POSITIVE SYSTEMS OF KOSTANT ROOTS

IVAN DIMITROV AND MIKE ROTH

ABSTRACT. Let g be a simple complex Lie algebra and let t C g be a toral subalgebra of g.
As a t-module g decomposes as
g=59 (Buer g)

where s C g is the reductive part of a parabolic subalgebra of g and R is the Kostant
root system associated to t. When t is a Cartan subalgebra of g the decomposition above
is nothing but the root decomposition of g with respect to t; in general the properties of R
resemble the properties of usual root systems. In this note we study the following problem:
“Given a subset S C R, is there a parabolic subalgebra p of g containing M = @,csg” and
whose reductive part equals s?”. Our main results is that, for a classical simple Lie algebra
g and a saturated S C R, the condition (Sym'(M))* = C is necessary and sufficient for
the existence of such a p. In contrast, we show that this statement is no longer true for
the exceptional Lie algebras F4, Eg, E7, and Eg. Finally, we discuss the problem in the case
when § is not saturated.

Keywords: Parabolic subalgebras, Kostant root systems, Positive roots.

1. INTRODUCTION

1.1. Let g be a simple complex Lie algebra and let h C g be a Cartan subalgebra. The root
decomposition of g with respect to b is

(1.1) g=b® (Daca g%)
where, for any o € b*,
g° :={r eg|[t,z] = a(t)r forevery t € h} and A ={aecb"\{0}[g"#0}.

The Borel subalgebras of g containing h are in a bijection with the positive systems AT C A,
i.e., the subsets A" satisfying the following properties: (i) A = At U (—A™), (ii) AT N
(—AT) = §, and (iii) o, 8 € AT, a + § € A implies o + § € A*. Positive systems of
roots represent a much studied and well-understood topic in the theory of semisimple
Lie algebras. Here is a particular problem that arises in various situations: “Given a
subset ® C A, determine if there is a positive system A containing ®”. The answer is
that such a positive system exists if and only if the semigroup generated by ® does not
contain 0. The aim of this paper is to address the analogous problem in a more general
situation.

1.2. Let t C g be a toral subalgebra of g, that is, a commutative subalgebra of semisimple
elements. As a t-module g decomposes as
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(1.2) §=59 (Dier g”)
where
g/ ={rcg|lt,r]=v(t)rforeveryt €t}, s=g¢° and R={vet\{0}|g” #0}

We refer to R as the t-root system of g, to the elements of R as the t-roots, and to the
spaces g” as the t-root spaces. Often we will drop the reference to t when it is clear from
the context.

To explain the relation between the decompositions (1.1) and (1.2), extend t to a Cartan
subalgebra . The inclusion t C b then induces a surjection h* — t*. The t-root system
R consists of the nonzero elements of the image of A under this map, and for any v € R
the t-root space g” is the sum of the h-root spaces g* such that o — v. Since t may be an
arbitrary complex subspace of h) we see that, in contrast to the case of an h-decomposition,
t-root spaces may be more than one-dimensional, and t-roots may be complex multiples
of one another. (For h-root systems, o, rav € A implies that r = +1.)

1.3. The subalgebra s is a reductive subalgebra of g and, moreover, s is a reductive part
of a parabolic subalgebra of g. Note that t is contained in Z(s), the centre of s. In the case
when t = Z(s) the properties of R and the decomposition (1.2) were studied by Kostant,
[K]. Kostant proved that, for every v € R, g” is an irreducible s-module and showed that
R inherits many of the properties of A. To recognize Kostant’s contribution, we refer to
the elements of R as “Kostant roots” in the title, however we use the shorter “t-roots” in
the text.

1.4. To describe and motivate the problem we address in this note, we assume in this sub-
section that t = Z(s). We caution the reader that not all of equivalences in the following
discussion hold when t # Z(s).

One introduces the notion of a positive system R™ C R exactly as above: (i) R =
RTU(=RY), () Rt N (-=R*") =0, and (iii) p,v € RY, p+v € R implies u+ v € R*.
Proposition VI.1.7.20 in [B] implies that positive systems in R are in a bijection with par-
abolic subalgebras of g whose reductive part is 5. The paper [DFG] contains a detailed
discussion (in slightly different terms) of positive systems R*. In particular, a result of
[DFG] implies that a subset 7 C R is a positive system if and only if there exists a linear
function ¢ : V. — R, V being the real vector space spanned by R, such that kero N7 = ()
and v € T if and only if ¢(r) > 0. Note that every positive system R* is saturated, i.e.,
veR Y reQrandry € Rimply rv € RT.

