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EQUIVARIANT TRIVIALITY THEOREMS

FOR HILBERT C*-MODULES

J. A. MINGO AND W. J. PHILLIPS

Abstract. The purpose of this paper is to give an exposition of the various triviality

theorems, the equivariant version of a result due to L. Brown, and a simplification of

the proof of Kasparov's triviality theorems.

0. Introduction and notation. In [5] several triviality theorems are given for

continuous fields of Hilbert spaces (%(z), T) over a paracompact space B. When F

is locally compact and & is the subspace of T of functions vanishing at infinity, then

5 is a Hilbert C0(F)-module.

Recently some of these triviality theorems [5, Théorème 4 and Corollaire 3] have

been generalized to the case of Hilbert C*-modules for noncommutative algebras [2,

6, 7, 9]. Our purpose is to give an exposition of the various triviality theorems, the

equivariant version of the triviality theorem of [2], and a simplification of the proof

of Kasparov's triviality theorems [7, 9].

Although Hilbert C*-modules had been considered earlier than [7] (see e.g. [10]),

we will adopt the notation of Kasparov [7, §2, Definitions 1-4]. If S is a Hilbert

^-module then S00 denotes the direct sum of S with itself countably many times; an

isomorphism of Hilbert A -modules is denoted by — . %A denotes ^4°° where A is

considered a module over itself [7, §2, Example 1].

The two triviality theorems then are

Theorem 1.4 [5, 6, 7, 9]. Let & be a countably generated Hilbert A-module; then

6 © }LA — X^.

Theorem 1.9 [2, 5, 6]. Let S be a full countably generated Hilbert A-module. If A

has a strictly positive element, then &°° — %A.

1. Triviality theorems without group actions. In this section we consider the

triviality theorems mentioned in §0 but without any group actions. A crucial notion

in this section is that of a strictly positive element.

Definition 1.1 [1]. If e is a positive element of a C*-algebra A and <$>(e) ¥= 0 for

all states r> on A, then e is strictly positive.

The following lemma, observed in [2], can be deduced from [1], but since it has a

straightforward proof, we give it here.

Lemma 1.2. // e is a positive element of A then e is strictly positive if and only if eA is

dense in A.
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Proof. Suppose eA is not dense in A. Then by [4, 2.9.4] there is a state of A

vanishing on eA. Such a state must vanish on e, so e is not strictly positive.

Suppose (J) is a state of A for which <¡>(e) = 0. Then, by the Cauchy-Schwarz

inequality, (p vanishes on eA. Thus eA is not dense.   Q.E.D.

Now we will apply Lemma 1.2 to the algebra %(&) (see [7, §2, Definition 4]).

Lemma 1.3. If& is a Hilbert A-module and T is a positive element of%(&), then T

is strictly positive if and only if T has dense range.

Proof. If Fis strictly positive then T%(&) is dense in %(&). As %(&)& = &, we

have f& = T%(&)S = %(&)S = &.

If T has dense range, then given £ E & there exists a sequence |„ E ë such that

r|„-*£. So 8(„ = lim„ T0t „ e T%(&). So T%(&) is dense and T is strictly

positive.   Q.E.D.

Next we give a proof of the stabilization theorem. The original version of this

theorem, for continuous fields of Hilbert spaces, is Théorème 4 (p. 259) of [5]. A

C*-algebra version is given in Theorem 3.1 of [2]. In this version F is a hereditary

C*-subalgebra of A with strictly positive element, S = BA, D = %(& © Ax), and

p E M(D) is the projection onto S. Then 1 - p ~ 1 means Ax - & © Ax.

The proofs of [6 and 7] follow a Gram-Schmidt orthogonalization procedure. The

proof below, using polar decomposition, is perhaps simpler.

Theorem 1.4 (Stabilization). If& is a countably generated Hilbert A-module, then

&®xA^xA.

Proof. We may assume A is unital; in fact, S may be considered an /1-module;

then S 8 %A a %A~implies S © %A = %A, as S7 = S and T^A = %A.

Let {t)í}%x E E be a bounded countable set of generators with each generator

repeated infinitely often. Let {£,} Ç %A be the standard orthnormal basis; that is, £,

is the sequence with zeros everywhere but the / th place, where there is a 1. Define T:

%A^&® %A by

TUi) = 2-%®4-%.

It is clear that T E £(%A, & ® %A); in fact,

T= l2-%i<Ë2-%-he%(XA,ë®%A).

2~k£k E ran(F) for infinitely many k's.As each tj, is repeated infinitely often, tj,

So tj, © 0 e ran(F)" and thus 0 © £,- E ran(F)"; thus ran(F) is dense in &

Now

%,

T*T '-

0

0

/
+

4~2(t),^i)     4-3<t7,, tj2> ••

4-3(t)2,71,>     4-4(t)2,t/2> ■

K+Kl    withF, F1 0.
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It is clear that ran(F) is dense so K is strictly positive. Thus T*T is strictly positive.

So ran(T*T) is dense and thus ran(| T\) is also dense. Finally, define V: XA -» S © %A

by V(\T\£) = Ti As ||KflF|¿)|| = |||F||||, V has a continuous extension to XA,

where it becomes a unitary from %A to S © XA.   Q.E.D.

