower bound on multiplicity for Kx-positive curves). Let X be the blowup of
P! x P! at r general points (r may be even or odd, and there is no restriction on the size of r). Then there
does not exist an effective curve C such that C> < 0, Kx - C > 0 and all multiplicities of C are in {0, 1}
(i.e., such that the class of C is d1Fy + do > — 3., m;E; with each m; € {0, 1}).

Proof. The vector space of curves of bidegree (d;, d>) on P! x P! with multiplicity my,..., m, at py,
.., pr has expected dimension max of 0 and (d; + 1)(d2 + 1) — % T m[2 — m;. Letting C be of class
diFy + dyF> — 3_, m;E;, this is the same as

max(O, L2 -Kx-C)+ 1). 4.3)

General points of multiplicity 1 impose independent conditions. Therefore, if all the multiplicities
are 0 or 1, and if the p; are general, the dimension of the vector space of such curves is the expected
one, as given by (4.3). If C?> < 0 and Kx - C > 0 then (4.3) gives zero (if C*> = —1 then Kx - C > 0,
since C% — Kx - C must be even), and therefore no such effective curves exist. O

Lemma 4.3. Let 7: X — Y be the blowup of a smooth surface Y at r general points, L an integral
nef line bundle on Y such that n,(L) € QN [0,2], and set L = L, ()=n"L- nr(L)E If there is no
irreducible curve C on X with multiplicities in {0, 1} such that L C < 0, then L is a square-zero nef
class on X.

Proof. With [0, 2] replaced by [0, 1], this result was previously known, and in that version one does not
even need to check for possible C’s such that L - C < 0. The version above, increasing [0, 1] to [0, 2],
but requiring one to eliminate certain possible classes of C, appears as [4, Corollary 2.7.2]. O

Corollary 4.4 (v o, and vg, are nef). Let X be the blowup of P! x P! at 9 general points. Then the classes
Va, and v, are nef on X.

Proof. Setting L = Opi,p1(3,6), we have 9(L) = 2 and L = n*L — 2E = 3F; + 6F, — 2E = 9v,,. By
Lemma 4.3 the only way that L could not be nef is if there is an irreducible curve C with multiplicities
in {0, 1} such that L - C < 0. Thus, it suffices to show that there is no such curve where Vay - C < 0;
such a curve must satisfy C? < 0.

By Proposition 4.2 there is no such effective class with Kx - C > 0, and therefore we must have
Kx - C < 0. But, such curves (with all multiplicities in {0, 1} and C 2 < 0) are, in the notation of §4.1,
either C,, C3, or the components which make up C; and Cjy.

Since C3-vqy = 0,and C;-v 4, > Ofori = 1, 2,4, we conclude that v, is nef. Similarly, vg, isnef. O

Theorem 4.5. Let 1: X — Y be the blowup of a smooth surface Y at r general points. Let C be the
class of an effective curve on X with all multiplicities equal to m, m > 2, and such that C is not the
symmetrization (as in §1.3) of a curve C’ with all multiplicities in {0, 1}, and put t = ":n—_zl Then for all
nef classes L on Y,
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C-m'L r—t
C > (L) -y — (4.4)
. r

Proof. This lower bound, in contrapositive form, is [4, Theorem 4.1.1]. O

For use below we note that this result applies to real nef classes L, and not just integral ones. (For
instance, accepting that (4.4) holds for integral nef bundles on Y, since both sides scale the same way,
the inequality must also hold for rational nef classes, and then, by continuity, for real nef classes.)

We will need the following elementary estimate, whose proof is left to the reader.

Lemma 4.6. For r > 9 the estimates

-5 -4
TS <

hold. Furthermore, the lower bound is strict whenever r > 9.

Proposition 4.7. Suppose that r > 11 and that t, with t < r, is such that
2ar+(r—1)> [r—t
4(ar+1) 7 ro

Proof. Squaring both sides, and using the identity a> = (r — 4/2)a, — 1, in that form, and in the form
(a,+1)% = 5, the inequality above becomes

Thent > %.

6(r—2)a, +(r—1)*-4 ot

=z

8ra, r
or
N 6(r —2)a, +(r-1)> -4 _2(r+6)ay — (r - 1)2+4. @5)
8a, 8a,
Using Lemma 4.6 gives

. 2(r+6)(r7—5)—(r—1)2+4 L 23
r——2 -—= . (4.6)

4 S(ﬂ) 4 4r-16

2

When r > 12 the right-hand side of (4.6) is clearly > 0, proving the proposition in those cases. For
r = 11 the right hand side of (4.5) is ~ 0.4836. . ., and so again ¢ > 41'1' O

4.3. Proof of Theorem 4.1

Proof. When r = 9 we have shown in Corollary 4.4 that v, and vg, are nef; thus we may assume that
r>=11.

Suppose that there is a line bundle L = Oy (ey, e3) with @, < z—f such that €, (L) is not equal to
the value given in (4.2). Let C be an equal multiplicity curve, either irreducible, or the symmetrization
of an irreducible curve as in §1.3, which computes €, (L) (or even one which just imposes a stronger
condition than imposed by C3 or Cy).

We have C? < 0 and, as explained in §4.2, since C is not equal to any of the C;,i =1, ..., 4, we also
have C - Kx > 0.

Let L’ be the real nef class (ﬁ, a":l) (i.e., the first two coordinates of v,,) on P! x P'. Since

ar < f;—?, it follows that C must also impose a stronger condition on the Seshadri constant of L’ than that
imposed by C3, that is, that
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Csy-m*L’ S C-n*L’
C3-E ~ C-E

A.7

The reason why is shown in Figure 9 below. Since C must be below C3 and C;' it follows that C*
must exit the square-zero cone farther to the left than the point where C; does, as shown in the picture.
Thus C* and Ci must intersect along a ray, of some slope s. Since C imposes a stronger condition on
the Seshadri constant of L than C3, this means that ez < s. But then @, < s too, and so similarly C
imposes a stronger condition on the Seshadri constant of L’ than that imposed by C3, giving (4.7).

Va

Figure 9. Graphical argument for (4.7).

By Proposition 4.2, C has multiplicities m > 2, and is not the symmetrization of a curve C’ with all
multiplicities in {0, 1}. Thus we may apply Theorem 4.5 to L’, to get

C-n*L’ r—t t
>nr(L)-
"C-E
with r = 2= Since 5, (L") = comblnlng the previous inequality with (4.7) gives

r r

) 1 (a)
2 \ o+l a,+1 C nL’ r—t
2= > (L) \/ \/ :

or
2a, + (r—1) S Tt
4ar+1) 7 ro
Applying Proposition 4.7 we conclude that r > 7. But¢ = 2, and for m > 1 the maximum value of
m—21 is }—P occurring when m = 2. This contradlcnon shows that there can be no such curve C, concluding
the proof of Theorem 4.1. O

Remarks 4.8. (1) Here is an outline of the argument above. The final step is that the inequality

C3—”L'/ m(L) )= “8)

leads to a contradiction whenever r = “°~ ml withm > 1.

Note that we cannot get (4.8) by applying Theorem 4.5 to C3, since C3 does not satisfy the hypothesis
of the theorem — all the multiplicities of Cs are equal to 1. (And it is good that we cannot — the curve C3
exists, and the inequality leads to a contradiction!)

But, if we assume the existence of a curve C which imposes a stronger condition than C3 on a line
bundle of slope > «,, we get the inequality (4.7). Applying Theorem 4.5 to C, and combining the
inequality which results with (4.7) we arrive at (4.8), and thus a contradiction. Therefore no such curve
C can exist.
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(2) As is clear from (4.6), as r gets large, the lower bound estimate on ¢ goes to %, larger than the }1
needed to give a contradiction. This suggests that one can improve the region on which the formulas in
(4.2) hold.

For s > 0, let L(s) denote the real nef class of type (1, s) on P! x P!. We note that this is different
than the L, used throughout the rest of the paper. As the idea for the proof of Theorem 4.1 shows,
whenever (for a fixed r, r odd, r > 9) s is such that

1
C3- "L r—y
3 L) = (4.9)
r e (L(5)) r
one can conclude that the formulas in (4.2) hold for all line bundles L with slope outside (%, s). Solving

the inequality (4.9), one finds that the smallest s which works is s(r) = 4—11(2r — V12r + 1+ 1). One has

(V= 1)?
2

< s(r) < a,.

