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The Affine Stratification Number and
the Moduli Space of Curves

Mike Roth and Ravi Vakil

Abstract. We define the affine stratification number asn X of a scheme X.

For X equidimensional, it is the minimal number asn X such that there is

a stratification of X by locally closed affine subschemes of codimension at
most asn X. We show that the affine stratification number is well-behaved,

and bounds many aspects of the topological complexity of the scheme, such

as vanishing of cohomology groups of quasicoherent, constructible, and `-adic
sheaves. We explain how to bound asn X in practice. We give a series of con-

jectures (the first by E. Looijenga) bounding the affine stratification number of

moduli spaces of pointed curves, in which the filtration by number of rational
components (which first arose in [4]) plays a role. This investigation is based

on work and questions of Looijenga.
One relevant example (Example 4.9) turns out to be a proper integral

variety with no embeddings in a smooth algebraic space. This one-paragraph

construction appears to be simpler and more elementary than the earlier ex-
amples, due to Horrocks [9] and Nori [12].

1. Introduction

The affine stratification number of a scheme X bounds the “topological com-
plexity” of a scheme. For example, it bounds the cohomological dimension cd X of
X, which is the largest integer n such that Hn(X,F) 6= 0 for some quasicoherent
sheaf F (Prop. 4.12). Similarly, the cohomology of any constructible or `-adic sheaf
vanishes in degree greater than asnX+dim X (Proposition 4.19). We expect that if
the base field is C, then X has the homotopy type of a finite complex of dimension
at most asnX +dim X (Conjecture 4.21), but have not completed a proof. (Unless
otherwise stated, all schemes and stacks are assumed to be separated and of finite
type over an arbitrary base field.)

A related, previously studied invariant is the affine covering number acn X,
which is one less than the minimal number of affine open sets required to cover
X. The affine stratification number is bounded by acnX, is better behaved (e.g.,
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is bounded by dimension, cf. Example 4.8), and has the same topological conse-
quences. We know of no interesting consequences of bounded acn that are not
already consequences of the same bound on asn.

For equidimensional X, the definition is particularly simple.

1.1. Definition. The (equidimensional) affine stratification number of an
equidimensional scheme X is the minimal number easn X such that there is a (fi-
nite) stratification of X by locally closed affine subschemes of codimension at most
easnX.

This is the form most likely to be of interest. The appropriate generalization
to arbitrary schemes is only slightly more complicated.

1.2. Definition. An affine stratification of a scheme X is a finite decomposi-
tion X =

⊔
k∈Z≥0,i Yk,i into disjoint locally closed affine subschemes Yk,i, where for

each Yk,i,

(1.1) Y k,i \ Yk,i ⊆
⋃

k′>k,j

Yk′,j .

The length of an affine stratification is the largest k such that ∪jYk,j is nonempty.
The affine stratification number asn X of a scheme X is the minimum of the length
over all possible affine stratifications of X.

The inclusion in (1.1) refers to the underlying set. We do not require that
each Yk,i be irreducible. We also do not require any relation between k and the
dimension or codimension of Yk,i in X. We will see however (Theorem 3.1) that it
is always possible to assume that the stratification has a very nice form.

Strictly speaking, the term “stratification” is inappropriate, as Y k,i \ Yk,i need
not be a union of Yk′,j : let X be the coordinate axes in A2, Y0,1 the x-axis, and
Y1,1 the y-axis minus the origin. However, Theorem 3.1(a) shows that we may take
(1.1) to be an actual stratification.

The affine stratification number has many good properties, including the fol-
lowing (Lemma 2.1, Propositions 4.2, 4.6, 2.10).

• asn X = 0 if and only if X is affine.
• asn X ≤ dim X.
• asn X ≤ acn X. (Equality does not always hold.)
• asn(X × Y ) ≤ asn X + asn Y.
• If D is an effective Cartier divisor on X, then asn(X −D) ≤ asn X.
• If Y → X is an affine morphism, then asnY ≤ asn X.

Even if one is only interested in equidimensional schemes, the more general Def-
inition 1.2 has advantages over Definition 1.1. For example, the last property is
immediate using Definition 1.2, but not obvious using Definition 1.1.

In Section 2, we establish basic properties of affine stratifications. In Section 3,
we show that affine stratifications can be reorganized into a particularly good form.
In particular, if X is equidimensional, then easnX = asnX (Proposition 3.7), so
the notation easn may be discarded. In Section 4, we give topological consequences
of bounded asn.

Our motivation is to bound the affine stratification number of moduli spaces (in
particular, of pointed curves) to obtain topological and cohomological consequences.
We describe our work in progress in the form of several conjectures in Section 5. For
example, the conjectures bound the homotopy type of the moduli spaces of curves
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(a) of compact type, (b) with “rational tails”, and (c) with at most k rational
components (a locus introduced in [4]), see Proposition 5.9.

The proper integral threefold with no smooth embeddings, promised in the
abstract, is Example 4.9.

Acknowledgments. This note arose from our ongoing efforts to prove a con-
jecture of E. Looijenga, and much of what is here derives from questions, ideas, and
work of his. In particular, we suspect that he is aware of most of the results given
here, and that we are following in his footsteps. We thank him for inspiration. We
also thank J. Starr for Example 4.8, W. Fulton for pointing out the examples of
Nori [12] and Horrocks [9], and T. Graber for helpful conversations. Finally, we are
grateful to the organizers of the 2003 conference Algebraic structures and moduli
spaces, at the Centre de recherches mathématiques (CRM), which led to this work.

