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Abstract Let K be an algebraic number field and f a complex-valued function
on the ideal class group of K . Then, f extends in a natural way to the set of all
non-zero ideals of the ring of integers of K and we can consider the Dirichlet series
L(s, f ) = ∑

a f (a)N(a)−s which converges for �(s) > 1. After extending this func-
tion to �(s) = 1, and in the case that f does not contain the trivial character, we
study the special value L(1, f ) when f is algebraic valued and K is an imaginary
quadratic field. Applying Kronecker’s limit formula and Baker’s theory of linear forms
in logarithms, we derive a variety of results related to the transcendence of this special
value.

1 Introduction

Let K be an algebraic number field, f a C-valued function of the ideal class group
HK of K . We consider the Dirichlet series

L(s, f ) :=
∑

a

f (a)

N(a)s
, (1)

where the summation is over all integral ideals a of the ring of integers, OK , of K .
If f is identically 1, then L(s, f ) is the Dedekind zeta function of K . If f is a character
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836 M. R. Murty, V. K. Murty

χ of the ideal class group HK of K , then, L(s, χ) is a Hecke L-function. Our goal in
this paper is to investigate special values of L(s, f ) at s = 1 in the case that K is an
imaginary quadratic field and f is Q-valued.

This study will reveal new aspects of the transcendental nature of L(1, χ) when
χ is an ideal class character. In particular, we will show that the values L(1, χ) are
linearly independent over Q as χ ranges over non-trivial characters of the ideal class
group modulo complex conjugation.

We first prove:

Theorem 1 L(s, f ) extends analytically for all s ∈ C except possibly at s = 1 where
it has a simple pole with residue

ρ f :=
∑

a∈HK

f (a).

The series (1) converges at s = 1 if and only if ρ f = 0.

Thus, in the case that the series converges at s = 1, it makes sense to consider
L(1, f ). By a deeper analysis, we will show:

Theorem 2 Let K be an imaginary quadratic field and f : HK → Q be not identi-
cally zero. Suppose that ρ f = 0. Then, L(1, f ) �= 0 unless f (C) + f (C−1) = 0 for
every ideal class C ∈ HK . Moreover, L(1, f )/π is a Q-linear combination of log-
arithms of algebraic numbers. In particular, L(1, f )/π is transcendental whenever
L(1, f ) �= 0.

This result has several interesting corollaries.

Corollary 3 Let K be an imaginary quadratic field and χ a non-trivial character of
the ideal class group of K . Then, L(1, χ)/π is a non-zero Q-linear combination of
logarithms of algebraic numbers and hence transcendental.

Since complex conjugation acts on the group of ideal class characters we see by a
simple calculation that L(1, χ) = L(1, χ) for any ideal class character χ . We denote
by H∗

K a set of orbit representatives under this action.

Corollary 4 Let K be an imaginary quadratic field and HK its ideal class group. The
values L(1, χ) (as χ ranges over the non-trivial characters of H∗

K ) and π are linearly
independent over Q.

Thus, in the special case that the ideal class group HK is an elementary abelian
2-group, the corollary implies that the L(1, χ) as χ ranges over the non-trivial char-
acters of HK , are linearly independent over Q.

In the general case, writing

f =
∑

χ �=1

cχχ,
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Transcendental values of class group L-functions 837

we easily see that the condition f (C)+ f (C−1) for every class C implies that cχ+cχ =
0 for every χ �= 1. The linear independence of the L(1, χ) over Q as χ ranges over
the non-trivial characters of H∗

K is then clear from Theorem 2. To deduce linear inde-
pendence along with π , we proceed as follows. Suppose that the L(1, χ) and π are
linearly dependent over Q:

∑

χ∈H∗
K

αχ L(1, χ)+ βπ = 0,

with αχ, β ∈ Q, β �= 0. Then, setting

f = − 1

β

∑

χ∈H∗
K

αχχ,

we have L(1, f ) = π . By Theorem 2, we derive a contradiction.
Theorem 2 implies that at most one such L(1, χ) is algebraic:

Corollary 5 All of the values L(1, χ) as χ ranges over the non-trivial characters of
H∗

K , with at most one exception, are transcendental.