(The leftmost term is the slope where C3L exits the square-zero cone, see (4.1).) In particular,
(ﬁs S(r)) g (,Br» ar)'
Thus the previous argument can be used to prove the following result, which, since (%, s(r)) ¢

(B, ), is stronger than Theorem 4.1, and gives an exact value of the Seshadri constant for a narrow
range of inner bundles.

Theorem 4.9 (Extension of Theorem 4.1). Suppose that r is odd, r > 9, that L = Opiypi(e1, e2) with
e1,er > 1, and that 2—? ¢ (Tlr),s(r)), where s(r) = i(Zr —V12r+1+1). Then

e fR<F,
2e1+(r—-1)ex .re 2 1
. — lfe_fe [m,m], ‘10
€, = .
r( ) (r—1)e;+2es l‘fﬂ c [S(I") ﬂ] ( )
2r el > 2 b
el lf% < %.

If one can get better lower bound on the multiplicity of a putative curve C which is Kx-positive and
satisfies C2 < 0 (and thus computes the Seshadri constant for some outer bundle), for example, m > 3,
m > 4, etc, then one can replace r — % in (4.9) by r — %, r— 13—6, etc, and get solutions for s(r) which are

(Wr=1)?
2

closer to , and further improve the result above.

Lack of Automorphisms when r is odd. Let us return to the question raised in (2) of Remark 3.2,
namely showing that, other than switching the factors, there are no automorphisms of the problem fixing
V,- when r is odd.

As we see in Figure 8(a), when r is odd the only nef, outer, square-zero symmetric classes are the
fibre classes F| and F, (this also holds when r < 7, see §5.3—-§5.4 below). Thus, any automorphism
of the problem either fixes F| and F;, or swaps them. But, if | and F, are fixed, in order to preserve
the intersection form on V., and preserve the nef cone, the automorphism must also fix E, and thus be
the identity on V,.. Thus, when r is odd, swapping the factors is the only nontrivial automorphism of the
problem.

5. Smallr (1 <r <8)

In this section we list the results for » between 1 and 8. For » < 7 the blowup of P! x P! at r general
points is Fano, and so by Mori’s theorem the nef and effective cones are polyhedral. When r = 8§ the
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anticanonical bundle is nef and effective, and both the nef and effective cones are polyhedral away from
the class of —Kx. We also note that for r < 7 the numbers @, and 8, are complex numbers, and so the
vectors v, and vg, are not in the real vector space V..

51. r=246

Theorem 3.1 is valid for all even r. In contrast to the cases when r > 8, where T, has infinite order, 22;2,
Ty, and Ty have orders 3, 4, and 6 respectively, and the @, are the complex roots of unity a, = e3,
a4 =1, and ag = P

Theorem 3.3 showed, when r > 10, r even, that the intersection of the nef cone in V, and the
half plane K ;0 is generated by the classes v, , vg, and T} (F>) with n € Z, and that the intersection
of the effective cone in V, with the half plane K;O is generated by v,,, vg, and the T)'(E), with
n € Z. The arguments in that theorem work here, with the only change being that v, and vg, do
not appear at all, and since X is Fano, the intersection with K ;O is all of the nef and effective cones
respectively.

Thus, in the cases r € {2,4,6}, the nef cone is spanned by the classes T/'(F,), forn = 0, ...,
ord(7;) — 1 (i.e., to 2, 3, and 5 respectively). Similarly, the effective cones in these cases are spanned by
T'(E)forn=0,...,ord(7,) — 1.

Figure 10 below shows the nef cones and orbits of these classes. The classes represented by a hollow
circle are the orbits of F», and the classes represented by a solid circle are the orbits of E (with the
exception of the class E itself, which is not shown).

(12,12,-7)
(12,6,-5) (6,12,-5)

(2,0,-1) (0,2,-1)
L ] L 2

r=2 r=4 r==6
Figure 10. Cones forr =2, 4, and 6.

The Seshadri constants for L = Oy (e, e2) in these cases are:

o €
e lfﬁe(o,1

—

3
e 7 < 0] e e, AL if 2 e (4,3
ez(L)={el P B L Ok P 2 (341
“ et P el2.) 200 2 ¢ [43]
e lf% € [3, )
52. r=8
Whenr =8, a3 = g =1, and vy = vg, = —%KX. The transformation T3 is unipotent with a single
Jordan block.

As in the previous even cases, the argument of Theorem 3.3 shows that the classes TS”(FZ), nez,

and v o4 (= vg,) generate the intersection of the nef cone with K ;0. The plane K ; meets the square zero
cone (and the nef cone, and the effective cone) only along the ray spanned by v 4.
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va =vg

£0

1 4 9 ...
4 9 16

- 1609 4
9 4 1

Figure 11. Cone when r = 8.

As in §3.3, for each n € Z we set &, := Tg'(F2) and C,, := Ty (E). Because Ty is unipotent, the
coordinates of &, and C,, are quadratic functions of n. Specifically,

& = (n2, (n+ 1)2,—(n; 1)) and C, = (4n(n —-1),4n(n+1),1- 2n2).

As in the proof of Theorem 3.3 we have &,_1 - C,, = 0 = &, - C,, for all n € Z. Thus the C,, along
with the limiting class v o, are dual to the nef cone, and so generate the effective cone of X. The picture
in this case is shown in Figure 11 above.

For an ample line bundle L = Oy (e, e3) on Y, provided that i—f # 1, by the argument in the proof
of Corollary 3.4, the Seshadri constant of L is computed by one of the curves C,, above. To find C,, we
look for the value of n so that the slope of L is between the slope of &, and the slope of &,,—;. That is, a
value of n so that

(n+ 1)2 < 2 < n2
n? (n—1)2%

(5.1)

Here (—1) is interpreted as oo if necessary, and the conditions imply that n > 1 if ‘ef—f >landn < -1
if Z—f < 1. For example, C| computes the Seshadri constant for those L whose slopes are in [4, o), and
C_; computes the Seshadri constant for those L whose slopes are in (0, }—1].

Using (5.1), one possible formula for # in these cases is n = [ 6; 1}.
€l
The reason for excludmg = 1 is that this is the slope of v, (i.e., the limit of the &, up to scaling,
as n — +o0), and also the slope of vg, (i.e., the limit of the &, as n — —o0), and so there are no &, and
&n—1 whose slopes bracket 1. However, v, has slope 1, is nef, and lies on the square zero cone. So, for
line bundles L of slope 1 the Seshadri constant is the maximum possible value eg(L) = ng(L) = <
In summary,

e . _
2 lfel =e

es(L) =

nlnillleires) it o) ¢, withn ={ L } .

2(2n2-1) \/5_1
€l

Note that the method of finding n by using ¢, as defined by (1.7) does not work when r = 8. Since
ag = 1, the denominator of (1.7) is zero.

53 r=135

Recall that in §4 we defined the curve classes

Cri=(n0,-1), Co:= (54 1,-1), 6= (L5 -1), and Gy o= (0., -1, (52)
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and that for odd r > 9 these classes determine the nef cone for all outer line bundles. When r < 8 all
ample line bundles on P! x P! are outer (since the plane K % does not intersect the square-zero cone).
For r € {1, 3,5} the argument in §4.2 shows that no other symmetric curve class affects the Seshadri
constant of an outer bundle (i.e., any ample bundle in this case). Thus, for r € {1, 3,5} the curve classes
above determine the entire nef cone.

One other difference in these cases is that when r € {1,3} some of these curve classes coincide.
Specifically, when r = 1 we have C3 = C| and C; = C4, and when r = 3 we have C; = C3. The pictures
of these curves, and the corresponding nef cones cut out by the half planes C fo, i =1,...4is shown
below. With the exception of the fibre classes, the small white circles on the square-zero cone are not
nef, but are rather classes whose tangent lines contain one of the C;. As explained in §2.2(b) these
classes determine the planes C;".

(1,0, -1) 0,1,-1)

r=1 r=3 r=>5
Figure 12. Cones forr =1, 3, 7.