2. Basic properties of affine stratifications

The most basic property is that an affine stratification always exists, and hence
asn X is defined for any scheme X: if ∪n

i=0Ui is a covering of X by open affine sets,
then

(2.1) U0 t (U1 \ U0) t
(
U2 \ (U0 ∪ U1)

)
t · · ·

gives an affine stratification of X.
The following lemma is trivial.

2.1. Lemma. (a) The affine stratification number depends only on the re-
duced structure of X, i.e., asn X = asnXred.

(b) If X → Y is an affine morphism, then asn X ≤ asn Y .
(c) asn(X × Y ) ≤ asn X + asnY .
(d) If D is an effective Cartier divisor on X, then asn(X −D) ≤ asn X.

Part (d) requires the following well-known fact.

2.2. Lemma. Any irreducible affine scheme X, minus an effective Cartier di-
visor D, is affine.

(Reason. The inclusion X \D ↪→ X is an affine morphism, since this can be
verified locally. But X is affine.)

Here is a partial converse to Lemma 2.2. A more precise converse is given in
Proposition 2.6.

2.3. Lemma. Suppose that V is an irreducible affine scheme, and that U ⊂ V
is an open affine subset. Then the complement Z := V \ U is a Weil divisor in V .

Proof. We first assume that V (and hence U) is normal. Let Z = ∪iZi be the
decomposition of Z into irreducible components, and let Z ′ = ∪jZj be the union of
those components of codimension one in V . We set U ′ = V \Z ′, and let i : U ↪→ U ′

be the natural open immersion. Since U ′ is normal, and the complement of U in
U ′ is of codimension at least 2 in U ′, we have i∗OU = OU ′ . We will use this and
the fact that both U and V are affine to see that U = U ′.

Let A = Γ(V,OV ) and B = Γ(U,OU ) = Γ(U ′,OU ′). We have an inclusion of
rings A ↪→ B corresponding to the opposite inclusion of open sets. Suppose that
U 6= U ′, and let x be any point of U ′ \ U . Since V is affine, x corresponds to a
prime ideal Px of A. Since x ∈ U ′, no element of Px can be a unit in Γ(U ′,OU ′),
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and hence Px remains a prime ideal in B, which is a localization of A. Therefore,
since U is affine, x ∈ U , contrary to assumption.

Passing to the general case, we drop the assumption that V and U are normal,
and let Ṽ and Ũ be their normalizations. We have the commutative diagram

Ũ
� � //

��

Ṽ

��
U

� � // V,

where the vertical arrows are the normalization maps, and the horizontal arrows
are open immersions. By the first part of the lemma, the complement Z̃ of Ũ

in Ṽ is of codimension one in Ṽ . Since Z̃ maps finitely and surjectively onto Z,
dim(Z) = dim(Z̃), and hence Z is of codimension one in V . �

The next corollary follows immediately. (Note that X need not be equidimen-
sional here.)

2.4. Corollary. The complement of a dense affine open subset in any scheme
is of pure codimension one.

2.5. Examples. (a) Let X be the affine cone over an elliptic curve, em-
bedded in CP2 as a cubic. Let Z be the cone over any point of the curve of infinite
order in the group law. Then X \ Z is affine, but Z is not Q-Cartier. This shows
that the complement of an affine open set in an affine scheme need not be the sup-
port of a Cartier divisor: we cannot hope to improve the conclusion of Lemma 2.3
to match the hypothesis of Lemma 2.2.

(b) Let S be P2 blown up at a point, and let X be the affine cone over some
projective embedding of S. Let Z ⊂ X be the affine cone over the exceptional
divisor of the blowup. Then Z is of codimension one in X, but cd(X \ Z) = 1,
so in particular it is not affine. This shows that, conversely, the complement of a
Weil divisor in an affine scheme need not be affine: we can not hope to improve the
hypothesis of Lemma 2.2 to match the conclusion of Lemma 2.3.

However, there is a more precise statement giving a necessary and sufficient
condition on a closed subset Z of an affine scheme V for the complement V \ Z to
be affine.

2.6. Proposition. Let V be an affine scheme (possibly reducible) and Z a
closed subset of V . Then U := V \ Z is affine if and only if Hi

Z(F) = 0 for all
quasicoherent sheaves F on V and all i ≥ 2.

Here Hi
Z(F) is the local cohomology group. This also implies the same fact for

the local cohomology sheaves Hi
Z(F), see Corollary 2.7(a) below.

Proof. Let F be any quasicoherent sheaf on V . We have the long exact
excision sequence of cohomology groups

(2.2) 0 → H0
Z(F) → H0(V,F) → H0(U,F|U ) → H1

Z(F) → H1(V,F)

→ H1(U,F|U ) → H2
Z(F) → H2(V,F) → H2(U,F|U ) → · · · .

Since V is affine, we have Hi(V,F) = 0 for all i ≥ 1, so that Hi(U,F|U ) = Hi+1
Z (F)

for all i ≥ 1. Hence (using Serre’s criterion for affineness) U is affine if and only if
Hi

Z(F) = 0 for all i ≥ 2 and all quasicoherent sheaves F . �
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2.7. Corollary. Let X be a scheme (possibly reducible) and U a dense affine
open subset. Let Z := X \ U . For any quasicoherent sheaf F on X,

(a) Hi
Z(F) = 0 for all i ≥ 2, and

(b) Hi
Z(F) = 0 for all i > cd Z + 1.