In a previous paper [DR] we came across the analogue of the problem mentioned above:
“Given a subset S C R determine whether there is a positive system R* containing S”.
An obvious necessary and sufficient condition (equivalent to the existence of the linear
function ¢ above) for the existence of a positive system R* containing S is the require-
ment that the semigroup generated by S does not contain 0. Unfortunately, this combi-
natorial condition is not easy to verify. On the other hand, in our intended application in
[DR], the condition (Sym'(M))* = C where M = @,¢s g”, arose naturally in the context
of Geometric Invariant Theory. This latter condition is necessary for the existence of a
positive system R* as above. To see this, note that (Sym'(M))® always contains at least
the constants C, the inclusion t C s implies (Sym'(M))* C (Sym'(M))*, and the condition
that the semigroup generated by S does not contain 0 is equivalent to (Sym'(M))' = C.
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In fact, there is a stronger necessary condition for S to be contained in a positive system.
Since RT is saturated, if S C Rt then S ¢ R*, where S denotes the saturation of S,
ie, S = Q:SNR. Set M := @,.59". Itis easy to see that (Sym'(M))! = C if and
only if (Sym'(M))' = C and that we have the inclusions (Sym'(M))* C (Sym (M))* C

(Sym'(M))". In other words, if S is contained in a positive system then (Sym'(M))* = C.

The goal of this note is to investigate whether either of the conditions (Sym'(M))* = C
or (Sym'(M))* = C is sufficient for the existence of a positive system R* containing
M. It turns out that (Sym'(M))* = C is sufficient if and only if g is of type A or D and

(Sym'(M))® = C is sufficient if and only if g is classical or g = Go.

Using the connection between positive systems and linear functions ¢ (valid when t =
Z(s)), finding a positive system containing M is the same as finding a parabolic subal-
gebra p( containing M with reductive part s, and we will state our main result in this
form. We will also state whether S is saturated or not, rather than using the notation M.
In the general case when t # Z(s), the existence of positive systems containing M is not
equivalent to the existence of such a parabolic p . However, our result, as stated below
in terms of p 4, is still valid in this case.

1.5. Main Theorem: Let g be a simple Lie algebra, t C g a toral subalgebra, s the central-
izer of t, R the set of t-roots, S C R, and set M = P, cs5¢".

(a) Assume that (Sym'(M))® = C. If g is of type A or D or if S is saturated and g is of
type B, C, or G, then there exists a parabolic subalgebra p  with reductive part s
such that M C p .

(b) If g is not of type A or D, there exist S satisfying the condition that (Sym' (M))* = C
such that no such parabolic pr( exists. Moreover, if g is F,, Eg, E7, or Eg, then S can
be chosen to be saturated.

1.6. Reduction to t = Z(s). In the main theorem we do not require that t = Z(s).
However, the general case reduces to this case as follows: Set t' := Z(s) and let R’ be the
set of t'-roots. The natural projection 7 : (¢)* — t* induces a surjection of R’ onto R. Set
S’ := 7 1(8) and notice that

M = EBVGS g” == EBV’ES’ 91/7
and that if S is saturated, so is S’. Moreover, the centralizer of t' is again 5. Thus in proving
that (Sym'(M))* = C is a sufficient condition we may assume that t = Z(s). In the cases

when we are proving that (Sym'(M))* = C is not sufficient, we provide examples in
which t = Z(s).

For the rest of the paper we assume that t = Z(s).

1.7. Organization and Conventions. In section 2 we describe explicitly all t-root systems
and the respective t-root spaces for each of the classical simple Lie algebras. In section
3 we first prove the existence of p,( when g is classical and S is saturated. We then
handle the case of non-saturated S in types A and D, and finish the section by giving
examples in types B and C of non-saturated S satisfying the condition (Sym'(M))* = C
for which no parabolic subalgebra p exists. In section 4 we first treat the case when
g is of type G, proving the result when S is saturated and giving an example where S
is non-saturated. We then construct examples in types F,, Es, E;, and Eg of saturated S
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for which (Sym'(M))® = C and for which no parabolic subalgebra p,, exists. That is, in
section 3 we establish all parts of the theorem dealing with classical Lie algebras, and in
section 4 we establish all parts dealing with the exceptional Lie algebras.

Throughout the paper we work over the field of complex numbers C. All Lie algebras,
modules, etc., are over C unless explicitly stated otherwise. The notation C includes the
possibility of equality.

2. t-ROOTS AND t-ROOT SPACES FOR CLASSICAL LIE ALGEBRAS g.

2.1. First we describe the parabolic subalgebras and the corresponding sets R for the
classical Lie algebras. For convenience of notation we will work with the reductive Lie
algebra gl,, instead of sl,,. For the rest of this section g is a classical simple Lie algebra of
type B, C, or D or g = gl,,. Moreover, we fix a Cartan subalgebra h C g. For a compre-
hensive source on simple complex Lie algebras we refer the reader to [B]. For a treatment
of parabolic subalgebras of g containing a fixed Cartan subalgebra §, the reader may also
consult [DP].

2.2. Let P = {I4,...,I;} be a partition of {1,...,n}. We say that P is totally ordered if
we have given a total order on the set {I;,...,I;}. We write P(i) for the part of P which
contains i. The inequalities P(i) < P(j) and P(i) = P(j) are taken in the total order
of the parts of P. For the standard basis {cy,...,c,} of h* we denote the dual basis of
by {h1,...,h,}. A total order on the set {£01,...,£d;} is compatible with multiplication by
—1if, for z,y € {£d1,...,+0}, < y implies —y < —z. To simplify notation we adopt
the convention that B, respectively C;, is a subalgebra of g = B,,, respectively g = C,,
isomorphic to A; and whose roots are short, respectively long roots, of g. The subalgebras
Dy = Ay @ A, and D3 = A; of D,, have similar meaning.