For a line bundle L = Oy (e}, e3) the corresponding Seshadri constants are:
e lf% € (0,1]

ej+2ey .. e 1
4= lfﬁ €[3,1]

e U“%G(O,%]
a(L) =152 f2elsn2l; &L=

el if% € [2, )

er if € (0,1]

el if 2 e[l,0) ’

€ (L) :{ .
2 o, e
2 f 2 e [1,3]
et ifg €3

It is interesting to note the similarities between the formulas above and those in §5.1.

54. r=17

As in §5.3 all ample bundles on P! x P! are outer. The main difference in the case r = 7 from the cases
of all other odd r is that the Seshadri constants of outer bundles (i.e., all ample bundles in this case)
are determined by five curve classes. In addition to the four curve classes in (5.2) there is an additional
class, which for reasons of consistency in the diagram we label C, 1

Cyy = (28,28,-15).

This curve class is the union of 7 disjoint (—1)-classes. The curve class C’ = 4F| + 4F, — E — E|
(i.e., bidegree (4,4), multiplicity 2 at p;, and multiplicity 1 at ps,..., p7) satisfies (C’)?> = —1 and
C’ - Kx = —1. Starting with the linear series |Oy (2, 2)|, and imposing multiplicity 2 at a point p;, the
general member of the resulting linear series is irreducible. Imposing the condition that the linear series
pass through six further general points, we conclude that the class C’ is represented by an irreducible
(=1)-curve. The symmetrization of C’, as in §1.3, is the class C, 1

The argument in §4.2, used again in §5.3, which shows that Cj,..., C4 determine the Seshadri
constant of all outer bundles is the following. Each time one finds a (—1)-curve class, or a class which
is a symmetrization of (—1)-curves, one draws the corresponding half-plane C=°. Any subsequent such

L

class has to lie in that half plane. When r € {1, 3,5} the half planes corresponding to Ci,..., Cy4
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eliminate the possibility of any other curve class with negative self-intersection. When r > 9 these half
planes do not eliminate the possibility of any other curve class with negative self-intersection, but do
eliminate the possibility of any curve class with negative intersection which is Kx-negative. The case
r = 7 is intermediate between these behaviours. Here the classes Cy,. . ., C4 do not eliminate all classes
with negative self-intersection, not even in the half plane K3 <0 . However, the addition of the new curve
class C, 1 to the list is sufficient to rule out all further p0551b111ties.

The picture in the case » = 7, along with the corresponding Seshadri constants for a line bundle
L = Oy (ey, e2), appear below.

(28,28, -15)

er if & € (0, ]

(7,0,-1) 0,7,-1) el+73ez if 2 c [41" }%]
&(L) = 4e]l+54ez if 2 [17, HJ .

G € (13,41

er if & €[4, 00)

Figure 13. Cone forr =7

Remark 5.1. The blowup of P! x P! at r general points is the same as the blowup of P? at (r + 1) general
points. The effective cone, and the generating (—1)-curves, for P? blown up at < (7 + 1) points are well
known. For example, the generators are listed in [9, p. 135, Proposition 26.1].

Applying the change of basis formula between the Picard group of P> blown up at (r + 1) points,
and the blowup of P! x P! at r points, one obtains generators for the effective cones of P! x P! blown
up at r < 7 points. These (—1)-curves, or their symmetrizations, give generators of the symmetric
effective cones in §5.1, 5.3, and 5.4. This is another way to arrive at the description of the cones given
above. Note that not all (—1)-curves, or their symmetrizations, appear as boundary generators of the
symmetrized effective cone. Any class which does appear has to satisfy some restrictive conditions on
its multiplicities, see [4, Theorem 2.6.2].

6. A brief study of the slopes of the &,

For fixed r, r even, recall that in §1.7 we have defined sequences {q, ,}nez by setting g_; , = 1,
qgo,r = 0, g1, = 1, and then using the recursion (1.9). For instance, from the recursion, g, , =

Z;z(ql,r - qO,r) +4q-1,r = %
In the proof of Theorem 3.3 we have defined classes &, = &, for all n € Z by &, , = T*(F>) (in the
proof the dependence on r was omitted from the notation). Thus in the usual coordinates on V.,

= (1’0’ 0) = (ql,r7 QO,r,_\/qu’rj),

2q0,r r
é‘-‘o’r = (0’ 1’0) = (qo’r,ql’r’_ '%)’ and
'2 rq2,r
fl,r = (17 %7_1) = (ql,r’ q2,r’_ %)'
3.1

We note that the third coordinate is determined by the first two, since by Theorem 3.1 5,2” = F22 =0
for each n. Since the recursion (1.9) is the one given by the characteristic polynomial of 7., we conclude
that
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Eny = (Qn,r,CInH,r, —,lzq"”rﬂ) foralln € Z. 6.1)

qn+l r

In particular, the slope of &, ,, is === o
In this section we prove a few results about these slopes for use in §7 below, as well as demonstrate
the properties of the map ¢, defined in (1.8).

CIn+1 r

Lemma 6.1. Let r > 8 be even. Then the sequence of slopes

}n>1 is strictly decreasing.

slopes decreasing slopes decreasing

Figure 14. Slopes of the &,,.

Proof. When r = 8, from §5.2 we have the explicit formula ¢, = n*, which immediately shows that

the sequence is decreasing. When r > 10, the argument is that it “follows from the picture”. As shown

in Figure 14, the slopes of &; ,, &2, €3, - . . are decreasing. The figure also shows that the slopes on
dn+l,r

the other side are decreasing. That is, restrlcted to the set {n € Z | n < —1}, the function n ot s
decreasing. This second statement also holds when r = 8, by the explicit formula above. O

The only point where the sequence of slopes {q"” L}, ez fails to be decreasing is the transition from

n = —1 (where the slope is 0) to n = 0 (where the slope is 00). To justify that this picture is always
correct, and thus the argument of the proof is correct, we use the properties of ¢,., exposed below. The
justification of the picture appears in §6.3.

6.1. Properties of T

It is convenient to define 77 for all s € R, and not only s € Z. This is possible since 7} is diagonalizable,
and all eigenvalues are positive real numbers. Specifically, when r > 10 the vectors v, , vg,, and v{ of
(1.6) are a basis of eigenvectors of V,., and we define 7} on V. by setting

T}(va,) = va,, TP (vg) =Brvg, and T (v)) =1"vi=vy. (6.2)

The intersections in Table | and the fact that @, - 5, = 1 show that 7;° preserves the intersection form
on V,.. By construction 7, also fixes v, the class of K.

6.2. Properties of ¢,
Suppose that v € V,., and write v as a linear combination of the basis vectors above:
V=aveg +bvg +cvy. (6.3)

Assuming that b # 0, and using the intersections in Table | we compute that

V'Vﬁr a

Veve b
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For each s € Rlet vy = T (v) (so vo = v). Then by (6.2) vy = aa; vq, + b} vg, +c vy, and so
)

Vs Vg, aa;

Vs *Va, bp;

2s
.

-

¢
b
If, in addition, a # O then
log(%) =log (%) +2slog(a,) = log(%) + 2slog(ay),
from which we conclude that
@r(vs) = @r(v) +5. (6.4)

Now suppose that v is on the square-zero cone. Then, in the coordinates from (6.3), v = ’r;s (2ab -
rc?) = 0. If in addition ab = 0 we conclude that ¢ = 0, and that v is a multiple of either v, or vg,.
Conversely, if v is such that v? = 0 and is not a multiple of v, or vg, , then ab # 0, which shows that
the formula in (1.8) is well defined.

As already noted in §1.4, for all 2 € R*, ¢, (Av) = ¢, (v). Thus ¢, is a well-defined function on the
square-zero cone minus the lines spanned by v, and vg., modulo scaling by R*.

6.3. Applications to the square-zero cone

When r > 10 the plane Ky intersects the square-zero cone transversely (away from zero). Thus, the
quotient above consists of two open arcs, each homeomorphic to R.

Figure 15. Action of T?, and coordinates given by ¢,

If v2 = 0 then TS (v)? = 0, since T* preserves the intersection form. Similarly, since T* preserves
Kx, if v is on the arc in K;O (respectively in K;O) then so is T° (v).

If v is on one of the arcs then as observed above, in the coordinates from (6.3), ab # 0, and thus
(modulo scaling) as s — 00, T (v) — v, and as s — —oo0, T (v) — vg,.