The elimination of this singular possibility, in other words, the proof of transcen-
dence of L(1, χ) for all non-trivial χ seems difficult and is related to Schanuel’s
conjecture. Indeed, a “weaker” version of Schanuel suffices for our purposes. This is
the conjecture that logarithms of algebraic numbers which are linearly independent
over Q are algebraically independent. Assuming the “weaker” Schanuel’s conjecture,
one can show the transcendence of L(1, χ) for all non-trivial χ (see remarks at end
as well as [8]).

When χ is a genus character, one can relate L(1, χ) to classical Dirichlet
L-functions attached to quadratic characters [18]. Utilising this connection, we will
prove the following.

Theorem 6 Let K be an imaginary quadratic field with character χD. Then,

exp

(
L ′(1, χD)

L(1, χD)
− γ

)

and π are algebraically independent. Here γ is Euler’s constant.

Thus, we have from the above theorem that

exp

(
L ′(1, χD)

L(1, χD)
− γ

)

is transcendental. In particular,
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L ′(1, χD)

L(1, χD)
�= γ,

for any D. More generally, we have:

Corollary 7

L ′(1, χD)

L(1, χD)
− γ

is not a Q-linear combination of logarithms of algebraic numbers.

From the theorem, we can also deduce the following curious corollary.

Corollary 8 If for some D, we have L ′(1, χD) = 0, then eγ is transcendental.

It is unlikely that such a D exists for a variety of reasons. But this seems difficult
to prove. We consider a related question, namely, the vanishing of L ′(1, χ) for any
Dirichlet character χ (mod q). In this direction, we use results of Ihara et al. [10] to
prove:

Theorem 9 For q prime, the number of χ �= χ0 (mod q) for which L ′(1, χ) = 0 is
O(qε) for any ε > 0.

This last result is very analytic in flavour and it is unlikely that one can show the
non-vanishing of L ′(1, χ) in general using analytic methods. Theorem 6 allows us
to connect this question to special values of the 	-function via the Chowla–Selberg
formula. Indeed, our proof of Theorem 6 leads to a simple proof of the Chowla–
Selberg formula which we give in Sect. 7. Naturally, this leads one to enquire about
the transcendence of special values of the 	-function. Not much is known in this con-
text. It is well-known that 	(1/2) = √

π is transcendental by the celebrated theorem
of Lindemann. The transcendence of	(1/3) and	(1/4)was established by Chudnov-
sky [3] in 1976. Recently, Grinspan [6] and Vasilev [19] independently showed that at
least two of the three numbers π,	(1/5), 	(2/5) are algebraically independent. Very
likely, all of the three numbers are algebraically independent. Apart from these results,
no further results are known regarding the transcendence of the 	-function at rational,
non-integral arguments. Thus, in this context, the following theorem is of interest.

Theorem 10 Let q > 1 and q|24. Let a be coprime to q. There exists a finite set S and
a collection of pair-wise non-isogenous CM elliptic curves E j , j ∈ S defined over Q

with fundamental real periods ω j such that 	(a/q) lies in the field generated over Q

by π and the ω j . In particular, if π and the ω j ’s are algebraically independent, then
	(a/q) is transcendental.

The key point here is that the non-trivial Dirichlet characters (mod 24) are all qua-
dratic. Consequently, one can use the Chowla–Selberg formula (as we have stated it
below) to express 	(a/q) as a product of π and periods of various non-isogenous
elliptic curves.

Before moving on in our discussion, we observe an amusing corollary of the above
theorem:
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Transcendental values of class group L-functions 839

Corollary 11 All of the numbers

	(1/8), 	(3/8), 	(5/8), 	(7/8)

are transcendental with at most one exception.