Let g be of type X,, = A, B,,, C,,, or D,, and let s be a subalgebra of g which is the reductive
part of a parabolic subalgebra of g. Every simple ideal of s is isomorphic to A, or X, for
some 7. Furthermore, if g is not of type A,, s has at most one simple ideal of type X,.
For g of type X,, = B,,, C,, or D,, the parabolic subalgebras of g are split into two types
depending on whether their reductive parts contain (Type II) or do not contain (Type ) a
simple ideal of type X, (including By, C;, Dy, or D).

In the description of the combinatorics of the simple classical Lie algebras below, the
formulas for their parabolic subalgebras p containing a fixed reductive part s look very
uniform (e.g. 11). In some instances this is misleading since the formulas do not explicitly
indicate the subalgebra s which, however, is an integral part of the structure of p.

We now list the combinatorial descriptions of the parabolic subalgebras and related data
in the classical cases.

23.g=gl,.

1. Therootsof gare: A ={g; —¢; |1 <i#j<n}
2. Parabolic subalgebras of g are in one-to-one correspondence with:

totally ordered partitions P = (I;,...,I;) of {1,...,n}.
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Given a totally ordered partition P,

The roots of pp are {e; — ¢; | i # j,P(i) =2
The roots of sp are {¢; —¢; |i # 7, P(i) =
sp = @, 55, where s}, = gl

The Cartan subalgebra of sk is spanned by {h;}er,
The roots of sb are {e; — ¢, |j # 1 € I;}.

tp hasabasis {t1,.... ¢} with t; = 1, 30,1 by

P(5)}
PG}

P DI

If {61,...,0x} is the basis of t* dual to {¢4, ..., } then

10. Forv = ¢; — §; € R, g = V; ® V}, where V; and V7 are the natural sih-module
and the dual of the natural s},-module respectively, all other factors of sp acting
trivially.

11. The parabolic subalgebras of g whose reductive part is sp are in a bijection with
the ordered partitions Q of {1,...,n} whose parts are the same as the parts of P
or, equivalently, with total orders on the set {61, ..., 0x}.

24.g=B,

1. Theroots of g are: A = {x¢; ¢, ;|1 < i # j < n}.
2. Parabolic subalgebras of g are in one-to-one correspondence with:

Type I: pairs (P,0), where P = (Ij,...,];) is a totally ordered partition of
{1,...,n}and o: {1,...,n} — {£1} is a choice of signs.

Type II: pairs (P, o), where P = (Iy,1;,...,1;) is a totally ordered partition
of {1,...,n} with largest element Iy and o: {1,...,n}\Iy — {£1}is
a choice of signs.

In Type [:

3. The roots of p(p . are

{o(Wei —a()e; | 175, P@) 2P ULa(i)e + o), o(i)e | i # j}
4. The roots of sp ) are {o(i)e; — o(j)e; |i # j, P(i) = P(j)}
5 5(P.o) = Di 5%7),0), where 527)’0) =~ gl
6. The Cartan subalgebra of s5, is spanned by {o(j)h;}je1,
7. The roots of s5 are {c(j)e; —o(l)e; | j #1 € L;}.
8. t(p,) hasabasis {t1,.... 1} with t; = 1 371 o (j)hy.

If {61,...,0;} the basis of t* dual to {t4,...,t;} then

9. R = {6 £6;,£0;|1 <i#j<kpu{£25]|L| > 1}
10. Forv e R,
(@) g" =V @V ifv =44, £,
(b) g¥ = VFif v = 46;, and
(c) g¥ = A?°VEif v = 420,



11.

where V" and V; respectively are the natural 5%73 »-module and its dual, and all
other factors of s5p ) act trivially.

The parabolic subalgebras of g whose reductive part is sp , are in a bijection with
the pairs (Q, 7) such that the parts of Q are the same as the parts of P and o, =
+7;, for every part I; or, equivalently, with total orders on the set {£6;,..., £}
compatible with multiplication by —1.

In Type II:

3.

If {5,,.

10.

11.

The roots of p(p . are
{U(i)€i — O'(j)éfj | 7 # j,P(l) = P(]) < Io} U {:l:&fz + €5, :l:gi |Z 7£ j,l S Io,j S Io}
U{O'(Z)€l + U(j)gj,U(i>€i | 7 7& ],Z Q Io,j Q Io} U {0<2)€z + €j ’Z € Ig,j S Ig}

. The roots of s(p , are

{o(i)e; — o(j)e; |i # 4, P(i) = P(j) < Ty} U{de; £, Le; i # j € I}

- 5(P.o) = BiS(p ., Where s, = Byj, and s ) = glyp,| for i > 0.
. The Cartan subalgebra of s% is spanned by {h;};c1, for i = 0 and {o(j)h;};e1, for

1> 0.