If v is as above, and so ab # 0, the formula for the action of 7;° shows that 77 (v) is a scalar multiple
of v if and only if s = 0. Thus, the action of the group (R, +) on each of the upper and lower arcs, where
s€Ractsonvvias-v=T:(v), is simply transitive.

Setting v* = (1,1, i\/g), v* is on the upper arc, and v™ is on the lower arc. The maps s — 7,5 (v*) and

s — T2 (v™) are therefore continuous bijections of R with the upper and lower arcs respectively. Since
o (v¥) =0, (6.4) shows that ¢, provides a continuous inverse to each of the previous bijections. This
allows us to put coordinates on the upper and lower arcs. The situation is illustrated in Figure 15 above.

Justification of the picture used in the proof of Lemma 6.1. Since &, , = T (éo,r) = T (F>) for all
n € Z, each &,41,, is farther along the lower arc in the positive direction than &, ,, where the notion of
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positive is provided by the action of (R, +) above. Given the locations of £_; and &y on the square zero
cone, this shows that the picture in Figure 14 is correct, and hence the deduction from it used in the
proof of Lemma 6.1 is also correct.

We now return to studying the slopes of the &,.

Definition 6.2. For each positive integer m, define J,,, C R by

szz(m—%,m)u(mm+ )u{m+2}—(( ~Lm %)\{m})u{m+2}

We note that if m # m’, then J,,, N J,,y = @.

Proposition 6.3. Let r be even, r > 10. Then the sequence {

}n>1 is contained in Jy-4.
2

Proof. Starting with g_; » =1, go,» =0, g1, = 1, and using (1 .9) we compute that

)2 _4)2
q2,r = %7 q3,r = %, and q4,r = %,
which then gives
Qr _r Br _r4 2 r—4 _ Y4r _ 2r-8
a2 @ 7+ and 5 @G (r=2)%"
Since (2 22 > 0, we conclude that q‘” < ﬂ. Asn — oo, q;*# — a,. By Lemma 6.1 the sequence
n>1 is decreasin us the previous calculations show tha n>1 is contained in the se
ol d g. Th thp lculations show that { %> tained in the set
—4 -4, 2
(“r’rT)UirTJf;}U{%}- (6.5)
Lemma 4.6 gives the estimate % < a,, and so the set in (6.5) is contained in the set
r=5 r-—4 r=4 , 2 r
(T’T)U{T"'?}Uiii- (6.6)
In turn, for m = 52, the set in (6.6) is contained in J,,,, proving the proposition. O

Theorem 6.4 (Uniqueness of r). Let ey and e, be positive integers. Then there is at most one even r,
> 2, such that Z—? = qq"*#for some n € Z. If r > 8 then the value of n is also unique.

Proof. By symmetry we may restrict to the case i—f > 1. If f;—f = q;’:‘ ~ and r > 8, this implies that
> 1. For r = 2, 4, and 6 the sequence is periodic; see §5.1.
By Proposition 6.3 for each even r > 10 the slopes {q’”1 - },>1 are contained in J =y Since J,,, Ny =

@ if m # m’, the slopes for different r, » > 10 do not 001n01de
The possible slopes (> 1) when r = 2,4, 6, and 8 are: 1 (r = 2); 2 (r = 4); % and 6 (r = 6); and

{M}n (r = 8). See §5.1-§5.2.

n

These slopes are distinct, and none are contained in the sets J,,, for m > 3. This proves uniqueness of 7.

If r > 8 the uniqueness of n follows from the fact that, by Lemma 6.1, the sequence of slopes
{q”+l L 1,51 is strictly decreasing. O

Remarks 6.5. (1) Not all positive rational numbers are the slopes of some &, ,, i.e., there are many

slopes i—f which are not of the form q;‘“" for some n and r. For instance, when m > 3 the only rational
number in (m, m + %) which is a slope of some &,  is (':‘n:lz)) (.e., %, where r = 2m +4), the slope
of &2 2m+4-

(2) The description above of the slopes, particularly the partition of the slopes into the sets J,,,, can
be used to give an algorithm to decide whether a particular slope is the slope of some &, ;.
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7. Other arguments related to the symplectic packing problem

In this section we use the results from §3—§6 to prove Theorems 1.2 and 1.3. We also give the formulae
for the packing constants when r < 8. We start by recalling the dictionary between the differential-
geometric language and the algebro-geometric one.

If M is the real manifold underlying P! x P!, and w; a symplectic form on M, then the cohomology
class of wy, is an element of H 2(M ,R) = R2, with a natural basis coming from the Kiinneth theorem.
In this basis the cohomology class of wys corresponds to a pair (e, e2). By [8, Theorem 1.1], up to
diffeomorphism of M, every such form wj; comes from a Kéhler form on P! x P!, and for such a
form e, e > 0. It is these numbers in the formulas below which give the packing constant associated
towpn.

We also note, although we will not need to use this, that the packing constant is homogeneous of
degree 0 in e and e, and so unchanged by simultaneous scaling. This can be seen directly from
the definition of the packing constant, or, in our case, from the formulae in Theorem 1.2 and in §7.2
below.

Recall that by the theorem of Biran [1, Theorem 6.A] for Y = P! x P! and L a real ample class of
type (e1, e2) (i.e., e1, e2 € R, e1, e, > 0) one has

a@))z _rew)y? o

vr (L) (Tlr(L) 2e1ep

Here €, (L) is like the Seshadri constant but restricting the test curves to be (—1)-curves or, equiva-
lently, their symmetrizations (see (1.12) for the definition of &.(L)).

In the calculations in §3—§5 we have found all the (—1)-curves, or symmetrizations of (—1)-curves,
which can affect a Seshadri constant, and thus can compute €. (L) for all r. Reversing these formulae
we find the conditions on r for when L of type (e, ;) admits a full-packing.

7.1. Proof of Theorem 1.2

The case of odd r. In §4 we have shown that the curve classes Cy, . .., C4 are the only (—1)-curves, or
symmetrizations of such, which affect Seshadri constants when r > 9 is odd.
The curves Cy.,. .., Cy4 affect the Seshadri constants of bundles of slopes (0, %], [%, ﬁ],

[_(\F2—1)~, 2], and [, 00) respectively.

In §4 we were unable to show that C, and C3 computed the Seshadri constant over their entire
respective intervals, and instead restricted ourselves to smaller intervals where we could justify this.
However, for &, (L) there are no other competing curve classes to consider. Thus, €. (L) is computed by

the curves Cy,. .., C4 on the respective intervals listed above, and is equal to v, (L) on the intermediate
12
interval [(\/;2_1)2, “@ D ]. This gives (1.13).

The case of even r. In the proof of Theorem 3.3 we showed that the only (—1)-curves (or symmetriza-
tions) which affected the Seshadri constants of line bundles were the curve classes C,, = Cy, - = T (E),
and that these curve classes computed the Seshadri constants for outer bundles (i.e., bundles whose
slope is outside of [B,, @, ]) and did not affect any inner bundles (bundles whose slope is in [8;, @, ]).
Thus €, (L) = €-(L) for outer bundles, and for inner bundles €. (L) = n,-(L). This gives (1.14).

7.2. Packing constants for r < 8

In §5 we computed the Seshadri constants when r < 8 for all ample L, and all Seshadri constants were
computed by (—1)-curves or their symmetrizations. Thus, for r < 8 we have &.(L) = ¢,(L) for all

ample L. By (7.1), for L a real ample bundle of type (e, e3), we therefore have v, (L) = % for
all r < 8. For convenience we list the formulae for those packing constants here.
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e e 0.1 2e; €1 > 2 (e142¢9)? .. e 1
EUCZE(’ ] . (e1+ez)2 e 1 Wlf‘ae[j’ ] .
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2ep 7 e ’ 5S¢y 2 € [3, )
2y Yooy >0
3ey if 2 e (0, 1]
el e >3
2ey .. e 1 3(e1+2e2)2 .. e 1 3
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Gepre)® o2 ¢ [17 4 (@n*-D%ere; ’ Z-
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Te .
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7.3. Proof of Theorem 1.3

By (7.1) one has a full packing if and only if &.(L) = n,(L). In terms of our graphical description of
the Seshadri constants (c.f. §2.2(c) or Figure 7) this means that the bundle L,, with y = €&.(L) has
reached the square-zero cone without crossing any plane of the form C*, where C is a (—1)-curve or
symmetrization of a (—1)-curve. If we are in a region where the Seshadri constant is computed by such
curves, this means that L, is a nef class on the square-zero cone.