Schanuel’s conjecture predicts that if x1, . . . , xn are linearly independent over Q,
then the transcendence degree of the field

Q(x1, . . . , xn, ex1 , . . . , exn )

is at least n. The previous theorem motivates the following extension of Schanuel’s
conjecture. Suppose that x1, . . . , xn are linearly independent over Q. Let℘2, . . . , ℘n be
the Weierstrass℘-functions attached to non-isogenous CM elliptic curves E2, . . . , En

defined over Q. If x2, . . . , xn are not contained in the poles of the ℘i , 2 ≤ i ≤ n, then,
the transcendence degree of the field

Q(x1, . . . , xn, ex1 , ℘2(x2), . . . , ℘n(xn))

is at least n. Thus, choosing x1 = π i and x j = ω j/2 with the ω j as in Theorem 10,
the conjecture allows us to deduce that π and the ω j ’s are algebraically independent.

Our conjecture is a special case of a more general conjecture of Grothendieck
(see [5]). This conjecture asserts that the transcendence degree of the field generated
by the periods of an algebraic variety is equal to d where d is the dimension of the
Hodge group of the variety. In our case, we consider the variety

X = P
1 × E2 × · · · × En

where Ei are pairwise non-isogenous elliptic curves with complex multiplication. The
Hodge group of H2(P1)⊗ · · · ⊗ H1(En) is isomorphic to

G
1
m ×

n∏

i=2

(RKi /QGm)
1,

where Ki is the imaginary quadratic field corresponding to Ei and the superscript
denotes elements of norm 1. The dimension of this group is n.

The study of L(s, f ) allows us to give a simple proof of the Chowla–Selberg for-
mula [2]. This then facilitates an application of Nesterenko’s theorem to deduce the
transcendence result indicated in Theorem 6.

One could discuss a more general situation where we consider functions f defined
on ray class groups and similar formulas and results can be derived. However, these
derivations are a bit more complicated and their treatment would alter the elegance
and simplicity of this paper. Therefore, we have decided to treat the general case in a
future paper.
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2 Preliminaries

In the discussion below, a pivotal role will be played by the fundamental theorem
of Baker concerning linear forms in logarithms. Let us note that here and later, we
interpret log as the principal value of the logarithm with the argument lying in the
interval (−π, π ]. We record Baker’s theorem below.

Lemma 12 If α1, . . . , αn ∈ Q\{0} and β1, . . . , βn ∈ Q, then

β1 logα1 + · · · + βn logαn

is either zero or transcendental. The latter case arises if logα1, . . . , logαn are
linearly independent over Q and β1, . . . , βn are not all zero.

Proof This is the content of Theorems 2.1 and 2.2 of [1]. ��
We will also use Kronecker’s limit formula as discussed in the works of Siegel [18],

Ramachandra [16] and Lang [11]. We begin by reviewing this.
Let �(z) be Ramanujan’s cusp form:

�(z) = q
∞∏

n=1

(1 − qn)24, q = e2π i z .

Now let K be an imaginary quadratic field and let b be an ideal of OK . If [β1, β2] is
an integral basis of b with �(β2/β1) > 0, we define

g(b) = (2π)−12(N(b))6�(β2/β1).

One can verify (as on page 109 of [16]) that g(b) is well-defined and does not depend
on the choice of integral basis of b. In fact, by Lemma 2 of [16] (or page 280 of [11]),
g(b) depends only on the ideal class b belongs to in the ideal class group. Thus, if C is
an ideal class, we write g(C) for the common value g(b) as b ranges over the elements
of the class C

Let dK be the discriminant of K and w denote the number of roots of unity in OK .
Writing

ζ(s,C) =
∑

a∈C

1

N(a)s
,

for the ideal class zeta function, we have by Kronecker’s limit formula

ζ(s,C) = 2π

w
√|dK |

(
1

s − 1
+ 2γ − log |dK | − 1

6
log |g(C−1)|

)

+ O(s − 1), (2)

as s → 1+. (Note that there is a sign error in formula (2) on page 280 of [11].)
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Transcendental values of class group L-functions 841

Proposition 13 If C1 and C2 are ideal classes, then g(C1)/g(C2) is an algebraic
number lying in the Hilbert class field of K .