Corollary 1.5. If S is a Hilbert A-module then $ is countably generated if and only

if%(&) has a strictly positive element.

Proof. As in the proof of Theorem 1.4 we may suppose A is unital. By Theorem

1.4 there is a projection F in t(XA) with & st P(XA). Let {£„} be the standard

orthonormal basis for %A. Then K— 2 l/n8í ( is a strictly positive element of

%(XA) by Lemma 1.3. Now %(&) = P%(XA)P, so %(&) has a strictly positive

element [3, Proposition 2.3], PKP.

Conversely, if %(&) has strictly positive element K = 2°*L, 0e v with £,, tj, E &,

then as K$ is dense, {£,}°L x is a set of generators.

Definition 1.6. Ifê is a Hilbert A-module then (&, &)= {2(£,, r/,>: £,, nl E &}~

is called the support of&.& is full if (&,&)— A.

Lemma 1.7. If& is a full Hilbert A-module and A has a strictly positive element then

there is a sequence {£,} in S such that 2(£,, !,)= 1 strictly in M(A).

Proof. This is precisely the statement of Lemma 2.3 of [2] when S = pA and

(£, tj)= £*tj for p a projection in M(A) and |, tj E S. The proof goes over to the

more general case with obvious modifications.   Q.E.D.

Corollary 1.8. If & is a full Hilbert A-module and A has strictly positive element

then S00 = A © f/or some Hilbert A-module <$.

Proof. Let {£,} be as in Lemma 1.7. Define F: ^ -* &x by F(a) = (|,a). As

(da), (£,a))= a*a, we see that (|,a) E S00. Define F*: S00 - ^ by F*(tj,) =

2(¿,-, tj,->. By applying the Cauchy-Schwarz inequality we see that 2(£,, r/,) con-

verges in norm to an element of A. As T*T = idw we have that F© id: A ©

(1 - rr*)S°° - S00 is an isomorphism.   Q.E.D.

Theorem 1.9. // & is a countably generated full Hilbert A-module and A has a

strictly positive element, then S00 - %A.

Proof. S00 ̂  (A © f )°° = DC^ © ÇT00 - DC^, where the last isomorphism follows

from the stabilization theorem because §", being a complemented submodule of S°°,

is countably generated.   Q.E.D.

Remark 1.10. With Theorem 1.9 we may quickly obtain a proof of [3, Theorem

1.2]. Suppose A and B axe strongly Morita equivalent; in our notation this means

that there is a full Hilbert F-module & with A =%(&). If A and F have strictly

positive elements then & is countably generated by Corollary 1.5 and we may apply

Theorem 1.9 to conclude that S00 s ®°°. Now, as in [8, §2.9],

%(&x) = %(& ® %) - %(&) ® 3C<3C)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and, similarly, %(%x) = %(%) ® %(%). Thus

A ® % = %(&) ® %(%) s 5C(S°°) - DC(®°°) s gc(ft) ® %(X) at F ® 9C.

So A and F are stably isomorphic.

2. Triviality theorems with group actions. Let (A, a, G) be a C*-dynamical system.

Definition 2.1 (see [7, Definition 1]). A Hilbert (G — A)-module £ is a Hilbert

A -module which is also a left (/-module satisfying:

(i)t-(ia) = (t-i)a,(a),

(ii) t -> t • | is continuous,

(iü)<í-É,/-i|>=a/«¿ii»
for all £, r; E S, f E G and a E A.

Let S, and S2 be Hilbert (G — /4)-modules. There is an action of G induced on

£(S„ S2), namely (/ • F)(¿) = t ■ T(t] ■ ¿) for £ E S„ F E £(S„ S2) and f E G.

Note that Fis G-equivariant iff t • T = T for all r E G. In general, the map t -* t ■ T

is strongly continuous. F is called G-continuous in case this map is continuous in

norm (see [9, 1.3]).

If S, and &2 axe Hilbert (G — yl)-modules then we can make S, © S2 into a

Hilbert (G — /l)-module by defining the G action as follows: ?•(£,,£2) = (f-£,,r-

|2) for t E G, |, E S,, and £2 E &2. Similarly, if S is a Hilbert (G — ̂ )-module then

so is &x. A itself is a Hilbert (G — ,4)-module where t ■ £ = a,(£) for í E G and

If S is a Hilbert (G — ̂ 4)-module we can make Cm(G,&) (the continuous

compactly supported functions from G to S) into a pre-Hilbert (G — A)-module as

follows:

(ta){t) = i(t)a,   (s-^)(t) = s-as-lt),    (£,t|)= í (i(t),n(t)) dt

for £, T) E CqqÍG, S), s E G and a£i

Definition 2.2 (see [9, 1.4]). L2(G, &) is the completion of C^G, S) as a Hilbert

(G — y4)-module.

Note that L2(G, S) is a completion of the algebraic tensor product L2(G) ® S and

the G action is the tensor product of the left regular representation with the G action

on S. In view of [4, 13.11.3], the following result should not be surprising.