The notation cd denotes cohomological dimension, see Section 1.

Proof. (a) Since the local cohomology sheaf Hi
Z(F) is the sheafification

of the functor V 7→ Hi
Z∩V (F|V ) [7, Proposition 1.2], it is sufficient to check that

the local cohomology group vanishes for sufficiently small V around any point of
Z. But if V is any open affine set, then V ∩ U is nonempty (since U is dense) and
also affine (by separatedness). Hence Hi

Z∩V (F|V ) = 0 for i ≥ 2 by Proposition 2.6
and so Hi

Z(F) = 0 as well.
(b) The local cohomology sheaves Hi

Z(F) are quasicoherent and are supported
on Z. The local cohomology groups can be computed by a spectral sequence with
Epq

2 term Hp
(
X,Hq

Z(F)
)

= Hp
(
Z,Hq

Z(F)
)
. Since Hp(Z, ·) = 0 for p > cd Z, and

Hq
Z(F) = 0 for q > 1 by part (a), we have Hi

Z(F) = 0 for i > cd Z + 1. �

2.8. Corollary. Let X be a scheme, U a dense affine open subset, and set
Z := X \ U . Then cd X ≤ cd Z + 1.

Proof. For any any quasicoherent sheaf F on X, the excision sequence (2.2)
and the fact that U is affine gives Hi(X,F) = Hi

Z(F) for all i ≥ 2, and that
H1(X,F) is a quotient of H1

Z(F). Hence, for any i ≥ 1, Hi
Z(F) = 0 implies that

Hi(X,F) = 0. Since Hi
Z(F) = 0 for all i > cd Z + 1 by Corollary 2.7(b), we have

cd X ≤ cd Z + 1. �

2.9. Bounding asn by finite flat covers. The following result is useful to
bound asnX by studying covers of X.

2.10. Proposition. Suppose π : Y → X is a surjective finite flat morphism of
degree not divisible by the characteristic of the base field, and Y is affine. Then X
is affine.

Proof. The hypothesis implies that π∗OY is a coherent locally free sheaf on
X. The trace map gives a splitting π∗OY

∼= OX⊕E for some vector bundle E on X.
If F is any coherent sheaf on X, then the flatness of π gives π∗π

∗F = F ⊕ (E⊗F),
and it then follows from the Leray spectral sequence and the finiteness of π that
Hi(X,F) is a direct summand of Hi(Y, π∗F) for all i ≥ 0. Since Y is affine, these
vanish if i ≥ 1, hence the cohomology groups on X do as well, and therefore X is
affine by Serre’s criterion for affineness. �

3. Reorganizing affine stratifications

describe various ways that we can reorganize the stratification which are more
convenient for analyzing X. The main results of this section are summarized in the
following theorem.

3.1. Theorem. If X is any scheme and asn X = m, then there exists an affine
stratification {Z0, . . . , Zm} of X such that for any k ≤ m:

(a) Zk =
⋃

k′≥k Zk′ ,

(b) each Zk is a dense open affine subset of Zk, and
(c) Zk is of pure codimension one in Zk−1 .
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If in addition X is equidimensional, then we also have
(d) each Zk′ is of pure codimension k′ − k in Zk for any k′ ≥ k.

Even if X is not equidimensional, if we have an affine stratification {Y ′
k,l} of length

M such that each Y ′
k,i is of pure codimension k in X, then setting Z ′

k :=
⋃

i Y ′
k,i for

k = 0, . . . ,M we have
(e) the affine stratification {Z ′

0, . . . , Z
′
M} satisfies (a)–(d) above.

(We are not guaranteed that M = m, so this stratification may not be optimal.)

The proof is summarized in Section 3.9. In analogy with CW-complexes, we
define an affine cell decomposition of a scheme X to be an affine stratification

X =
⊔
k

Zk

where the Zk’s satisfy (a)–(c) of Theorem 3.1. The theorem guarantees that such
a decomposition exists for any scheme X, with length asnX.

3.2. Lemma. Let {Yk,i} be an affine stratification of a scheme X and let Zk :=⋃
i Yk,i be the union of all the affine pieces of index k. Then each Zk is an open

dense affine subset of Zk, i.e., Zk is locally closed and affine.

Proof. By definition, Zk is a dense subset of Zk. We will see that it is an
open subset, and most importantly, affine.

Since the affine stratification is finite, we have ∪iYk,i = ∪iY k,i. For any distinct
Yk,i and Yk,j and any point y ∈ Y k,i∩Y k,j , the fact that the Y ’s are disjoint, along
with the stratification condition (1.1), implies that y must be in some Zk′ with
k′ > k. In particular, y is in neither Yk,i nor Yk,j .

If we let Ci :=
⋃

j 6=i Y k,j be the closed subset consisting of the closures of other
Yk,j ’s, and Vi := X \Ci the open complement, then the previous remark shows that
Yk,i ⊆ Vi, and therefore that Zk ∩ Vi = Yk,i.

