Seminar on Brown Measure (1)25 March 2021 31 Brown Measure on Matrices $T \in M_{N}(C)$ $T_{r}(T) = \sum_{i=1}^{N} t_{ii}$ X, , , X, ergenvalues of T $|T| = \sqrt{T + 1} \cdot g(x, y) = \log \sqrt{x^2 + y^2}$ loc. integrable evenon nbhd of (0,0) $\nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$. Thus; $f \in \tilde{C}(\mathbb{R}^2)$ JVf(x,y) log[det[x+iy-T]]dædeg $= 2\pi \sum_{i=1}^{N} f(\lambda_i) \tilde{x}$ het $M_T = \frac{1}{2\pi N} \nabla^2 \log[det[\lambda-TI]]$ in the sense of dest.

MINGO

Department of Mathematics and Computer Science University of Odense

$$f(x) = \log x \frac{\sqrt{4(n-1)-x^2}}{n^2 - x^2}$$
 (n = 5)

Status Report

for

Flemming Larsen

Chapter 11 Brown Measure

The Brown measure is a generalization of the eigenvalue distribution for a general (not necessarily normal) operator in a finite von Neumann algebra (i.e, a von Neumann algebra which possesses a trace). It was introduced by Larry Brown in [46], but fell into obscurity soon after. It was revived by Haagerup and Larsen [85], and played an important role in Haagerup's investigations around the invariant subspace problem [87]. By using a "hermitization" idea one can actually calculate the Brown measure by $M_2(\mathbb{C})$ -valued free probability tools. This leads to an extension of the algorithm from the last chapter to the calculation of arbitrary polynomials in free variables. For generic non-self-adjoint random matrix models their asymptotic complex eigenvalue distribution is expected to converge to the Brown measure of the (*-distribution) limit operator. However, because the Brown measure is not continuous with respect to convergence in *-moments this is an open problem in the general case.

11.1 Brown measure for normal operators

Let (M, τ) be a W^* -probability space and consider an operator $a \in M$. The relevant information about *a* is contained in its *-distribution which is by definition the collection of all *-moments of *a* with respect to τ . In the case of self-adjoint or normal *a* we can identify this distribution with an analytic object, a probability measure μ_a on the spectrum of *a*. Let us first recall these facts.

If $a = a^*$ is self-adjoint, there exists a uniquely determined probability measure μ_a on \mathbb{R} such that for all $n \in \mathbb{N}$

$$\tau(a^n) = \int_{\mathbb{R}} t^n d\mu_a(t)$$

and the support of μ_a is the spectrum of *a*; see also the discussion after equation (2.2) in Chapter 2.

More general, if $a \in M$ is *normal* (i.e., $aa^* = a^*a$), then the spectral theorem provides us with a projection valued spectral measure E_a and the Brown measure is

just the spectral measure $\mu_a = \tau \circ E_a$. Note that in the normal case μ_a may not be determined by the moments of *a*. Indeed, if a = u is a Haar unitary then the moments of *u* are the same as the moments of the zero operator. Of course, their *-moments are different. For a normal operator *a* its spectral measure μ_a is uniquely determined by

$$\tau(a^n a^{*m}) = \int_{\mathbb{C}} z^n \bar{z}^m d\mu_a(z) \tag{11.1}$$

for all $m, n \in \mathbb{N}$. The support of μ_a is again the spectrum of a.

We will now try to assign to any operator $a \in M$ a probability measure μ_a on its spectrum, which contains relevant information about the *-distribution of a. This μ_a will be called the *Brown measure* of a. One should note that for non-normal operators there are many more *-moments of a than those appearing in (11.1). There is no possibility to capture all the *-moments of a by the *-moments of a probability measure. Hence, we will necessarily loose some information about the *-distribution of a when we go over to the Brown measure of a. It will also turn out that we need our state τ to be a trace in order to define μ_a . Hence in the following we will only work in tracial W^* -probability spaces (M, τ) . Recall that this means that τ is a faithful and normal trace. Von Neumann algebras which admit such faithful and normal traces are usually addressed as *finite* von Neumann algebras. If M is a finite factor, then a tracial state $\tau : M \to \mathbb{C}$ is unique on M and is automatically normal and faithful.

11.2 Brown measure for matrices

In the finite-dimensional case $M = M_n(\mathbb{C})$, the Brown measure μ_T for a normal matrix $T \in M_n(\mathbb{C})$, determined by (11.1), really is the eigenvalue distribution of the matrix. It is clear that in the case of matrices we can extend this definition to the general, non-normal case. For a general matrix $T \in M_n(\mathbb{C})$, the spectrum $\sigma(T)$ is given by the roots of the characteristic polynomial

$$P(\lambda) = \det(\lambda I - T) = (\lambda - \lambda_1) \cdots (\lambda - \lambda_n),$$

where $\lambda_1, ..., \lambda_n$ are the roots repeated according to algebraic multiplicity. In this case we have as eigenvalue distribution (and thus as Brown measure)

$$\mu_T = \frac{1}{n} (\delta_{\lambda_1} + \cdots + \delta_{\lambda_n}).$$

We want to extend this definition of μ_T to an infinite dimensional situation. Since the characteristic polynomial does not make sense in such a situation we have to find an analytic way of determining the roots of $P(\lambda)$ which survives also in an infinite dimensional setting.

