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Chapter 11
Brown Measure

The Brown measure is a generalization of the eigenvalue distribution for a gen-
eral (not necessarily normal) operator in a finite von Neumann algebra (i.e, a von
Neumann algebra which possesses a trace). It was introduced by Larry Brown in
[46], but fell into obscurity soon after. It was revived by Haagerup and Larsen [85],
and played an important role in Haagerup’s investigations around the invariant sub-
space problem [87]. By using a “hermitization” idea one can actually calculate the
Brown measure by M2(C)-valued free probability tools. This leads to an extension
of the algorithm from the last chapter to the calculation of arbitrary polynomials in
free variables. For generic non-self-adjoint random matrix models their asymptotic
complex eigenvalue distribution is expected to converge to the Brown measure of
the (⇤-distribution) limit operator. However, because the Brown measure is not con-
tinuous with respect to convergence in ⇤-moments this is an open problem in the
general case.

11.1 Brown measure for normal operators

Let (M,t) be a W ⇤-probability space and consider an operator a 2 M. The relevant
information about a is contained in its ⇤-distribution which is by definition the col-
lection of all ⇤-moments of a with respect to t . In the case of self-adjoint or normal
a we can identify this distribution with an analytic object, a probability measure µa
on the spectrum of a. Let us first recall these facts.

If a = a⇤ is self-adjoint, there exists a uniquely determined probability measure
µa on R such that for all n 2 N

t(an) =
Z

R

tndµa(t)

and the support of µa is the spectrum of a; see also the discussion after equation
(2.2) in Chapter 2.

More general, if a 2 M is normal (i.e., aa⇤ = a⇤a), then the spectral theorem
provides us with a projection valued spectral measure Ea and the Brown measure is
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266 11 Brown Measure

just the spectral measure µa = t � Ea. Note that in the normal case µa may not be
determined by the moments of a. Indeed, if a = u is a Haar unitary then the moments
of u are the same as the moments of the zero operator. Of course, their ⇤-moments
are different. For a normal operator a its spectral measure µa is uniquely determined
by

t(ana⇤m) =
Z

C

znz̄mdµa(z) (11.1)

for all m,n 2 N. The support of µa is again the spectrum of a.
We will now try to assign to any operator a 2 M a probability measure µa on

its spectrum, which contains relevant information about the ⇤-distribution of a. This
µa will be called the Brown measure of a. One should note that for non-normal
operators there are many more ⇤-moments of a than those appearing in (11.1). There
is no possibility to capture all the ⇤-moments of a by the ⇤-moments of a probability
measure. Hence, we will necessarily loose some information about the ⇤-distribution
of a when we go over to the Brown measure of a. It will also turn out that we
need our state t to be a trace in order to define µa. Hence in the following we will
only work in tracial W ⇤-probability spaces (M,t). Recall that this means that t is
a faithful and normal trace. Von Neumann algebras which admit such faithful and
normal traces are usually addressed as finite von Neumann algebras. If M is a finite
factor, then a tracial state t : M ! C is unique on M and is automatically normal
and faithful.

11.2 Brown measure for matrices

In the finite-dimensional case M = Mn(C), the Brown measure µT for a normal
matrix T 2 Mn(C), determined by (11.1), really is the eigenvalue distribution of the
matrix. It is clear that in the case of matrices we can extend this definition to the
general, non-normal case. For a general matrix T 2 Mn(C), the spectrum s(T ) is
given by the roots of the characteristic polynomial

P(l ) = det(l I �T ) = (l �l1) · · ·(l �ln),

where l1, . . . ,ln are the roots repeated according to algebraic multiplicity. In this
case we have as eigenvalue distribution (and thus as Brown measure)

µT =
1
n
(dl1 + · · ·+dln).

We want to extend this definition of µT to an infinite dimensional situation. Since
the characteristic polynomial does not make sense in such a situation we have to find
an analytic way of determining the roots of P(l ) which survives also in an infinite
dimensional setting.

Consider

log |P(l )| = log |det(l I �T )| =
n

Â
i=1

log |l �li|.
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