. The roots of s% are {+e; £, +¢;|j #1 €Iy} fori =0and {o(j)e; —o(l)e;|j £l €

I;} fori > 0.

. tpo) has abasis {t,..., {;} witht; = 75 37,1 a(j)hy.

.., 0} is the basis of t* dual to {t1, ..., t;} then

Forv e R,
@ g" = V7@ Viifv ==+6 44,
(b) g = VF ® Vyif v = +6;, and
(c) g¥ = A°VFif v = 420

where V; and V; denote the natural 5(p ,y-module and its dual respectively for i >
0, Vo denotes the natural 5‘()7376)-m0du1e, and all other factors of s5p ) act trivially.

Note that, if 5(p ,) = B; = sl,, then V| is the three dimensional irreducible s(p .-
module.

The parabolic subalgebras of g whose reductive part is sp , are in a bijection with
the pairs (Q, 7) such that the parts of Q are the same as the parts of P, I is the
largest element of Q, and o5, = £y, for every part I; # I or, equivalently, with
total orders on the set {+d, ..., %0, } compatible with multiplication by —1.

25.g=0C,

1.
2.

The roots of g are: A = {£¢; ¢, £2¢; |1 < i # j < n}.
Parabolic subalgebras of g are in one-to-one correspondence with:

Type I: pairs (P, o), where P = (I, ...,1;) is a totally ordered partition of
{1,...,n}and o: {1,...,n} — {£1} is a choice of signs.
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Type II: pairs (P,o), where P = (I, 11, ..., ;) is a totally ordered partition
of {1,...,n} with largest element Iy and o: {1,...,n}\Iy — {£1}is
a choice of signs.

In Type I:

3. The roots of p(p . are

{o(i)ei —o(h)e; i # 5, P(i) 2 PG)} U{o(i)ei +0(j)ej, 20(1)ei i # j}
. The roots of s(p ) are {o(i)e; — o(j)e; |i # j,P(i) = P(j)}.
. 5(po) = By 5%73,0), where 5’&7)’0) = gly,)-
. The Cartan subalgebra of s% is spanned by {c(j)h;}jer,-
. The roots of s{;, ,, are {o(j)e; — o ()= |j #lel}.
tp o) has abasis {t1,...,1} witht; = |1 07 2ujer, 0 ()R

90\1 o T

If {61,...,0x} is the basis of t* dual to {t1,. .., } then

9. R ={£06; £6,;,£25; |1 <i#j<k}
10. Forv e R,
(@) g" =V @ Viif v =£6 +4;.
(b) g” = Sym? V" if for v = +24;.
where V' and V; are the natural 5€P7U)—module and its dual, and all other factors
of 5(p ) act trivially.
11. The parabolic subalgebras of g whose reductive part is sp , are in a bijection with
the pairs (Q, 7) such that the parts of Q are the same as the parts of P and o, =

+7);, for every part I; or, equivalently, with total orders on the set {£6,,..., £}
compatible with multiplication by —

In Type II:

3. The roots of p(p ) are
{o(i)e; —a(j)ejlt # j,P(i) 2 P(J) < Loy U{te; £ej,£2¢;|i # j,i € Ly, j € Ip}U
{o(i)e; +0(j)ej,0(i)2e |t # j,i 1o, j € Lo} U{o(i)ei te;|i € 1o, 5 € Lo}
4. The roots of s(p , are
{o(i)e; —a(j)ejli # j,P(i) =P(j) < Lo} U{xe; £e;,£2¢;|i # j € Ip}.
5- 5(P.o) = Do 5(p o, Where sy, = Cjy, and s{,, ) = gljy,| for i > 0.
6. The Cartan subalgebra of 52?,0) is spanned by {%;}je1, for i = 0 and {o(j)h;};er, for
i> 0.
7. TITeOroots of 5fp70) are {te; ¢, +2¢;|j#l € lp} fori =0and {o(j)e; —o(l)e; | j #
l €1} fori > 0.
8. t(p,q) hasabasis {t1,.... 65} witht; = 15371 0(j)h;

If {41, ...,0x} is the basis of t* dual to {¢y,...,t;} then

9. R ={%0; £9;,%+0;, £25; |1 <i #j < k}.
10. Forv e R,

(@) g"%\/f@)\/fifz/:i@iéj,

(b) g¥ = VF ® Vyif v = £,



11.

(c) g is isomorphic to Sym? V§ if v = +24;,

where V;" and V; denote the natural 51('P7U)—module and its dual for i > 0, V, is the
natural s?p »-module, and where all other factors of §(p ) act trivially. Note that,
if 5¢p o) = C1 = sly, then V| is the two dimensional irreducible s ,)-module.

The parabolic subalgebras of g whose reductive part is sp , are in a bijection with
the pairs (Q, 7) such that the parts of Q are the same as the parts of P, I is the
largest element of Q, and o5, = £, for every part I; # Ij or, equivalently, with
total orders on the set {+d, ..., 0, } compatible with multiplication by —1.