The case of odd r. In §5.3-§5.4 we have seen that for r odd, r < 7 (where all Seshadri constants
are determined by (—1)-curves or their symmetrizations) there are no nef square-zero classes. In other
words, in the pictures in §5.3—-85.4, the nef cone never reaches the square-zero cone, although this is a
bit difficult to see in the picture for r = 7. Thus, to have a full packing when r is odd, one needs at least
r=9.

When r > 9 and is odd we have seen in §4, that the curve classes Cj,. .., C4 only affect Seshadri

2 (r=1)?
(Vr-12> 2

constants for bundles with slopes outside [ ], and that outside that interval the nef cone

never reaches the square-zero cone.
Thus, when r is odd a full packing occurs for a real line bundle of type (e1, e») if and only if > 9
(Wr=1)?
2

<&

and (‘/7;_1)2 <3 . This is equivalent to the condition

2
r > max (1/%+ 1) ,(,/26—82‘ + 1)

2
,9

of Theorem 1.3.

The case of even r. In the proof of Theorem 3.3, when r is even, r > 10, we have seen that the curve
classes C,, , := T/'(E), each the union of r disjoint (—1)-curves, determine the Seshadri constants for all
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outer bundles, i.e., bundles whose slope is outside [B;, @, ], and that no (—1)-curve or symmetrization
affects the Seshadri constant of inner bundles.

We have also seen that when r > 10 the classes &, - are the only nef classes on the square-zero cone
with slope outside of [S3,, @,]. In §5, when r is even, r < 8, we have similarly seen that the classes &, ,
(and v 4, ) are the only nef classes on the square-zero cone.

Thus, when r is even a full packing occurs for a real line bundle of type (e, ;) if and only if

D Br < 2_? < @p, Or
(ii) ris a value for which 2—? is equal to the slope of a &, ;- for some n.
These are equivalent to the conditions
2
() r > Hare) o

ele)
(ii) ris a value for which 2 is equal to q;”# for some n,
n,r

appearing in Theorem 1.3.
In addition, we recall that by Theorem 6.4, for a fixed (e, e2) there is at most one value of r where
condition (if) occurs. This completes the arguments related to the symplectic packing problem.

8. Petrakiev reflections
8.1. The reflection theorem

A common technique for investigating the cone of effective classes on a surface blown up at r general
points is to specialize the points to lie on some fixed curve G in such a way that the proper transform
Gy of G has negative self-intersection. If C is a class which is effective when the points are in general
position, then under the condition that Gy - G < 0 the class C — (C - Gg) /(G- Go)Gy is effective when
the points are in special position, and this can be used to deduce restrictions on C.

A beautiful argument of 1. Petrakiev allows one, under mild conditions on G and 7, to double the
coeflicient of G subtracted in the formula above. The formula then becomes that for the reflection of
C in Gy. Dually, one may reflect classes which are nef on the specialization to get classes which are nef
when the points are in general position. In this section we record this result, and in the next use it to
produce inner nef classes on the square-zero cone for even and odd r.

Theorem 8.1 (Reflection Theorem). Let Y be a smooth surface, and G C Y a smooth irreducible curve.
We use X to denote the blowup of Y at r general points, and X to denote the blowup of Y at r general
points of G. We identify the Néron-Severi groups of X and Xy, along with their intersection forms, via
the isomorphisms

NS(X)g = NS(Y) € @[, QE; = NS(Xo)o,

and use V to denote the common inner product space. We additionally assume the following numerical
conditions: thatr > |G - G|, that (G -G) —r < 0 (thusr = |G - G| is only allowed when G -G < 0); and,
if G has genus 0, that (G - G) — r is even. We denote by G the proper transform of G in X (therefore
Go-Go=(G-G)—-r <0),and by ¢g,: V — V the isometry “reflection in Go” given by the formula

$Gy (é:) =& - Z(Gé:() .CZJO)G& 8.1

Under the numerical conditions above,

(a) If C is an effective class on X, then ¢g,(C) is an effective class on Xo.
(b) If &y is a nef class on Xy, then & := @G, (&o) is a nef class on X, and & - € = & - &o.
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Proof. We first show that (a) implies (b). We recall that

(i) ¢g, is an isometry, that is, @G, (£1) - ¢G,(£2) = &1 - éx forall €1, & € V, and
(ii) g, is self-adjoint, that is, &1 - ¢G,(£2) = @G, (&1) - éx forall &1, & € V.

(The two statements are equivalent, since goé( =1Idy.)
If C is an effective class on X, then by (a), ¢, (C) is an effective class on Xy, and thus, since & is a
nef class on Xo, ¢G,(C) - & > 0. Therefore

C-€=C-06,(£0) 2L 46, (C) - & > 0.

Since C - ¢ > 0 for all effective classes C on X we conclude that £ is a nef class on X. Furthermore,
& & =&y - & since g, is an isometry.

Part (a) is proved in [11], although the result is not explicitly stated in that form. We will outline the
argument, indicating where in [1 1] one can find the proofs of the claims.

To study the degeneration one starts with the product ) := Y X A, with A c C the unit disc. Before
blowing up, the normal bundle of G x{0} in YV is NGy ® Og, where Ny is the normal bundle of Gin Y.

To blow up, one chooses sections p;(t), i = 1,...r, in ), which are general points of Y for general
t € A, and are general points of G when ¢ = 0. Letting X" be the blowup of ) along the sections, one
checks that the normal bundle of G x {0} in X is obtained by performing r elementary transformations
on NGy ® Og. Under the numerical conditions above, (r > |G - G|; (G - G) —r < 0 and even if G has
genus zero), a generic choice of degeneration will ensure that these elementary transformations result
in a semistable bundle. This result is a combination of [1 1, Lemma 3.4, Corollary 3.5, and Lemma 3.6].

Choose such a generic degeneration and let A/ be the resulting normal bundle of G in X. Since
degs, (N) = deg(Ngy) —r = Go - Go, N is a semistable bundle of slope (Go - Go)/2.

Next, if C is an effective class on the blowup of r general points, we may choose a family of effective
curves Cy, t € A, such that each C; C A} has class C. Let multg, (Co) denote the multiplicity of G in the
limiting curve Cy. Under the condition that A/ (and thus also its dual A/*) is semistable, the statement of
[11, Corollary 2.2] is that

slope(N™) multg, (Co) = —(C - Gy).

Since slope(N*) = —(Go - Go)/2, we conclude that multg,(Co) > Z(go%;)’ and thus that C —

Z(CC;O'%’O )Go is an effective class on Xj. O
Remarks 8.2. (1) As is clear from the proof, the extra factor of 2 comes from the semistability of N'*

combined with the multiplicity estimate of [11, Corollary 2.2].

(2) Since the multiplicity of G in Cy is an integer, the estimate multg, (Co) > 2( CC;O%()O ) implies the

stronger result that

(@’ ) If Cis an effective class on X, then C — [2( GCO%)O )-‘Go is an effective class on Xj.

Here [-] denotes the round-up. We have chosen to record the result without the round-up for several
reasons. First, because of the elegance of expressing the result as a reflection, which leads easily to the
statement in part (b) of the theorem. Second, if the class of C is sufficiently divisible (e.g., if C - Gg
is a multiple of G - G¢) then the round up makes no difference. However, if one knows more precise
information about the class C (enough to determine that (C - Go)/(Gy - Gy) is not an integer), then the
version above may be useful.

(3) If & is an integral class, ¢, (£o) may only be a rational class, and then it is natural to scale to
make ¢ integral. Thus, the fact that & - &€ = & - &y essentially only ensures that, after scaling, (m¢) - (m&)
has the same sign (here meaning > 0 or = 0) as & - &. Since we are mostly interested in reflecting
square-zero classes, the scaling makes no difference.
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(4) Since the multiplicities of G are symmetric (they are all 1), reflection in G¢ preserves the
subspace of symmetric classes. Therefore if &y is a symmetric nef class on Xy, ¢, (&o) is a symmetric
nef class on X.