Proof This follows immediately from Lemma 3 of [2] and is a classical result from
the theory of complex multiplication. ��
Proposition 14 For any ideal b, g(b)/g(OK ) is an element lying in the Hilbert class
field K H of K . If p is a prime ideal of K and σp is the Frobenius automorphism in
Gal(K H/K ), then

σp (g(b)/g(OK )) = g(p−1b)/g(p−1OK ), g(b)/g(OK ) = g(b−1)/g(OK ).

Proof The first part is the content of Theorem 1 on page 161 of [11]. The action
of complex conjugation is easily deduced from the equation j (b) = j (b) for the
j-function. ��

In the later sections of the paper, we will make fundamental use of a result of
Nesterenko [15].

Proposition 15 For any imaginary quadratic field with discriminant D and character

χD, the numbers π, eπ
√

D and

D∏

a=1

	(a/D)χD(a),

are algebraically independent over Q.

Proof See Corollary 3.2, page 6 of [15]. ��

3 Proofs of Theorem 1 and Corollary 3

We first write

L(s, f ) =
∑

C∈HK

f (C)ζ(s,C).

Each ζ(s,C) extends to all s ∈ C with the exception of s = 1, where it has a simple
pole with residue

2r1(2π)r2 RK

w
√|dK | ,

where r1 is the number of real embeddings, 2r2 is the number of complex embeddings
and RK is the regulator of K . We conclude that L(s, f ) extends analytically to all
s ∈ C apart from a simple pole at s = 1 with residue

2r1(2π)r2 RK

w
√|dK |

∑

C

f (C).
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Thus, L(s, f ) is analytic at s = 1 if and only if ρ f = 0. To study the convergence
of the Dirichlet series L(s, f ) at s = 1, we proceed as follows. The number of ideals
with norm ≤ x and lying in a fixed class C is well-known to be (see [12]),

2r1(2π)r2 RK

w
√|dK | x + O

(
x

d
d+1

)
,

where d is the degree of K over Q. Letting

S(x) =
∑

N(a)≤x

f (a),

we have by the general technique of partial summation (see p. 17 of [13]) that

L(s, f ) = s

∞∫

1

S(x)

xs+1 dx,

for �(s) > 1. Now,

S(x) =
∑

C∈HK

∑

a∈C,N(a)≤x

f (a) =
∑

C∈HK

f (C)

(
2r1(2π)r2 RK

w
√|dK | x + O

(
x

d
d+1

))

which is easily seen to be

2r1(2π)r2 RKρ f

w
√|dK | x + O

(
x

d
d+1

)
.

Hence, by partial summation, it follows immediately that L(s, f ) converges at s = 1
if and only if ρ f = 0. This completes the proof of Theorem 1.

To prove Corollary 3, we begin by noting that in the case K is an imaginary qua-
dratic field, the formulas become simple and we can apply Kronecker’s limit formula.
In this situation, when the series converges, we have by (2),

L(1, f )

π
= −1

3w
√|dK |

∑

C∈HK

f (C) log |g(C−1)|. (3)

Now we invoke Proposition 13. Indeed, by this proposition, we have for the identity
class C0, that g(C−1)/g(C0) is algebraic. Thus, as ρ f = 0, we have

L(1, f )

π
= −1

3w
√|dK |

∑

C∈HK

f (C) log |g(C−1)/g(C0)|, (4)

for any fixed class C0 of HK .
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Transcendental values of class group L-functions 843

Specializing to the case f = χ , where χ is a non-trivial character of the ideal class
group HK , and using the celebrated theorem that L(1, χ) �= 0, we deduce Corollary 3
by virtue of Lemma 12. This completes the proofs.