2.6. g = D,,.

1.
2.

The roots of gare: A = {£¢;, £ ¢;, |1 <i # j < n}.
Parabolic subalgebras of g are determined by:

Type I: pairs (P, o), where P = (Ip, 11, ..., ;) is a totally ordered partition
of {1,...,n}and o : {1,...,n} — {£1} is a choice of signs.

Two pairs (P’,0’) and (P”,0”) determine the same parabolic sub-
algebra if and only if P’ and P” are the same ordered partitions
whose maximal part I contains one element and ¢’ and ¢” coin-
cideon {1,...,n}\Io.

Type II: pairs (P,0), where P = (I, 11,...,];) is a totally ordered parti-
tion of {1,...,n} with largest element I, such that |Io| > 2 and
o:{1,...,n}\Ip — {£1} is a choice of signs.

In Type L:
3. The roots of p(p.») ate {o(i)e; — o(7)e; i # 4, P(i) < P()} Uloi)e + o(h)z i £ )
4. The roots of 5(p o) are {o(t)e; — o (j)e; i # j, P(1) = P(j)}-
5- 5(P,0) = Di 5?7,70), where 527370) =~ g[‘m.
6. The Cartan subalgebra of s}, is spanned by {o(j)h;} jer,
7. The roots of 5(,, ,, are {o(j)e; — o(l)e; | j # 1 € Li}.
8. t(p,,) hasa ba51s {tl, oty withty = 537 0 (5)hy.
If {61,...,0x} is the basis of t* dual to {¢4, ..., } then
9. R={£0+£;|1<i#j<kPu{£24||L]>1}.
10. Forv e R,

11.

(b) g¥ = A2VF if v = £26,.

where V" and V; are the natural 52P70)-m0dule and its dual, and all other factors
of 5(p ) act trivially.

Every parabolic subalgebra of g whose reductive part is sp , corresponds to a pair
(Q, 1) such that the parts of Q are the same as the parts of P and oy;, = %7y, for
every part I; or, equivalently, to a total order on the set {£4;, ..., £d;} compatible
with multiplication by —1. Note that this correspondence is not bijective since two
different total orders may determine the same parabolic subalgebra.
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In Type IL:
3. Roots of pp o) =
{o(i)e; —a(j)e; | i # 4, P() 2 P(y) <L} U{te;te;|i#j,i€ly,jely}
Uo(i)e; +a(f)ej|i# ji € 1o, €10 U{o(i)e; £ej]i &€ 1o,j € Lo}
4. Roots of 5p o) = {0 (i)e; — o(j)e;|i # j, P(i) = P(j) < Loy U{xei te;|i#j € o}
5y = D 527370), where 5‘()7370) > Dy, and 527370) = gly,, for i > 0.

6. Cartan subalgebra of s{;, ,, is spanned by {h;} e, for i = 0 and by {o(j)h;} 1, for
1> 0;

(914

7. T00ts of 5(;, ) are {+e; £e1[j #1 € Iy} fori = 0and {o(j)e; —o(l)e; | j # | € 1;} for
it > 0.

8. t(p,q) hasabasis {t1,.... tx} with t; = 15 371 o (j)hy.
If {41, ...,0x} is the basis of t* dual to {¢4,...,t;} then

10. Forv e R,

(@) g" =V @V ifv = 0, £ 4,

(b) g" 2V @V, if v = £,

(€) g¥ 2 A’V if v = £24;,
where V" and V; denote the natural 52P70)-m0dule and its dual for i > 0, Vj is
the natural 5‘()P’U)-module, and where all other factors of s(p ;) act trivially. Note
that, if 5p ;) = Dy = sl, @ sly, then Vj is the (external) tensor product of two two-
dimensional irreducible sl,-modules; if 5¢p ;) = D3 = sl4, then V the six dimen-

sional irreducible s(p ,)-module which is the second exterior power of the natural
representation of sl,.

11. The parabolic subalgebras of g whose reductive part is 5 ) are in a bijection with
the pairs (Q, 7) such that the parts of Q are the same as the parts of P, I is the
largest element of Q, and oy;, = %7y, for every part I; or, equivalently, with total
orders on the set {£4y,...,+0x}.

3. PROOF OF THE MAIN THEOREM WHEN g IS CLASSICAL.

3.1. Existence of p,( when S is saturated. The idea is simple: using S we define a binary
relation < on the set {;,...,0;} (respectively on {+£d, ..., %0, }) and using the fact that
(Sym'(M))* = C we prove that < can be extended to a total order (respectively, to a total
order compatible with multiplication by —1). The proof follows the same logic in all cases
but is least technical in the case when g = gl,. For clarity of exposition we present the
proof for g = gl, first. Throughout the proof the partition P (and the choice of signs o)
are fixed and instead of sp (or s(p ) and s (or 5’@70)) we write s and s’ respectively.

First we consider the case when g = gl,,. Define a binary relation < on {01, ds,...,d;} by
setting
(3.1) 6; =0, if v=4§-0,€8.
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The existence of a parabolic subalgebra p,, with reductive part s and containing M is

equivalent to the existence of a total order on {41, Js, . . ., d; } which extends <.