(5) More generally, one could also obtain symmetric nef classes by finding nef classes on X (for
instance by reflection), and restricting them to the subspace V,. C V of symmetric classes. Because V,
is self-dual under the intersection product, restriction of the linear form defined by a class & amounts to
orthogonal projection of & onto V..

Specifically, if & € V is a nef class on X, then & decomposes as & = &, + &+, with & € V,., and €+ in
the orthogonal subspace V- to V.. (V;* consists of those classes of the form Y, m; E;, with Y, m; = 0).
Since the decomposition is orthogonal, we have & = (£,)? + (£+)2. Since the intersection form is
negative definite on V*,if £ ¢ V, (i.e., if £~ # 0) then &2 > £2.

Thus, if one is searching for nef classes in V,. which are square-zero (classes imposing the strongest
conditions, since they are clearly on the boundary of the nef cone), one cannot do it by restricting nef
classes to V, unless they were already in V,- to begin with.

9. Inner square-zero nef classes via reflections
9.1. Construction of the classes

Theorem 9.1. Let X be the blowup of P! x P! at r general points, r > 9, and let e be an integer such that

< % if r is even, or
< g ifrisodd.

Then the class &(e,r) := (2e%,r,—2e) is an inner nef class on X and satisfies &(e,r)? = 0 (i.e.,
&(e,r) is on the square-zero cone). The same statements hold for the class (r,2e?, —2e) obtained by
switching the bidegrees.

Proof. Let (e1,e2) = (e, 1) if ris even, and (ey, e2) = (e,2) if r is odd. The class (e, r) is obtained,
up to multiple of r — 2¢ e;, by reflecting the fibre class & := F> = (0, 1, 0) in the curve G obtained by
specializing the r general points to lie on a smooth curve G of bidegree (e, e3).

We now check that such a curve G satisfies the numerical conditions of Theorem 8.1. We recall that
a smooth curve of bidegree (e, e2) on P! x P! has genus (e; — 1)(e — 1).

o If riseven, then (G - G) —r = 2e — r is clearly even, a necessary condition since a curve of bidegree
(e, 1) has genus 0. It is also clear that (G - G) — r < 0 whenever e < 5, a weaker condition than the
condition e < % being imposed above in (a).

o If r is odd, then since e > 2, the curve G of bidegree (e,2) has genus > 1, and thus there is no
restriction on the parity of (G - G) — r. The only condition needed to apply the theorem is that

r

(G -G) —r =4e —r < 0. This clearly holds whenever e < Z, which is one of the conditions being
imposed in ().

Thus we may apply the theorem. Since the class F; is clearly nef on the specialization Xy, part (b)
of Theorem 8.1, along with the fact that r — 2e;e, > 0 guarantees that £(e, r) = (r — 2e1e2) g, (£o) is
nef on X.

It is easy to check directly that £(e, r) is square-zero. On the other hand, this also follows from part
(b) of Theorem 8.1. Since &y = F, is square-zero, so is its reflection ¢g,(£p), and therefore so is its
scalar multiple (e, r).

We have £(e,r) - Kx = —4e? + 2er —2r = —4((e -1)2 - (%‘)(@ -+ 1). Thus, to have &(e, r) -

Kx > 0 (i.e., in order that £ (e, r) be an inner class), we need

(e—1)2—(%‘)(e—1)+1<o.
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With the substitution t = e—1, the left-hand side of the inequality above becomes the minimal polynomial
for @, and B, from §1.2. Thus £(e,r) - Kx > Owhene € (B, +1,a, +1).

Since B, € (0,1), and e is an integer, the condition B, + 1 < e is equivalent to 2 < e. If r > 9
thene < 7 < % < @, + 1, where the last inequality comes from Lemma 4.6. Thus when r is odd the
conditions in (b) imply thate € (B, + 1, @, + 1).

If r is even then Lemma 4.6 shows that |a, + 1] = %‘, and thus since e is an integer (and a, is not
an integer when » > 10), the condition e < «, + 1 is equivalent to the condition e < %. Thus when r
is even the conditions in (@) are equivalent to the condition that e € (8, + 1, a, + 1).

This finishes the proof that the class &(e,r) has the properties claimed. By symmetry the class
(r, 2¢2, —2e) also has these properties. O

Corollary 9.2. Suppose that r is even, r > 10, and that e is an integer satisfying 2 < e < %‘. Then for
all n € Z the classes T]' (¢ (e, r)) are square-zero inner nef classes.

Proof. Clear since 7, is an automorphism of the problem, preserving nef classes, self-intersections, and
the canonical bundle. m]

Remarks 9.3. (1) In Corollary 9.2 the orbits of the classes &(e, r) under 7, are distinct, but if one also
allows scaling by positive integers, then there are fewer equivalence classes.

For instance, when r = 10, £(2, 10) and &£(3, 10) (the only values of e possible in this case) and the
classes obtained by switching the bidegrees, are all, up to scaling, in the same orbit. Similarly, when
r = 12 the classes £(2, 12), £(3,12), and £(4, 12) and the classes obtained by switching the bidegrees
are, up to scaling, in the same orbit. When r = 14 there are two equivalence classes, those for which
the minimal integral ray generator on the ray spanned by &(e, 14) has intersection 6 with Kx (e = 2, 5),
and those for which the intersection is 10 (e = 3, 4).

(2) The conclusion of Theorem 9.1 also holds when r = 8. Then we must have e = 2, and £(2, 8) is
the class (8,8, —4), a multiple of (2,2, —1), which is also a multiple of v, = vg,. This class is inner,
but not strictly inner (@, and 8, are rational numbers only when r = 8 or r = 9, so in the even case r = 8
is only case a rational class could have slope «, or §,-). See also §5.2.

(3) Here is an explanation of the curve classes used in Theorem 9.1. Let G have bidegree (e, ¢2). In
order to apply Theorem 8.1 we need to have (G - G) — r = 2e1e, — r < 0. This puts restrictions on the
sizes of e; and e;.

The one class which is clearly nef on the specialization X is the fibre class F, (or symmetrically, F7).
With G the curve obtained as the proper transform of G when the points are specialized onto G, we have

‘;OG()(FZ) = (2@%, r, —281).

(r —2eyez)
Surprisingly (after scaling), the result only depends on e;. Thus, in light of the condition 2eje; < r, in
order to obtain as wide a range of reflections as possible, we should make e, as small as possible.

When r is even, we may take e; = 1, since (G - G) — r will always be even. When r is odd, we must
take e, > 2 (and e; > 2) in order to ensure that G has genus > 1. From these choices the rest of the
conditions in Theorem 9.1(a) follow directly from the further requirement that the reflection of F, be
an inner class.

(4) When r is even, if one takes e = r2;2’ then by the arguments in the proof of Theorem 9.1, the
class £(e, r) is a nef outer class on the square-zero cone. These have all been determined in Theorem
3.3, and all are positive multiples of the classes T} (F), n € Z. In this case one can check that

g(rz;z,r) =2 -T2 (Fy).

9.2. On the possibility of reflecting other classes

As remark (3) above explains, Theorem 9.1 is based on the fact that the class F; is guaranteed to be
nef on Xy. When r is even, and the points in general position we know that the classes 7} (F3), n € Z,
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are nef classes on X, and on the square-zero cone. If we knew that some or all of these classes remain
nef after we specialize the points (i.e., on Xj), then we could reflect those classes, and obtain other
square-zero inner nef classes. We conclude this section with some particularly interesting examples of
such potential calculations.

In the case r = 10, let us consider specializing the points onto a curve G of bidegree (3, 1). In this
case, we know that the classes T1"0(F2) are not nef on Xy when n < -2, since we can compute that those
particular classes intersect negatively with Gy.

We (the authors) do not know if the classes T}(,(F2) remain nef on Xo when n > 1. Suppose for a
moment that they do. Then, by continuity, the limiting class v ,, would also be nef on X, and therefore
its reflection ¢, (v o,,) Would be a square-zero inner nef class on X. However, up to multiple, ¢, (Vo)
is the class (1, 1, —%), and thus we would have shown the existence of an irrational Seshadri constant,
something suspected, but not yet known to exist.