Since every locally closed subset is an open subset of its closure, Yk,i is an open
subset of Y k,i ∩ Vi = Zk ∩ Vi. Since Zk ∩ Vi is an open subset of Zk, we see that
Yk,i is an open subset of Zk, and therefore that Zk =

⋃
i Yk,i is an open subset of

Zk.
Let Z̃k be the disjoint union

Z̃k =
⊔
i

Yk,i,

and f : Z̃k → X the natural morphism with image Zk. The map f is one-to-one on
points, and the fact that Zk∩Vi = Yi,k for each i implies that f is a homeomorphism,
and in fact an immersion. Therefore, Z̃k

∼= Zk as schemes, and so Zk is affine since
Z̃k is. �

3.3. Proposition. Let {Yk,i} be an affine stratification of X of length m. Then
there exists an affine stratification {Y ′

k,j} of length at most m such that the generic
points of all components of X are contained in the zero stratum ∪jY

′
0,j of {Y ′

k,j}.

Proof. We first set Y ′
0,i := Y0,i for all valid indices i. Now let Yk,i be any

piece of the stratification with k ≥ 1. If Yk,i does not contain the generic point
of any component of X then set Y ′

k,i := Yk,i. On the other hand, suppose that
Yk,i contains η1, . . . , ηr where each ηj is a generic point of X. In this case, for
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each j ∈ {1, . . . , r} choose an open affine subset Uj of Yk,i containing ηj so that Uj

intersects no components of X other than {ηj}. Now set Y ′
k,j := Yk,j \ (

⋃r
j=1 Uj),

and add the Uj in as elements of the zero stratum, Y ′
0,ij

:= Uj , where the ij are
chosen not to conflict with previously existing indices. It is straightforward to verify
that this decomposition satisfies the affine stratification condition (1.1). �

3.4. Lemma. Let {Yk,i} be an affine stratification of X of length m. Then there
exists an affine stratification {Y ′

k,i} of length at most m such that if Z ′
k := ∪iY

′
k,i

is the union of all affine pieces of index k, then for any k,

Z
′
k =

⋃
k′≥k

Z ′
k′ .

Proof. By Proposition 3.3 we may assume that all the generic points of com-
ponents of X occur in the zero stratum of {Yk,i}, and therefore that

⋃
i Y 0,i = X.

We now proceed by induction on the length m of the stratification, the case m = 0
being trivial.

Let U :=
⋃

i Y0,i be the union of the pieces in the zero stratum, and Z :=⋃
k≥1,i Yk,i the complement. Note that U is open and hence Z is closed by

Lemma 3.2.
The {Yk,i} with k ≥ 1 form an affine stratification of Z of length m− 1 (after

reindexing the k’s to start with zero). Therefore by induction Z has an affine strati-
fication of length at most m−1 satisfying the hypothesis of the lemma. Reindexing
the k’s again, and adding the Y0,i’s as the zero stratum, we end up with an affine
stratification {Y ′

k,i} of length at most m which also satisfies the hypothesis of the
lemma, completing the inductive step. �

3.5. Corollary. For any scheme X, if asn X = m then there is an affine
stratification {Z0, . . . , Zm} of X with Zk =

⋃
k′≥k Zk′ for each k, and such that

each Zk is an open dense affine subset of Zk.

Proof. Combine Lemmas 3.2 and 3.4. �

3.6. Corollary. For any scheme X, asn X ≤ dim X.

Proof. Let m = asnX and {Z0, . . . , Zm} be a stratification as in Corol-
lary 3.5. By Corollary 2.4, each Zk+1 is of pure codimension one in Zk. If Z

′
m

is any irreducible component of Zm, then that means we can inductively find a
chain of closed irreducible subsets Z

′
m ⊂ Z

′
m−1 ⊂ Z

′
m−2 ⊂ · · · ⊂ Z

′
1 ⊂ Z

′
0, with

each Z
′
k an irreducible component of Zk. Then dim X ≥ dim Z

′
m + m ≥ m. �

If we assume an additional hypothesis about X or the stratification {Yk,i}, we
have slightly stronger results about the stratification {Z0, . . . , Zm} of Corollary 3.5.

3.7. Proposition. If X is an equidimensional scheme, and {Z0, . . . , Zm} the
stratification of Corollary 3.5, then we have in addition that Zk′ is of pure codi-
mension k′ − k in Zk for all k′ ≥ k. In particular, easnX = asnX.

Proof. By Corollary 2.4 each Zk+1 is of pure codimension one in Zk. If
Z0 = X is equidimensional, then it follows that each Zk is equidimensional as well,
and from this that Zk′ is of pure codimension k′ − k in Zk for any k′ ≥ k. �

Even if X is not equidimensional, if the affine stratification {Yk,i} satisfies a
suitable condition we get a similar good result about the stratification by the Zk’s.
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3.8. Proposition. Let {Yk,i} be an affine stratification of a scheme X with
each Yk,i of pure codimension k in X. Let Zk :=

⋃
i Yk,i be the union of all the

affine pieces of codimension k. Then
(i) For k′ ≥ k, Zk′ is of pure codimension k′ − k in Zk; in particular, Zk′ ⊆

Zk.
(ii) Zk =

⋃
k′≥k Zk′ .