Note that < can be extended to a total order on {61, 0o, ...,d;} if and only if there is no
cycle

(3.2) 0iy = 03y < -+ <05 <04

Assume that < cannot be extended to a total order on {d;,--- ,d;} and consider a cycle
(3.2) of minimal length. Then vy = 6;, — d;,, 2 = 6, — 04y, -+ , 11 = J;, — 6, is a sequence

of distinct elements of S. Hence g"* © g* @ - - - @ g* is a submodule of M and Sym'(g"* &
g @ --- @ g") is a submodule of Sym' (M) containing g"' ® g**> ® - - - ® g*. On the other
hand,

g ®g7R--®g" (Vi ® Vi) ® (Vi ® V) ® -+ @ (V;, @ V)
(Vil ®V’;k1) ® (V'LQ ® V’Tg) ® T ® (vll ®V’TZ)7

where the lower index of a module shows which component of s acts non-trivially on
it. Since, for every 1 < j <[, V;, ® V;‘j contains the trivial s%-module, (3.3) shows that
9" ® g ® -+ ® g” contains the trivial s-module which contradicts the assumption that
(Sym'(M))® = C. This contradiction shows that < can be extended to a total order on the
set {01, -, dx}, which completes the proof when g = gl ,.

~
~

(3.3)

Next we consider the case when g # gl,, i.e., we assume that g is a simple classical Lie
algebra not of type A. Define a binary relation < on {=+, §;, £0s,- - - , £J; } by setting

31'62' < Sj5j7 7 7éj if v= Sifsi - Sjéj es

) - s;0; when g=B,org=D,, Typell
$i0i < —5i0; if v= { 2s;0; when g=C,org=D,, Typel

(3.4) s

where s;, s; = . Note that < is compatible with multiplication by —1.

The existence of a parabolic subalgebra p,, with reductive part s and containing M is
equivalent the existence of a total order on {£4;, +05, - - - , £J5 } compatible with multipli-
cation by —1 which extends <.

Note that < can be extended to a total order on {£d;, £6,, - - - , 05 } compatible with mul-
tiplication by —1 if and only if there is no cycle

(3.5) 8152'1 < Sg(si2 << sléil < 815@'1
Assume that < cannot be extended to a total order on {£d;,--- ,+d;} compatible with
multiplication by —1 and consider a cycle (3.5) of minimal length. It gives rise to a se-
quence vy, - - -, € S induced from (3.4). More precisely,
sjéi]. — Sj+15ij+1 lf 5ij 7é 6ij+1
vj = 5;0i, it 6, =0;,,8=B,org=D,, Typell
25;0;; it 6;;, =0d;,,,8=C,org=D,, Typel,

where s, = sy and §;,,, = J;,.

i41
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The minimality of (3.5) implies that every element v of R appears at most twice in the
sequence vy, Vs, ..., ny. Moreover, if v = £, or v = +2¢;, then v appears at most once in
this sequence.

First we consider the case when §;; # §;,,, for every j. In this case v; = s;0;; — s;410;,,, for
every j. Let \y,..., A\, be the elements of R that appear once in the sequence vy, 15, ..., 1,
and let 1, ..., be those that appear twice. Clearly, | = s + 2t. Moreover gM & - -- &
g D gt @ - ® g is a submodule of M and Sym'(gh @ - B g D gl @ --- Dght)isa
submodule of Sym'(M) containing

(3.6) gAl Q- R gAS ® Sym2 'R ® Sym2 gt

We will prove that the s-module (3.6) contains the trivial s-module which, as in the case
when g = gl,, will complete the proof.

Indeed, if ;1;; = v; then

Sym® g = Sym* g% = Sym®(V;’ @ V; ™) =
Sym? V ' ® Sym? V., 7T @ AQVSJ ® AQV_SJ+1 D Sym? ij ® Sym? V, 7+,

Z+1 ’L+1 l+1

(3.7)

Replacing in (3.6) each term of the form Sym? g"' with the corresponding term Sym? ij ®

Sym?V,_ ijl“ from (3.7), we obtain another submodule of (3.6). This latest submodule is
a tensor product of factors of the form Vif and Sym? Vi Moreover, the component V;

appears in one of the following groups:
VieVieV, @V;, Vi @ Vi ®Sym?V;, V; @ V;7 @ Sym® V', Sym® V)" ® Sym*V; .
Since each of them contains the trivial s‘-module, we conclude that (3.6) contains the

trivial s-module.

Finally, we consider the case when §;, = ¢;,,, for some 1 < [. (The minimality of the

cycle (3.5) implies that there are at most two such 1nd1ces but we will not use this obser-

vation.) We split the roots 14, 14, ..., v into two groups A1, Aa, ..., As and g, plo, . . ., f1¢ in
the following way: If v; = s;0;, — s;110;,,,, then we put v; in the first or second group
depending on whether it appears once or twice in vy, 15, ..., v, if v; = 5;0;;, we put v; in

the second group, and if v; = 2s;6;,, we put v; in the first group. Set I := s + 2¢; note that
U#1.