4 Proofs of Theorem 2 and Corollaries 4 and 5

In view of (4), and Lemma 12 (Baker’s theorem), the only part of Theorem 2 that
remains to be proved is the non-vanishing of L(1, f ). To this end, we will require
three lemmas.

Lemma 16 Let K be an imaginary quadratic field and f : HK → Q. Then,
L(1, f ) = 0 implies that L(1, f σ ) = 0 for any Galois automorphism σ of Gal(Q/Q).

Proof Equation (4) expresses L(1, f )/π as a linear form of logarithms of alge-
braic numbers. Now choose a maximal set of Q linearly independent numbers from
{log |g(C−1)/g(C0)| : C ∈ HK }. Denote this set by logα1, . . . , logαt . Thus,

log |g(C−1)/g(C0)| =
t∑

j=1

x(C, j) logα j ,

where the x(C, j)’s are rational numbers. Hence

L(1, f ) = − π

3w
√|dK |

t∑

j=1

∑

C∈HK

f (C)x(C, j) logα j .

If L(1, f ) = 0, then an application of Baker’s theorem (Lemma 12) gives that
∑

C∈HK

f (C)x(C, j) = 0, j = 1, 2, . . . , t.

Since the x(C, j)’s are rational numbers, we deduce that for every Galois automor-
phism σ ,

∑

C∈HK

f σ (C)x(C, j) = 0, j = 1, 2, . . . , t.

Consequently, L(1, f σ ) = 0. ��
The next lemma allows us to reduce the proof of Theorem 2 to the case when f is

rational valued.

Lemma 17 Let M be the algebraic number field generated by the values of f . Let
r = [M : Q] and choose a basis β1, . . . , βr of M over Q and write

f (C) =
r∑

i=1

βi fi (C),

with fi (C) rational. Then, L(1, f ) = 0 implies L(1, fi ) = 0 for i = 1, 2, . . . , r .
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Proof Let M = M (1), . . . ,M (r) be the conjugate fields of M . The map x → x ( j)

from M to M ( j) extends to a Galois automorphism σ j of Gal(Q/Q). Thus,

f σ j (C) =
r∑

i=1

β
( j)
i fi (C).

Clearly, the matrix (β( j)
i ) is invertible since β1, . . . , βr is a basis, and we can express

fi (C) as a Q-linear combination of the f σ j (C). By Lemma 16, we have that L(1, f ) =
0 implies L(1, f σ j ) = 0 for every j . Thus, L(1, fi ) = 0 for 1 ≤ i ≤ r , as desired.

��
Lemma 18 If f is rational-valued and L(1, f ) = 0, then f (C) + f (C−1) = 0 for
every ideal class C.

Proof If L(1, f ) = 0, then

∑

C∈HK

f (C) log |g(C−1)/g(C0)| = 0.

Clearing denominators, we may suppose that f is integer-valued. Exponentiating the
above expression gives

∏

C∈HK

∣
∣
∣
∣
g(C−1)

g(C0)

∣
∣
∣
∣

f (C)

= 1.

To remove the absolute values, we square the expression and pair up C with C−1 and
re-arrange it to deduce that

∏

C

[
g(C)

g(C0)

] f (C)+ f (C−1)

= 1.

Each of the factors in the product is an algebraic number and applying Proposition 14,
we see that

∏

C

[
g(p−1C−1)

g(p−1C0)

] f (C)+ f (C−1)

= 1,

for any prime ideal p of OK . Taking absolute values and then logarithms, we conclude
that

∑

C

( f (C)+ f (C−1)) log |g(p−1C−1)/g(p−1C0)| = 0,
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for every prime ideal p. By the Chebotarev density theorem, the p−1’s range over all
elements of HK as p ranges over all prime ideals of OK .