Proof. Since the decomposition is finite, the irreducible components of Zm

are all of the form Wm with Wm an irreducible component of some Ym,j .
We prove (i) by induction on k. For k = 0 the result is obvious, since Z0 = X,

and Zk′ is of pure codimension k′ in X. So assume that k > 0 and that (i) is true
for k − 1.

Let W k′ by any irreducible component of Zk′ with k′ ≥ k. By the induction
hypothesis, W k′ ⊂ Zk−1, and is of codimension k′ − k + 1 in Zk−1. Let Tk−1

be any irreducible component of Zk−1 whose closure contains W k′ and such that
codim(W k′ , T k−1) = k′ − k + 1. Lemma 3.2 gives us that Zk−1 is affine, and
therefore Tk−1 is affine also.

By Lemma 2.3, the closed set T k−1 \Tk−1 has codimension one in T k−1. Let ηk

be the generic point of any component of T k−1 \Tk−1 containing Wk′ ; one exists by
our choice of Tk−1. Since codim(W k′ , T k−1) = k′−k+1 and codim({ηk}, T k−1) = 1,
we have codim(Wk′ , {ηk}) = k′ − k.

The Zm’s partition X, and so ηk must be in exactly one Zm. We cannot have
m ≤ k−1, since that would contradict the stratification condition. We cannot have
m ≥ k + 1, since this would contradict codim(Zm, Zk−1) = m− k + 1, which holds
by the induction hypothesis. Therefore ηk is in Zk, and so W k−1 ⊂ Zk.

We have already seen that codim(Wk′ , {ηk}) = k′ − k. Since

codim(W k′ , Zk) = sup
i

(
codim(W k′ , Y k,i)

)
,

with Y k,i running over the components of Zk, we get codim(W k′ , Zk) ≥ k′ − k.
But for any three closed schemes W , Z, and X with W ⊆ Z ⊆ X, we always have

codim(W, Z) + codim(Z, X) ≤ codim(W, X).

Since the codimensions of W k′ in X, and Zk in X are k′ and k by hypothesis, this
gives codim(W k′ , Zk) ≤ k′− k, and hence codim(W k′ , Zk) = k′− k. Therefore Zk′

is contained in Zk, and is of pure codimension k′−k, completing the inductive step
for (i).

To prove (ii), the stratification condition gives Zk ⊆ ∪k′≥kZk′ , while part (i)
above gives the opposite inclusion. �

3.9. Proof of Theorem 3.1. (a) is Lemma 3.4, (b) Lemma 3.2, (c) Corol-
lary 2.4, (d) Proposition 3.7, and (e) Proposition 3.8 and Lemma 3.2 again.

4. Topological consequences of bounded affine stratification number

We now describe the topological consequences of bounded asn, in particular: re-
lation to dimension (Section 4.1), affine covering number (Section 4.5), cohomolog-
ical dimension (for quasicoherent sheaves, Section 4.11, as well as constructible and
`-adic sheaves, Section 4.15), dimension of largest proper subscheme (Section 4.14),
and homotopy type (Section 4.20).
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4.1. Relation to dimension.

4.2. Proposition. asn X ≤ dim X. If one top dimensional component of X
is proper, then equality holds.

The first statement is Corollary 3.6. The second statement follows from Propo-
sition 4.12 (cd ≤ asn) and the following theorem, first conjectured by Lichtenbaum.

4.3. Theorem (Grothendieck [7, 6.9], Kleiman [10, Main Theorem]). If d =
dim X, then cd X = d if and only if at least one d-dimensional component of X is
proper.

4.4. Example (All values between 0 and dim X are possible). Let Xk = Pn \
{(n − k − 1)-plane)}, for k between 0 and n − 1. Then clearly cdXk = k and
asn Xk ≤ k. We will see that cd ≤ asn (Proposition 4.12), from which the result
follows.

4.5. Relation to affine covering number. Recall that the affine covering
number acnX of a scheme X is the minimal number of affine open subsets required
to cover X, minus 1. The invariant acn does not obviously behave as well as asn
with respect to products (cf. Lemma 2.1(c)); it also is not bounded by dimension
(Example 4.8 below).

The argument of (2.1) gives the following.

4.6. Proposition. asn X ≤ acn X.

4.7. Example. In general, acnX 6= asnX. As an example, let X be a complex
K3 surface with Picard rank 1, minus a very general point. Then acnX = 2: if for
every point p of X, acn(X−p) = 1, then (given the hypothesis that the Picard rank
is 1) any two points of X are equivalent in A0(Y ) (with Q-coefficients), contradicting
Mumford’s theorem that A0(Y ) is not countably generated [11]. Example 4.8 below
gives another example (in light of Proposition 4.2).

4.8. Example (acn X may be larger than dim X). When X is quasiprojective,
acn X ≤ dim X. (Reason. Let X be a projective compactification such that the
complement X \ X is a Cartier divisor D. Consider an embedding X ↪→ Pn and
let H0, . . . ,Hdim X be hypersurfaces so that X ∩H0 ∩ · · · ∩Hdim X = ∅. Then the
Ui := X \ (X ∩Hi) form an affine cover of X. We conclude using Lemma 2.2.)

