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Chapter 11
Brown Measure

The Brown measure is a generalization of the eigenvalue distribution for a gen-
eral (not necessarily normal) operator in a finite von Neumann algebra (i.e, a von
Neumann algebra which possesses a trace). It was introduced by Larry Brown in
[46], but fell into obscurity soon after. It was revived by Haagerup and Larsen [85],
and played an important role in Haagerup’s investigations around the invariant sub-
space problem [87]. By using a “hermitization” idea one can actually calculate the
Brown measure by M, (C)-valued free probability tools. This leads to an extension
of the algorithm from the last chapter to the calculation of arbitrary polynomials in
free variables. For generic non-self-adjoint random matrix models their asymptotic
complex eigenvalue distribution is expected to converge to the Brown measure of
the (x-distribution) limit operator. However, because the Brown measure is not con-
tinuous with respect to convergence in x-moments this is an open problem in the
general case.

11.1 Brown measure for normal operators

Let (M, T) be a W*-probability space and consider an operator a € M. The relevant
information about a is contained in its x-distribution which is by definition the col-
lection of all x-moments of a with respect to 7. In the case of self-adjoint or normal
a we can identify this distribution with an analytic object, a probability measure (i,
on the spectrum of a. Let us first recall these facts.

If a = a* is self-adjoint, there exists a uniquely determined probability measure
U on R such that for all n € N

(a") = /R o (1)

and the support of , is the spectrum of a; see also the discussion after equation
(2.2) in Chapter 2.

More general, if a € M is normal (i.e., aa® = a*a), then the spectral theorem
provides us with a projection valued spectral measure E, and the Brown measure is
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266 11 Brown Measure

just the spectral measure i, = 7o E,. Note that in the normal case p, may not be
determined by the moments of a. Indeed, if a = u is a Haar unitary then the moments
of u are the same as the moments of the zero operator. Of course, their *-moments
are different. For a normal operator a its spectral measure L1, is uniquely determined
by

(a"a™) = /E 7 (2) (1L.1)

for all m,n € N. The support of L, is again the spectrum of a.

We will now try to assign to any operator a € M a probability measure [, on
its spectrum, which contains relevant information about the *-distribution of a. This
U, will be called the Brown measure of a. One should note that for non-normal
operators there are many more x-moments of @ than those appearing in (11.1). There
is no possibility to capture all the x-moments of a by the *-moments of a probability
measure. Hence, we will necessarily loose some information about the *-distribution
of a when we go over to the Brown measure of a. It will also turn out that we
need our state T to be a trace in order to define u,. Hence in the following we will
only work in tracial W*-probability spaces (M, 7). Recall that this means that 7 is
a faithful and normal trace. Von Neumann algebras which admit such faithful and
normal traces are usually addressed as finite von Neumann algebras. If M is a finite
factor, then a tracial state 7 : M — C is unique on M and is automatically normal
and faithful.

11.2 Brown measure for matrices

In the finite-dimensional case M = M,(C), the Brown measure pr for a normal
matrix T € M,,(C), determined by (11.1), really is the eigenvalue distribution of the
matrix. It is clear that in the case of matrices we can extend this definition to the
general, non-normal case. For a general matrix T € M, (C), the spectrum o(T) is
given by the roots of the characteristic polynomial

PA)=det(AI-T)=(A—24)--- (A —=A,),

where Af,..., A, are the roots repeated according to algebraic multiplicity. In this
case we have as eigenvalue distribution (and thus as Brown measure)

1
Hr = (8,8,

We want to extend this definition of tr to an infinite dimensional situation. Since
the characteristic polynomial does not make sense in such a situation we have to find
an analytic way of determining the roots of P(A) which survives also in an infinite
dimensional setting.

Consider

log|P(A)| =log|det(AI-T)| = Zlog|/’L —Ail.
i=1
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