That is, the argument above is

o If the classes T|,(F2) are nef on Xo for all n > 1 (or all sufficiently large n), then v 4, is nef on Xo.
o If vy, is nef on Xy then the class (1,1, —‘/Lg) is nef when the points are in general position, and
therefore irrational Seshadri constants exist.

We do not know if this observation is a step forward in producing an irrational Seshadri constant, or
just another way of hiding the crucial issue.

The surface Xy can also be realized as the blowup of the Hirzebruch surface F4 at 10 general points.
(The curve of self-intersection (—4) is Gy, and the class F is the fibre class of the morphism F; — PL)
For the record we include the change of basis matrix on the symmetrized Néron-Severi lattice for these
two realizations of the surface.

F\ F, E
01 0
M=F|1 7 10
E'lo -1 -1

Here B is the class of the curve of self-intersection —4, F’ is the fibre class, and E’ the sum of the
exceptional divisors.

Thus, the question above is whether, in the basis coming from Fy, the classes M - TI"O(FZ), nxzl,
are nef on the blowup of F4 at 10 general points. For instance, when n = 1 this is asking if the class
5B +26F’ — 4E’ is nef.

More generally, for even r > 10, if one knew that that the class v,, was nef on the surface Xy which
resulted from specializing the points to lie on a curve of bidegree (’54, 1) (the last possible case in (a)

of Theorem 9.1), then one would know that the reflection ¢G,(vqa,) was nef when the points were in

general position. This reflection is, up to multiple, the class (%, 1, —\/rrz), and would again provide
an example of an irrational Seshadri constant.

This surface Xy can again be realized as the blowup of the Hirzebruch surface Fy4 at r general points
(the curve G¢ again has self-intersection —4.) Thus, it seems very interesting to investigate nef classes
on the blowup of F4 at r general points, r > 10, r even. The classes in question all lie in the Kx-negative
part of the effective cone. However, a curve which shows that such a class is not nef must be Kx-null or
Kx-positive, which is where the difficulty of the question lies.

Here is a potentially useful restatement of the above question. As the proof of Theorem 3.3 (implicitly)
shows, each class &, = T/'(F,) is a convex combination of C, , and Cyy1, Where Cy,» = T'(E).
Specifically, since E + T,-(E) = (0,0, 1) + (0,r,—1) = (0,r,0) = r&,», it follows that

Eny = %(Cn,r +Cpy1,r) foralln e Z. 9.1
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The class E is the disjoint union of the r exceptional divisors, and so each class C,, , is the disjoint
union of r(—1)-curves. If these components of C, , and Cp41, remain irreducible when specializing

r—

the points to general points of a curve of bidegree (74, 1), then it would follow that &, is a nef class

on the specialization. Thus, the more general question above can be rephrased as :

Q : For some even r, r > 10, is it true that for sufficiently large n, the (—1)-curves which are the
components of C,, , remain irreducible when the r points are specialized to general points of a curve of
bidegree (%, 1)?

One can also rephrase this even more explicitly. Since the specialization is isomorphic to the blowup
of Fy at r general points, we can write the (—1)-classes in the natural basis from this point of view. The
question then becomes “are these (—1)-classes irreducible for all sufficiently large n?”.

As discussed above, a positive answer, for any fixed even r > 10, would establish the existence of an
irrational Seshadri constant.

10. Inner square-zero nef classes via pullbacks

In this section we use pullback maps to produce inner square-zero nef classes. When r has a factor rg
which is even and > 8, this allows us to produce such classes different from the classes in §9.

Given positive integers a, b, let ¢, : P! x P! — P! x P! be a map which is of degree a on the first
P! factor, and degree b on the second. For instance, ([xo : x1], [yo : y11) = ([x§ : x{1, [y5 : %) is
such a map. The map ¢, ;, has degree ab.

Fix a positive integer ro, and let X,, be the blowup of ¥ = P! x P! at ry general points, py, ..., Dro-
Since the points are general we may assume that they do not lie in the branch locus of ¢, and so each
of the points p; pulls back to ab distinct points.

Let X, be the blowup of P! x P! at the resulting r := abrg points, and

wa,b: Xr — Xr()

the induced morphism.

As in the rest of the paper, we use V, and V,, respectively for the subspaces of H?(X,,R) and
H?(X,,,R) generated by the fibre classes and the sum of the exceptional divisors. The morphism ¥/,
induces pullback and pushforward morphisms between these spaces. Specifically,

V. — Vio : wz’b

(adl’bd29 _m) (dl’dz’ _m)
(10.1)

Yabs: V, — Vro

(d{,d},—m’) +—— (bd],ad},—abm’)

Here, as before, the coordinates on V. and V,,, are with respect to the basis consisting of the fibre classes
and the sum of the exceptional divisors.

The pullback and pushforward morphisms are adjoint with respect to the inner products on the two
spaces. For v = (d,dy,—m) € V,, and w = (d’,dé, -m’) €V,,

(@o.p(V)s w) = adidy+bdyd; — abromm’ = (v, ¢4 pe(W)) (10.2)

ro’

In the equation above we have used (, ») instead of - for the inner product, to allow us to write a subscript
indicating on which space the inner product is being evaluated.
For classes vi, va € V,,, and wi, wy € V,, we also have

(Va0 ¥, (v2)), = ab(vi, va), and (Yape(w1), lﬁa,b*(w2)>,0 =ab{wy, wa),.  (10.3)
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The r points at which we are blowing up are not general. However, effective classes remain effective
under specialization, and dually, classes which are nef when the points are specialized are nef when the
points are in general position. Thus, if & is a nef class in V,,, 1//2’ »(&0) is a nef class on P! x P! blown
up at r general points. Here we are identifying the intersection spaces for the blowup at general points,
and the blowup at special points as in Theorem 8.1.

10.1. Construction of the classes

Proposition 10.1. Let &y = (d, d>, —m) € V,,, be a point in the octant where dy, da, and m are > 0. Fix
positive integers a and b, and set & =y, (&o) € V.

(a) If €2 = 0then &> = 0.
(b) If & is nef, then & is a nef class on P' x P! blown up at r general points.
(c) Ifé&y is Kx,, positive, then & is Kx, positive.

That is, if &y is square zero, nef, or Kx-positive, the same is true of the pullback &. In particular,
inner square-zero nef classes on X, pull back to inner square-zero nef classes on P! x P! blown up at
r general points.

Proof. (a) By (10.3) we have (¢, &), = ab({¢o, éo),, = ab §(2) = 0, so £ is a square-zero class. (b)
The class £ is nef by the argument above: when the r points are specialized, the class £ is nef on the
specialization, and hence nef when the points are in general position.

(c¢) To see that <er,§~‘>r > 0, we use (10.2), and show that (l/’u,b*(KXr), §0>r0 > 0. Since Kx, =
(=2,-2,1), and assuming by symmetry that a < b, we have

Wap(Kx,) == (~2b,~2a,ab)
b(=2,-2,1)+ (b —a) (0,2,0) + (a — 1)b (0,0, 1)
bKx, +2(b-a)Fy+(a-1)bE,

all the coefficients above are > 0 and b > 0. By assumption <K o §0> > 0. Furthermore (F>, &) = d|

ro

and (E, &) = m, both of which are > 0 by assumption on the octant. Thus (KXV, §>r > 0. O

Remarks 10.2. (1) As clear from the proof of (c), even a class &y such that (K X,Ao,g()),o < 0 can pull
back to a class ¢ with (K, , &), > 0, as long as the intersections of &y with 2(b — a)F; and (a — 1)bE
are sufficiently positive to make up for the negativity of the first intersection.

In particular as long as (a,b) # (1, 1) (i.e., as long as Y4, is not the identity map), the K, -null
classes vq, andvg, pull back to classes which are K, positive.

(2) We also note that if & is nef, & must be in the octant with dy, d», and m > 0 (§2.1).

Let a, b, ro, and r = abrg be as above. Starting with a class £(eq, o) = (Ze%, ro, —2ep) produced by
Theorem 9.1, we compute that

W5, (£(eo.r0)) = (2aeg, bro, —2e0) = £(2(ae0)*, abro, —2aeq) = L&(e,r)

where e = aeg. From the fact that e¢( satisfies the inequalities necessary to apply Theorem 9.1 (i.e.,
that 2 < eg < # or 2 < eg < 3 depending on the parity of rg), we see that e also satisfies the
corresponding inequalities.