However, the following example, due to J. Starr, shows that acnX may be
greater than dim X. Given any n, we describe a reducible, reduced threefold that
requires at least n affine open sets to cover it. Recall Hironaka’s example (e.g., [8,
Example B.3.4.1]) of a nonsingular proper nonprojective threefold X. Nonprojec-
tivity is shown by exhibiting two curves ` and m whose sum is numerically trivial.
Hence no affine open set can meet both ` and m; otherwise its complement would
be a divisor (Lemma 2.3), hence Cartier (as X is nonsingular), which meets both
` and m positively. Now choose points p and ` and q on m. Consider

(
n
2

)
copies

of (X, p, q), corresponding to ordered pairs (i, j) (1 ≤ i < j ≤ n); call these copies
(Xij , pij , qij). Let r1, . . . , rn be copies of a reduced point. Glue ri to pji and qik.
Then no affine open can contain both ri and rj for i < j (by considering Xij).

4.9. Example (a family of integral threefolds with arbitrary high affine covering
number (and no smooth embeddings)). This leads to an example of an integral (but
singular) threefold that requires at least n affine open sets to cover it. (Question.
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Is there a family of nonsingular irreducible varieties of fixed dimension with un-
bounded affine covering number?) Our example will be a blow-up of P3. Choose n
curves C1, . . . , Cn in P2 ⊂ P3 that meet in n simple n-fold points p1, . . . , pn (and
possibly elsewhere). Away from p1, . . . , pn blow up C1, . . . , Cn in some arbitrary
order. In a neighborhood of pi (not containing any other intersection of the Cj)
blow up Ci first (giving a smooth threefold) and then blow up the local complete
intersection

⋃
j 6=i Cj (or more precisely, the proper transform thereof), giving a

threefold with a single singularity (call it qi). The preimage of pi is the union of
two P1’s, one arising from the exceptional divisor of Ci (call it `i), and one from the
exceptional divisor of

⋃
j 6=i Cj ; they meet at qi. By Hironaka’s argument, `i + `j is

numerically trivial for all i 6= j. Then no affine open U can contain both qi and qj :
the complement of U would be a divisor, meeting `i and `j properly and at smooth
points of our threefold (i.e., not at qi and qj), and the same contradiction applies.

This is also an example of a scheme which cannot be embedded in any smooth
scheme, or indeed algebraic space. (Earlier examples are the topic of papers of
Horrocks [9] and Nori [12].) If X ↪→ W with W smooth, then for any divisor D
(automatically Cartier) on W , D · `i + D · `j = 0 for all i, j. If n ≥ 3, this implies
that D · `i = 0 for all i. But for any affine open set U of W with U ∩ `i 6= ∅, the
complement D = W \ U would intersect `i properly, giving us the contradiction
D · `i > 0. Hence no such embedding is possible.

By combining Proposition 4.2 with Proposition 4.6, we obtain the following.

4.10. Proposition. If X is proper, then acn X ≥ dim X.

We note that this also follows from Theorem 4.3. Example 4.7 shows that it is
not true that acnX = dim X if and only if X is proper, even for quasiprojective X.

4.11. Relation to cohomological dimension. Just as the dimensions of
the cells in a CW-complex bounds the topological (co)homology, the length of the
stratification into affine cells bounds the quasicoherent sheaf cohomology.

4.12. Proposition. cd X ≤ asn X.

Proof. We prove the result by induction on asnX. It is clear for asnX = 0,
so assume that m := asnX > 0 and that the result is proved for all schemes Z
with asnZ < asn X. Let {Z0, . . . , Zm} be an affine cell decomposition given by
Theorem 3.1. Set Z := X \ Z0 = Z1 =

⋃
k≥1 Zk.

By Theorem 3.1(b) Z0 is an open dense affine subset of X, so by Corollary 2.8,
cd X ≤ cd Z + 1. Next, Z =

⊔m−1
k=1 Zk is (after reindexing) an affine stratification

of Z of length m − 1, so asnZ ≤ asn X − 1. Finally, by the inductive hypothesis,
cd Z ≤ asn Z. Combining these three inequalities gives cdX ≤ asn X, completing
the inductive step. �

We remark in passing that by combining Proposition 4.12 with Corollary 3.6
we obtain another proof of Grothendieck’s dimensional vanishing theorem ([5, The-
orem 3.6.5], [8, Theorem III.2.7]).

We conclude with an obvious result.

4.13. Proposition. cd X = 0 if and only if asn X = 0 if and only if acn X = 0.

Proof. Each of the three is true if and only if X is affine (the first by Serre’s
criterion for affineness). �
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4.14. Relation to dimension of largest complete subscheme. Motivated
by Diaz’ theorem [3], let psv X be the largest dimension of a proper closed sub-
scheme of X. If Z is a proper closed subscheme of X (with inclusion j : Z ↪→ X),
and if F is a quasicoherent sheaf on Z, then j∗F is a quasicoherent sheaf on X,
and Hi(X, j∗F) = Hi(Z,F) for all i. By Theorem 4.3 we can find a quasicoherent
sheaf F on Z with Hdim Z(Z,F) 6= 0, and so this gives psv X ≤ cd X. Hence by
Proposition 4.12,

psv X ≤ asn X.

4.15. Relation to cohomological vanishing for constructible and `-
adic sheaves. In this section all notions related to sheaves (including stalks, push-
forwards, and cohomology groups) are with respect to the étale topology. For in-
stance, “sheaf on X” means “sheaf on X in the étale topology.”