From this point on the argument repeats the argument above with the following modifi-
cations:

(i) We consider Sym" (gh @--- @ g ®g" @--- @ g") in place of Sym'(gM @ - - - B g™ @
gm DD g,ut>
(i) In the case when g = D,, and (P, o) is of Type I, we replace Sym* V ' ®Sym? V,

—Sj+1
1541

by Az\/sj ® /\2\/_83+1 in (3.7). Correspondingly, V, appears in one of the following
groups

Vi@ VIV @V, VI Vi @ A2V), Vi @ Vi @ A2V, A2V @ A%V,

Exactly as above, for i > 0, each of the groups above contains the trivial module s'-
module. Finally, if g = B, or g = D,, and (P, 0) is of Type II, V, appears in groups
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Sym?® Vy (one for each v; = s;4;,). Since in these cases s = By, or s° = Dy, Sym* V,
contains the trivial s’-module. This completes the proof. O

We now turn to the case that S is not saturated.

3.2. Existence of p, in types A and D. If g is of type A there is nothing to prove since
every subset R is saturated and the statement is equivalent to the first part of this section.
The situation is the same when g = D,, and (P, o) is of type L

Let g = D, and let (P, o) be of type II. We will extend the proof of part (a) to this case.

First we note that —24; € S and §; € S imply that (Sym'(M))* # C. Indeed, A*V; &V @V,
is a submodule of M and hence we have the following inclusions of modules:

Sym®(A2V; @ Vi ® Vo) C Sym (M)
(3.8) Sym*(A%2V;) @ Sym*(V;r @ Vo) C Sym®(A%V; @ V) ® V)
SCAVE 2 S22V, ¢ Sym* (VS @ Vo) , SZAV, C Sym?(A%V;),

where S??W denotes the result of applying the Schur functor S©2 to W. The above in-
clusions along the fact that S22V, contains the trivial s°-module imply that (Sym®(M))® #
0. A symmetric argument shows that 20, € S and —J; € S imply that (Sym'(M))* # C.

From this point on the proof follows the proof of part (a) with the following modifications:

(i) In the definition of < we use s;0; < —s;0; if s;0; € S or 2s;0; € S.

(ii) If s;0, < —s;0;, v; denotes the corresponding element of S above; if there are two
such elements, we set v; := s;0;.

(iii) In splitting v1, 14, ...,y into two groups Ai, A, ..., Ay and py, pto, ..., 1, we put a
root v; from (ii) into the first group if v; = 2s,6; and in the second group otherwise.

(iv) We consider Sym* (g" @--- @ g @ g @ - -- @ g™) in place of Sym'(gh @--- D gt @
g‘“ @D - @gm)'

(v) We replace the module in (3.6) by Sym* g ®- - -®@Sym? g @Sym? g" ®- - -@Sym* g,

Using the inclusions (3.8) we conclude that (Sym'(M))* # C. This completes the proof
when g = D,,. O

3.3. Examples in types B and C when M is not saturated. We will now construct exam-
ples in types B and C of s and S such that (Sym'(M))* = C and for which there does not
exist a parabolic subalgebra p of g with reductive part s and M C p,.

If g = B,,, consider s = s(p ), where P is the partition of type I

(1,2} < {3} < {4} < < {n}
and o (i) = 1is constant. Then s' = gl,. Moreover, U := g% is the gl,-module which is the
natural representation of sl; and on which the identity matrix of gl, acts as multiplication
by —1 and W := g*" is the one dimensional gl,-module on which the identity matrix acts
as multiplication by 2. Let S := {—6;,20,}. Then M = U @ W and

Sym® M = @®; Sym’ U ® Sym* 7 W.

Note that Sym’ U®Sym* ™/ W is the irreducible sl,-module of dimension j+1 on which the
identity matrix of gl, acts as multiplication by 2k — 3j. This proves that (Sym (M))* = C
but there is no parabolic subalgebra p A of g with reductive part s such that M C p .

12



If g = C,,, consider s = 5(p ), where P is the partition of type II

{1} < {2 < {8} <--- < {n}
and o(i) = 1 is constant. Then s° = C; = s, and s! = gl;, i.e. s° @ s! = gl,. Moreover,
setting U := g~ and W := g?, we arrive at exactly the same situation as in the case
g = B,, above. 0J

4. PROOF OF THE MAIN THEOREM WHEN g IS EXCEPTIONAL.

4.1. First we recall some standard notation following the conventions in [B]. If g is a
simple Lie algebra of rank n we label the simple roots of g as «;,...,, as in [B]. The
fundamental dominant weight of g are denoted by w;, ..., w,. If —ay is the highest root,
then ag, a4, . .., a,, label the extended Dynkin diagram of g.