Consider

$$\log |P(\lambda)| = \log |\det(\lambda I - T)| = \sum_{i=1}^{n} \log |\lambda - \lambda_i|.$$

CAHIERS SCIENTIFIQUES

PUBLIÉS SOUS LA DIRECTION DE M. GASTON JULIA

FASCICULE XXV

LES ALGÈBRES D'OPÉRATEURS DANS L'ESPACE HILBERTIEN (ALGÈBRES DE VON NEUMANN)

PAR

Jacques **DIXMIER**

PROFESSEUR A LA FACULTÉ DES SCIENCES DE PARIS

DEUXIÈME ÉDITION (1Sted 195 revue et augmentée

gv

PARIS GAUTHIER-VILLARS ÉDITEUR 1969

 $\mathcal{M}_{T} = \frac{1}{2\pi N} \nabla^{2} \log \left[\det \left[\frac{x}{y} - T \right] \right]$ $= \frac{1}{2\pi} \sqrt{\frac{1}{2\pi} \left(\log \left| \frac{x+i\gamma-\tau}{y} \right| \right)}$ $tr(T) = \frac{1}{N} Tr(T)$ \$2 Extensions to von Neumann H= sep. Hilbert Space ,B(H) = bdd. linear ops. H-> H. $3, y \in H$ $(T_u)_n \subseteq B(H)$ The word if AS'W $\langle (T_n - T) \not\in \eta \rangle \longrightarrow 0$ M S BCH) self-adjoint, contains L, WOT closed sub-abebra = von Neumonn

Out[10]= 1

MCB(H) V.N. alg. T: M -> I, linear $T(ab) = T(ba) \forall a, b \in M$ $T(x^{*}x) \ge 0 \quad \forall x \in M$ $T(2c^{x}x) = 0 \quad (=) \quad 2c = 0$ T(1) = 1WOT cont. $x_n \xrightarrow{wot} \infty$ \Rightarrow $T(x_n) \rightarrow T(x)$ $(M_N(c), tr), (L^{\infty}(u), S)$ $M_2 \longrightarrow M_2 \otimes M_2 \xrightarrow{\mathcal{O}} (x \otimes y) \xrightarrow{\mathcal{O}} (x \otimes y) \xrightarrow{\mathcal{O}} (y \otimes$ $\bigotimes_{n=1}^{(2)} M_2 = M_{2^{(2)}}$

33 Examples S, S2 Pree & semi-circular Voiculesu's $C = \frac{1}{\sqrt{2}} \left(S, \pm i S \right)$ circular op. Mc = uniform. measure ar (7) Proof of Thm $f \in C_c(\mathbb{R}^2)$ claim $\int \nabla^2 f(x, y) \log \int x^2 + y^2 docdy$ $= 2\pi f(0,0)$ Choose ROO supp(f) < DR $D_{v,R} = \{(x,y) \mid v < \int x^2 + y^2 < R \}$

Calculus Remma: V(f Vg - g Vf) ÷ $f \nabla g$ - 9 7F $g(\mathcal{Y}) = \log \int \mathcal{Y}^2 + \sqrt{2}$ $\nabla^2 g = 0$ $\nabla g = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right)$ on 9Dr n = outward pointing normal let $= \left(\frac{\mathcal{I}}{\sqrt{\chi^2 + \sqrt{\chi^2}}}, \frac{\mathcal{I}}{\sqrt{\chi^2 + \sqrt{\chi^2}}} \right)$ L on ODr $\nabla g \cdot \vec{n} =$ $\int \nabla^{r} f g \, dx dy = \int \nabla \cdot (g V f - f V g) dy$ $D_{r,R}$ $D_{r,R}$ $\int (g \nabla f - f \nabla g) \cdot \vec{n} ds$ $\partial D_{r,R}$

J g Df.nds-J f Vg.nds OD., R OD., R $\frac{1}{r} \int r f(r \cos \theta, r \sin \theta) d\theta$ $- n \log n \int_{0}^{2\pi} \frac{\partial f}{\partial r} (r \cos \theta, r \sin \theta) d\theta$ $\rightarrow 2\pi f(0,0)$ $\int f(\mathcal{Y} - \mathcal{X}^{\prime})$ $det(\lambda - T) =$ $det \left(\lambda - T \right) =$ ldet(7-T) = [[y-y:] $log(det | \lambda - \tau l) = \sum_{i=1}^{N} log | \lambda - \lambda_i l$

 $Tr(log|\partial -Tl)$ $\frac{1}{2\pi} \frac{1}{\sqrt{2\pi}} \left(\log \left(\lambda - T \right) \right) = \frac{1}{2\pi} \frac{1}{\sqrt{2\pi}} \log \left[\lambda - \lambda \right]$ $\int \nabla^2 f(x, y) \left(\frac{1}{2\pi} tr(\log |\lambda - \tau I) \right) dx$ $= \int \sum_{i=1}^{N} \int \nabla f(x,y) \log[\lambda - \lambda_i] dx dy$ 2TTN i=1 $= \frac{1}{N} \sum_{i=1}^{N} f(\lambda_i)$ $\int f(\lambda) dy_{T}(\lambda)$ $d\mathcal{M}_{T} = \mathcal{J}_{i=1}^{\infty} \delta_{\mathcal{A}_{i}}$

V is a vector space P:V -> V is a linear transformation such that $P^2 = P$ i.e. $P(P(v_1))$ = P(v), Pisaphojection_ $Rer(P) = \{v \mid P(v) = 0\}$ $ran(P) = \int P(v) | v \in \nabla 3$ given ve VJW, ZEV WE ram (P), ZE ker(P), and $V = \omega + Z.$ $W = P(V) \quad Z = (I-P)(V) = V - W$

W + Z = P(V) + (I - P)(V)														
$= (P + 1 - P)\hat{V}) = I(v) = V,$														
$P(z) = P(1-P)(V) = (P - P^{2})(V)$														
= 0 = 76 Rel(P)														
P(w) = P(P(v)) = P(v) = W														
(\square)														