That is, pulling back the classes as produced by Theorem 9.1 only gives classes of the same type, up
to scalar multiple.

However, if 1 is even, ry > 8, then as recorded in Corollary 9.2, we may apply powers of T, to each
&(eq,rp) to obtain infinitely many other inner nef square-zero classes. We may then pull back these

classes to X, and apply powers of 7,. In general the pullback of points in the T}, -orbit of £(eg, ro) are

https://doi.org/10.1017/fms.2025.10137 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10137

40 C. Dionne and M. Roth

not in the 7, orbit of the pullback of any &(e, ro), and this allows us to produce infinitely many new
inner nef square-zero classes.
To illustrate the idea, we look at one of the smallest possible examples.

Example 10.3. Let rp = 10, and (a, b) = (2, 1), so that r = abry = 20. Taking ¢y = 2, 3 in Theorem
9.1(a) the classes %5(2, 10) = (4,5,-2) and %5(3, 10) = (9, 5, —3) are square-zero inner nef classes, as
are the classes (5,4, -2) and (5,9, —3) obtained by switching the first two coordinates. Here we have
divided by 2 to remove common factors among the coordinates, that is, to replace each class by the
integral generator of the ray it spans.

Let us just focus on one of these, the class &) := %5(2, 10) = (4,5,-2).

The forward orbit T7(, (&), n > 1, of &y converges, up to scaling, to v4,,. As noted in §10.2, v 4,, will
pull back to a Kx-positive class (and also a nef, square zero class, by Proposition 10.1). The sequence
én.10 = T{(F2), n > 1 also converges, modulo scaling, to v 4,,, although from the “other side”. It follows
that for n sufficiently large, the &, 10 also pull back to Kx-positive classes.

Thus, by pulling back, we obtain infinitely many inner nef square-zero classes converging (modulo
scaling) to wz’l (Vay,)> and converging from both sides. The example is illustrated in Figure 16.

¥y, (varg)

v Bio Vayg
VB2 Vay | 2,1
K

0 B1o i) 00
0 B @0 oo

Va0 Vio
Figure 16. Illustration of the pullback map.

Now we can apply 7,7 to the pullbacks. Applying 757 to l,b;l (v a,,) We obtain a sequence of inner, nef,
square-zero classes converging (modulo scaling) to vg,, or v,, as m — —oo or m — oo respectively.

But, each of the elements in this sequence itself has a sequence of inner, nef, square-zero classes
converging to it, from both sides. Specifically, fixing m, the sequences

T35 (43,1 (T15(£0))) and To5(43 4 (£n.10))

converge (modulo scaling) to Tz'g(l//;] (Vay,)) as n — oo. For all n the classes of the first type are inner,
nef, and square-zero classes. Classes of the second type are nef and square-zero, and are inner (i.e.,
Kx-positive) for sufficiently large n. In this specific example, n > 1 is large enough.

We can also apply this construction to the three other classes (e.g., (9, 5, —3)) listed above.

By repeated pullbacks we can thus arrive at an » where we can find an infinite sequence of inner,
nef, square zero classes, each member of which has an infinite sequence of such classes converging to
it, and each member of those previous sequences has an infinite sequence of such classes converging to
it, ..., and so on, up to a finite number of such steps.

As discussed in §1.8, a consequence of the SHGH conjecture is that some portion of the nef cone
should be round. If the nef cone is not round then the above examples suggest that the actual description
of the nef cone is likely to be quite complicated.

10.2. Use in lower bounds for the Seshadri constant

The paper [5] establishes lower bounds on the Seshadri constants for line bundles whose Seshadri
constants are not affected by (—1)-curves. As noted in §1.10, for a line bundle L of type (e, e2), these
bounds are
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1
5 2
(L) > nr(L)(l - %)? forrodd,i—? € [(\/;2_1)2, Wr=D) ] (104)

&(L) > nr(L)(l - 9%)5 for r even, Z—f € B, ar].

In §9 we have constructed examples of inner bundles where €, (L) = n,-(L) (all of the classes &(e, r),
and, when r is even, their orbits under 7, ). Applying pullbacks we can construct even more such classes
when r has an even factor > 8. Thus, the methods of these sections produce examples of bundles whose
Seshadri constants are larger than the lower bounds above.

The convex hull of such classes (for fixed r) then also provides a lower bound on the Seshadri constant.
This lower bound is exact for bundles of the type we have constructed (those where €, (L) = v, (L)),
and improves on the bounds in (10.4), at least in the neighbourhood of such bundles.

The authors have been unable to find a useful way to describe and organize all the bundles produced
by these procedures, and thus are unable to give a short formula for a better lower bound. Thus, the
bounds in (10.4) seem, at the moment, to be the most generally useful. They are also quite strong. For
instance, when r = 20, the lower bound in (10.4) is that €, (L) is differs from 7, (L) by a factor of no

worse than /3 ~ 0.994428 ...

We end this section by giving an application of the formulas in §10 to establish a reasonably strong
family of bounds on the symmetric effective cone, valid (at least) whenever 8 | r.

Theorem 10.4. Suppose that ro and & € V,,, are such that for all effective classes C € V,,, one has
—roC? < (C- 50)2. (10.5)

Then
(a) Forany positive a, b, settingr = abroand & =y, (o), for all effective classes C € V, we similarly
have

-rC* < (C- &) (10.6)

(b) If ro is even, then for each n € Z (10.6) holds with r = ro, £ = T;; (€o), and for all effective classes
CeV,.
(c) Condition (10.5) of the theorem holds when ro = 8 and &y = —KXx,.

Here the condition on effectivity means “for P' x P! blown up at ro (respectively r) general points”.

Proof. (a) Let C be an effective class in V.. Since C is a class which is effective on P! x P! blown up at
r general points, then it is also an effective class when blowing up at special points. Thus, ¥, p(C) is
also an effective class in V.

We then have

—H(C, O L2 oW (C)Was Oy < W (C), (~K))2) 22 (C, )2,

or —rC? < (C - ¢)?, which was the inequality to be proved in this case.

(b) This follows from (10.6) and the fact that, by Theorem 3.1, T, preserves the intersection form
and the property of being effective.

(c) Let X3 denote P! x P! blown up at 8 general points. For the curve classes C,, = (4n(n — 1),
4n(n+1), 1 —2n?) of §5.2, we compute that C,% = -8 and C, - (—Kx,) = 8. Thus these curves, which,
by the arguments in §5.2 form the boundary of the effective cone, satisfy —8(C2) = (Cn- (=K XS))z. By

convexity, it follows that for all effective classes C € Vg we have —8C? < (C-(-K Xg))z. O
Remarks 10.5. (1) The bound (10.6) is homogeneous in C, but not in &. (2) We recall that —K, is a

square-zero nef class. Thus by Proposition 10.1 and Theorem 3.1 each class & = 7" (¥ , (=Kxy)) is
also a square-zero nef class, and is an inner class as long as ab # 1 (i.e., r # 8).
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(3) The form of the theorem is set up to be able to iterate the process. For instance, if 8 | r and if ¢
has many factors, one can choose different combinations of (a) and (b) to step from ry = 8 to r.

(4) Here is an illustration of how this bound works. In the diagram below, in Vg, one can see the
class &y = —Kx, the corresponding line f& (tangent to the square-zero cone), and the dashed curve, also
tangent to the square-zero cone at &y, which contains the boundary effective classes when ry = 8.

KXg
£ .
U3
1 —
KX24 C_| @ ® C;
Voa Vg

Figure 17. Illustration of the bound.

Pulling this back via 3,1, we obtain a class & in V,4, which is an inner square-zero nef class. The
dashed curve pulls back to a curve (the curve 24C? = (C - ¢)?) which bounds all effective classes. That
curve is tangent to the square-zero cone at &, and in a neighbourhood of ¢ stays very close to the cone.

The curve does a worse job of bounding the effective classes farther away from £. But, by applying
powers of T4 we can shift &, and the bounding curve, and obtain a family of bounds, which together
tightly restrict the possible Kx-positive effective curve classes.
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