Lemma 2.3. If &x and &2 are isomorphic as Hilbert A-modules then L2(G, &x) and

L2(G, &2) are isomorphic as Hilbert (G — A)-modules (i.e. by a G-equivariant isomor-

phism of A-modules).

Proof. Let (/ be a unitary operator in £(S,,S2). Define V E t(L2(G, &x),

L2(G, S2)) by (KÉXO = t • i/(r' • ft/)) for f E Cm(G, S,). It is not difficult to
check that Fis an yl-module map, G-equivariant and unitary.   Q.E.D.

The Hilbert (G — yl)-module version of Theorem 1.9 now follows.

Theorem 2.4. Let S be a Hilbert (G — A)-module which is countably generated and

full as a Hilbert A-module. Then L2(G,&)X is isomorphic to L2(G, A)x by a

G-equivariant isomorphism of Hilbert A-modules.
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Proof. There are obvious G-equivariant isomorphisms L2(G, &)x — L2(G, &x)

and L2(G, A)00 =¡ L2(G, Ax). By Theorem 1.9 S°° and A°° axe isomorphic as Hilbert

/4-modules and so by Lemma 2.3 there is a G-equivariant isomorphism L2(G, S°°) —
L2(G, Ax).   Q.E.D.

The Hilbert (G — ̂ 4)-module version of Theorem 1.4 is the following:

Theorem 2.5 (Kasparov [9, Theorem 2.1]). Let & be a Hilbert (G — A)-module

which is countably generated as a Hilbert A-module. There is a G-continuous isomor-

phism from & © L2(G, A)°° to L2(G, A)x. If G is compact this isomorphism can be

chosen to be G-equivariant.

Proof. By Lemma 2.3 and Theorem 1.4 we have equivariant isomorphisms

L2(G, A)x * L2(G, Ax)x =* L2(G, & © Ax)x = L2(G, S)°° © L2(G, Ax)x.

Let 4> E Coo(G) with ||$||2 = 1. Let V: S -» L2(G, S) be given by (V£)(t) = £<¡>(t). It
is easy to check that Fis a G-continuous isometry. Now define U: & © L2(G, &)x ->

L2(G, &)°° by

t/(í0,|1,|2,...) = (F?o + (l- W*)èx,VV% + (l- VV*)t2,...).

U defines a G-continuous unitary with

{/*(*,, 1,2,7,3,...) = (V*nx,VV*n2 + (1 - W*)nx, VV*n3 + (1 - VV*)r,2,...).

Thus

S © L2(G, A)x = S © L2(G, &)x © L2(G, Ax)x

* L2(G, S)00 © L2(G, /l^)00 =a F2(G, A)x.

The resulting isomorphism is G-continuous.

If G is compact we may take 4> = 1. Then F and {/ are equivariant and thus

S © L2(G, A)x » L2(G, yl)00 by a G-equivariant unitary.    Q.E.D.

To conclude we shall explain why Theorem 2.4 is the equivariant version of the

triviality theorem of [2]. The equivariant version of [2, Lemma 2.5] is

Corollary 2.6. Let (A,a,G) be a C*-dynamical system and suppose A has a

strictly positive element. If p in M(A) is a full invariant projection then p ® 1 ~ 1 ® 1

in M(A ® X(L2(G)X)) by an invariant partial isometry.

Theorem 1.9 and Corollary 2.6 (in the case of a trivial action) are, in fact, proving

the same thing. Indeed, suppose F has a strictly positive element and S is a

countably generated full Hilbert F-module. Let A = %(& © F); A is the linking

algebra for the strongly Morita equivalent C*-algebras %(&) and F as in [2,

Theorem 2.8 and 3, Theorem 1.1]. By Lemma 1.2, F, when considered as a Hilbert

F-module, is countably generated (by a single element in fact). Thus £ © F is

countably generated as a Hilbert F-module; so by Corollary 1.5, A = %(S © F) has

a strictly positive element. Letp and q be the projections in M(A) with ranges & and

B, respectively. It is easy to check that AqA is dense in A and similarly ApA is dense

in A because & is full. Thusp and q are full projections [2, Lemma 1.1].
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Now as in [8, §2.9] %(& ®B)®% = %((& © F) ® 3C), so

A ®% = %(ë®%®B®%).

Under this isomorphism p ® 1 and q ® 1 become the projections onto S ® % = S°°

and F ® % = Bx, respectively. Thusp ® 1 ~ 1 ® 1 ~ q ® 1 gives &x = Bx.

Proof of Corollary 2.6. Let & — pA; then & is a Hilbert (G — /l)-module. As

9C(ê)'= p/lp, which being a corner of ^ has a strictly positive element [3, Proposi-

tion 2.3], we have that & is countably generated by Corollary 1.5. Also, as

(&,&) = pip we see that S is full. So & ® L2(G)=° ss^ ® L2(G)=° by an equi-

variant isomorphism, that is, p ® 1 ~ 1 ® 1 in

Z(A ® L2(G)X) ^m(a® %(L2(gD)

by an invariant partial isometry.   Q.E.D.
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