To show how asn implies cohomological vanishing for constructible and `-adic
sheaves (Corollary 4.19), we first recall a theorem and some notation of Artin. For
any (étale) sheaf F of abelian groups on X, let

d(F) := sup{dim({x}) | x ∈ X, Fx 6= 0}

be the dimension of the support of F.

4.16. Artin’s Theorem ([2, Theorem 3.1]). Let f : X → Y be an affine mor-
phism of schemes of finite type over a field k, and F a torsion sheaf (i.e., sheaf of
torsion groups) on X. Then d(Rqf∗F) ≤ d(F)− q for all q ≥ 0.

We will apply Artin’s Theorem in the following form:

4.17. Proposition. Suppose that X is a scheme, U an affine open subset of
X, and Z := X \ U the complement. Then for any torsion sheaf F on X,

d
(
Hq

ét,Z(F)
)
≤ d(F)− q + 1.

Here the Hq
ét,Z(F) are the local cohomology sheaves in the étale topology. The

usual excision and spectral sequences for local cohomology remain true in the étale
setting, see [13, Section 6].

Proof. If i : U ↪→ X is the inclusion, then for any sheaf F of abelian groups
on X we have the exact sequence [13, Proposition 6.5]

0 → H0
ét,Z(F) → F → i∗(F|U ) → H1

ét,Z(F) → 0,

as well as isomorphisms

Hq
ét,Z(F) ∼= Rq−1i∗(F|U ) for all q ≥ 2.

If q ≥ 2 the proposition then follows from the above isomorphism and Artin’s
Theorem 4.16 applied to the inclusion morphism i, which is affine since U is.

If q = 1 it is enough to bound d
(
i∗(F|U )

)
, sinceH1

ét,Z(F) is a quotient of i∗(F|U ).
The points x ∈ X where

(
i∗(F|U )

)
x
6= 0 are the points x ∈ U with Fx 6= 0 and points

x ∈ Z such that there exists a point x′ ∈ U , x ∈ {x′} with Fx′ 6= 0. In particular,
the support of i∗(F|U ) is contained in the support of F, so d

(
H1

ét,Z(F)
)
≤ d(F),

which is exactly the statement of the proposition when q = 1.
If q = 0 note that d

(
H0

ét,Z(F)
)
≤ d(F) since H0

ét,Z(F) is a subsheaf of F, while
the proposition only claims the weaker bound d

(
H0

ét,Z(F)
)
≤ d(F) + 1. �
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4.18. Lemma. If F is a torsion sheaf on X, then Hn
ét(X, F) = 0 for all n >

d(F) + asn X.

Proof. We show the result by induction on asnX, the case asn X = 0 being
Artin’s Theorem 4.16 again. Let {Z0, . . . , Zasn X} be an affine cell decomposition
of X (as given by Theorem 3.1). Set Z := X \ Z0 =

⋃
k≥1 Zk.

We have Hn
ét(Z0,F|Z0) = 0 for all n > d(F|Z0) by Artin’s Theorem, and since

d(F|Z0) ≤ d(F) the excision sequence ((2.2) holds in this context, [13, (6.5.3)])
shows that Hn

ét(X, F) is a quotient of Hn
ét,Z(F) for all n > d(F). It is therefore

enough to show that Hn
ét,Z(F) = 0 for n > d(F) + asn X.

We can compute Hn
ét,Z(F) by a spectral sequence with Epq

2 term Hp
ét

(
X,Hq

ét,Z(F)
)

([13, Proposition 6.4]). We have Hp
ét

(
X,Hq

ét,Z(F)
)

= Hp
ét

(
Z,Hq

ét,Z(F)
)

sinceHq
ét,Z(F)

is supported on Z. By Proposition 4.17 we have d
(
Hq

ét,Z(F)
)
≤ d(F) − q + 1.

Since asnZ < asn X we can apply the inductive hypothesis to conclude that
Hp

ét

(
Z,Hq

ét,Z(F)
)

= 0 for q > d(F) − q + 1 + asnZ, or p + q > d(F) + asnZ + 1.
Again using asnZ < asn X, this gives Hn

ét,Z(F) = 0 for n > d(F) + asn X. �

4.19. Corollary. (a) If F is a torsion sheaf, then Hn
ét(X, F) = 0 for all

n > dim X + asn X.
(b) If F is a constructible sheaf, then Hn

ét(X, F) = 0 for all n > dim X+asnX.
(c) If F` is an `-adic sheaf on X, then Hn

ét(X,F`) = 0 for all n > dim X +
asn X.

Proof. (a) Clearly we have d(F) ≤ dim X. (b) A constructible sheaf is a spe-
cial case of a torsion sheaf (compare [1, Proposition 1.2(ii)] with [1, Definition 2.3]).
(c) follows from (a). �

4.20. Relation to homotopy type. We expect that the affine stratification
number bounds the homotopy type as follows.

4.21. Conjecture. If the base field is C, then X has the homotopy type of a
finite complex of dimension at most asn X + dim X.

5. Applications to moduli spaces of curves

One motivation for the definition of affine stratification number is the study of
the moduli space of curves, and certain geometrically important open subsets. We
will use Definition 1.1 (which we may, by Proposition 3.7).