4.2. Existence of p,( in type G, when S is saturated. Let g = Go. Let S be a saturated
subset of R and let M = @®,csg”. If (Sym'(M))* = C, then there exists a parabolic subal-
gebra p ¢ of g with reductive part s such that M C p . Indeed, if 5 is a proper subalgebra
of g which is not equal to b, then all elements of R are proportional and there is nothing to
prove. If s = b, then the spaces g” are just the root spaces of g which are one dimensional
and again the statement is clear. O

4.3. Example in type G, when S is not saturated. On the other hand, let s = gl, C g be
the parabolic subalgebra of g with roots +ay. Then R = {+4, +-26, 35 }. Moreover, g**’ is
the irreducible s-module of dimension 2, 1, or 2 (corresponding to k = 1, 2, or 3) on which
a fixed element in the centre of s acts as multiplication by +k. Then, for S = {—0, 24},
setting U := g~% and W := g%, we arrive at exactly the same situation as at the end of
Section 2 above. In particular, (Sym'(M))® = C but there is no parabolic subalgebra p
of g with reductive part s such that M C p . O

4.4. Examples in types F,, Es, E7, and Eg with S saturated. Let g = F,, Eg, E7, or Es.
We will construct a saturated set S such that (Sym'(M))* = C but there is no parabolic
subalgebra p of g with reductive part s such that M C pp.

Denote the rank of g by n. Consider the extended Dynkin diagram of g. Removing the
node connected to the root ay we obtain the Dynkin diagram of a semisimple subalgebra
m@ ¢ of g of rank n where m = A, is the subalgebra of g with roots {+«,} and ¢ is the sub-
algebra if g with simple roots obtained from the simple roots of g after removing the one
adjacent to «y. More precisely, we remove the roots ay, as, aq, ag when g = Fy, Eg, E7, Eg
respectively. The respective subalgebras ¢ C g are isomorphic to ¢ = C;, A5, Dg, or E7
respectively. As an m-module g decomposes as

(4.1) g=(Ad, ®tr,) & (trp, ® Ad,) & (V ® U),

where Ad,, and Ad, are the adjoint modules of m and ¢ respectively; tr,, and tr, —the re-
spective trivial modules; V is the natural m = A;—module; and U is the c-module whose
highest weight is the fundamental weight of ¢ corresponding to the simple root of ¢ linked
to the removed node of the extended Dynkin diagram of g. In fact, for g = Fy4, E¢, E7, Eg,
the highest weight of ¢ is ws, w3, we, w7 respectively. Here the weights of U are given ac-
cording to the labeling conventions of ¢. For example, if 3, 55, 85 are the simple roots of
¢ = C3 in the case when g = F4, we have 3, = ay, 2 = a3, and (3 = as.
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Set s = m + h. From the construction of s we conclude that t = b, the Cartan subalgebra
of ¢. Furthermore, (4.1) implies R = A, Usupp U, where supp U denotes the set of weights
of U and, for v € R the s = m © h—module g” is given by

v~ ) tm@rifv €A,
Vv ifvesuppU.

Let w be the highest weight of U and write w = ¢; 81+ - - + ¢,—18,—1 where 4, ..., ,_1 are
the simple roots of cand ¢; € Q.. Set S = {~w, B1,..., 8,1} Then M = g* @ (@] ¢%)
and
Sym* M = @ Sym’ g7 ® Sym™ g”' @ - - @ Sym’~ g1,
JHitetin_1=k

Moreover, Sym’ g=* ® Sym™ g”* ® --- ® Sym’! g’ is an irreducible m—module which
is not trivial unless j = 0 and on which b, acts via —jw + @181 + -+ + i,_18,,.- This
implies that, for & > 0, (Sym" M)* = 0 and hence (Sym' M)* = C. On the other hand, the
equation w = ¢4 + - - + ¢—10,—1 implies that there is no parabolic subalgebra p, of g
with reductive part s such that M C pa. O

REFERENCES

[B] N. Bourbaki, Eléments de mathématique. Groupes et algebres de Lie, Ch. IV — VI, Herman, Paris 1968,
288 pp.

[DEG] I Dimitrov, V. Futorny, and D. Grantcharov, Parabolic sets of roots, Contemp. Math. 499 (2009), 61-74.

[DP] I Dimitrov and I. Penkov, Weight modules of direct limit Lie algebras, IMRN 1999, No. 5, 223-249.

[DR] I Dimitrov, M. Roth, Cup products of line bundles on homogeneous varieties and generalized PRV compo-
nents of multiplicity one, to appear in Algebra & Number Theory.

[K] B. Kostant, Root systems for Levi factors and Borel-de Siebenthal theory, Symmetry and Spaces, 129-152,
Progr. Math., 278, Birkh&user Boston, Inc., Boston, MA, 2010.

DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN’S UNIVERSITY, KINGSTON, ONTARIO, K7L
3N6, CANADA

E-mail address: dimitrov@mast.queensu.ca

E-mail address: mikeroth@mast .queensu.ca

14



	1. Introduction
	2. t-roots and t-root spaces for classical Lie algebras g.
	3. Proof of the Main Theorem when g is classical.
	4. Proof of the Main Theorem when g is exceptional.
	References