5.1. Preliminary aside: the affine stratification number of Deligne–
Mumford stacks. As we have only defined the affine stratification number of
schemes, throughout this section, we will work with coarse moduli space of curves.
One should presumably work instead with a more general definition for Deligne–
Mumford stacks. One possible definition is to replace the notion of “affine” in the
definition of affine stratification number with that of a Deligne-Mumford stack that
has a surjective finite flat cover by an affine scheme (see Proposition 2.10).

5.2. Recall the following question of Looijenga’s.

5.3. Conjecture (Looijenga). (a) acn Mg ≤ g − 2 for g ≥ 2. (b) More
generally, acn Mg,n ≤ g − 1− δn,0 whenever g > 0, (g, n) 6= (1, 0).
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The case n = 1 of (b) implies the cases n > 1, as the morphism Mg,n+1 → Mg,n

is affine for n ≥ 1.
This suggests the following, weaker conjecture, which is straightforward to ver-

ify for small (g, n) (using Proposition 2.10 judiciously). We are currently pursuing
a program to prove this (work in progress).

5.4. Conjecture (Looijenga [6, Problem 6.5, p. 112]). asn Mg ≤ g − 2 for
g ≥ 2.

From this statement (and properties of asn), we obtain a number of conse-
quences.

5.5. Proposition (Looijenga [6, p. 112]). Conjecture 5.4 implies that asn Mg,n ≤
g − 1− δn,0 whenever g > 0, (g, n) 6= (1, 0).

Proof. As Mg,n+1 → Mg,n is affine for n ≥ 1, it suffices to prove the result for
M0,3 and Mg,1 with g > 0. The cases g = 0 and g = 1 are immediate. For g > 1,
let D be a multisection of Mg,1 → Mg (e.g., a suitable Weierstrass divisor). Then
the morphisms D → Mg and (Mg,1 \D) → Mg are affine and surjective, so pulling
back the affine stratification of Mg to Mg,1 and intersecting with (Mg,1 \ D) t D
yields the desired affine stratification of Mg,1. �

Examination of small genus cases suggests the following refinement of Conjec-
ture 5.4.

5.6. Conjecture. There is an affine stratification of Mg′,n′ preserved by the
symmetric group acting on the n′ points. The induced decomposition of Mg,n is a
stratification.

This leads to a bound on the affine stratification number of the open subset
M

≤k

g,n, corresponding to stable n-pointed genus g curves with at most k genus 0
components, defined in [4, Section 4].

5.7. Proposition. Conjecture 5.6 implies that asn M
≤k

g,n ≤ g − 1 + k for all
g > 0, n > 0.

This is more evidence of the relevance of this strange filtration of the moduli
space of curves. In particular, compare this to Theorem ? of [4], that the tauto-
logical ring of M

≤k

g,n vanishes in codimension greater than g − 1 + k. (In [4, p. 3],
Looijenga asks precisely this question, with asn replaced by acn.)

Proof. We show that dimension of any stratum of Mg,n appearing in M
≤k

g,n

is at least
3g − 3 + n− (g − 1 + k) = 2g − 2 + n− k.

This is true for strata in Mg,n by Proposition 5.5. Consider any other boundary
stratum, say with j rational components (j ≤ k) with m1, . . . ,mj special points
respectively; and s other components, with genus g1, . . . , gs and n1, . . . , ns special
points respectively. By Proposition 2.10, it suffices to pass to the finite étale cover
that is isomorphic to

j∏
i=1

M0,mi
×

s∏
i=1

Mgi,ni
.
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By Proposition 5.5 (and using M0,mi affine), we can decompose this space into
affine sets of dimension at least

j∑
i=1

(mi − 3) +
s∑

i=1

(
3gi − 3 + ni − (gi − 1)

)
.

Now
∑j

i=1(mi−2)+
∑s

i=1(2gi−2+ni) = 2g−2+n, so each affine set has dimension
at least

2g − 2 + n− j

and thus codimension in M
≥k

g,n at most g − 1 + j ≤ g − 1 + k as desired. �

This leads to bounds on other spaces of interest. Let M ct
g,n be the open subset

of Mg,n corresponding to curves of compact type (i.e., with compact Jacobian, or
equivalently with dual graph containing no loops). Let Mrt

g,n be the open subset
corresponding to curves with rational tails (i.e., with a component a smooth genus
g curve, or equivalently with dual graph with a genus g vertex).

5.8. Corollary. Conjecture 5.6 implies that asn M ct
g,n ≤ 2g − 3 + n and

asn Mrt
g,n ≤ g + n− 2 for g > 0, n > 0.

Proof. M ct
g,n is obtained by removing boundary strata from M

≤g+n−2

g,n . Mrt
g,n

is obtained by removing boundary strata from M
≤n−1

g,n . �

5.9. Corollary. Conjectures 4.21 and 5.6 imply that M
≤k

g,n (resp. M ct
g,n, Mrt

g,n)
has the homotopy type of a finite complex of dimension at most 4g−4+n+k (resp.
5g − 6 + 2n, 4g − 5 + 2n).

References

1. M. Artin, Faisceaux constructible. Cohomologie d’un courbe algébrique, Théorie des topos et
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Tome 2., Lecture Notes in Math., vol. 270, Springer-Verlag, Berlin–New York, 1972, pp. 1–82.

Dept. of Mathematics and Statistics, Queens University, Kingston, ON K7 3N6,

Canada

E-mail address: mikeroth@mast.queensu.ca

Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA

E-mail address: vakil@math.stanford.edu