We view these equations as a matrix equation

DF = 0

where F is the transpose of the row vector ( f (C−1))C∈HK and D is the “Dedekind–
Frobenius” matrix whose (i, j)th entry is given by log g(C−1

i C j )/g(C
−1
i ) with Ci ,C j

running over the elements of the ideal class group. The first column of D is the zero
vector and we can re-write our matrix equation as

D0 F0 = 0

where F0 is the transpose of the row vector ( f (C−1))C�=1 and D0 is the matrix obtained
from D by deleting the row and column corresponding to the identity element. By
the theory of the Dedekind–Frobenius determinant (see for example, p. 71 of [20]),
the determinant of D0 is

∏

χ �=1

(
∑

a

χ(a) log g(a−1)

)

�= 0,

since by formula (3), each factor is up to a non-zero scalar, L(1, χ), which is non-zero.
Thus, f (C)+ f (C−1) = 0 for all C �= C0. Since

∑

C

f (C)+ f (C−1) = 0,

we deduce that f (C0)+ f (C−1
0 ) = 2 f (C0) = 0 as well. This completes the proof.

��
The proof of Theorem 2 can now be given as follows. First, if f is rational-valued,

we are done by the previous lemma. Lemma 17 allows us to reduce to the rational-
valued case. This completes the proof.

Corollary 4 is also now immediate. Indeed, suppose that

∑

χ �=1,χ∈H∗
K

cχ L(1, χ) ∈ Qπ,

for some cχ ∈ Q. Then, setting f = ∑
χ �=1,χ∈H∗

K
cχχ we have L(1, f )/π is alge-

braic. Since ρ f = 0, we can apply Theorem 2 and deduce that f is identically zero.
By the independence of characters, this means that each cχ is zero.

Corollary 5 follows directly from Corollary 4 since two algebraic numbers are
linearly dependent over Q.
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5 Genus characters and L′(1, χD)

As before, let K be an imaginary quadratic field with discriminant D < 0. Real-
valued characters of the ideal class group of K are called genus characters. These
characters can be extended to functions on the ideal classes of OK in the obvious way.
Such extended characters take on only the values 0, ±1. By a classical theorem of
Kronecker, they have a simple description. For each factorization D = D1 D2 with
D1, D2 being fundamental discriminants, we define a character χD1,D2 by setting it
to be

χD1,D2(p) =
{
χD1(N(p)) if (p, D1) = 1

χD2(N(p)) if (p, D2) = 1.

One can show that this is well-defined and that it defines a character on the ideal class
group. We refer the reader to page 60 of [18] for the background on genus characters.
We have the Kronecker factorization formula:

L(s, χD1,D2) = L(s, χD1)L(s, χD2).

Corresponding to the factorization D = 1 · D, we get

L(s, χ1,D) = ζ(s)L(s, χD).

The left hand side is ζK (s) and so we can write

∑

C∈HK

ζ(s,C) = ζ(s)L(s, χD).

This identity could have been derived in other ways. Applying the Kronecker limit
formula, and comparing the constant term in the Laurent expansion of both sides, we
obtain as in [18]:

Proposition 19

γ L(1, χD)+ L ′(1, χD) = 2π

w
√|dK |

∑

C∈HK

(

2γ − log |dK | − 1

6
log |g(C−1)|

)

.

Using Dirichlet’s class number formula, we deduce:

Corollary 20

L ′(1, χD)

L(1, χD)
= γ − log |dK | − 1

6h

∑

C∈HK

log |g(C)|,

where h denotes the order of HK .
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In particular, we deduce the following interesting result.

Theorem 21 For any ideal class C,

L ′(1, χD)

L(1, χD)
− γ + 1

6
log |g(C)|

is a Q-linear combination of logarithms of algebraic numbers.

6 Proof of Theorem 6

We now analyze the asymptotic behaviour of the formula in Corollary 20 using the
theory of Hurwitz zeta functions. As a result, we derive a simple proof of the Chowla–
Selberg formula. Recall that the Hurwitz zeta function ζ(s, x) is defined by the series

ζ(s, x) :=
∞∑

n=0

1

(n + x)s
.

This series converges for �(s) > 1 and Hurwitz showed how one can extend it to
the entire complex plane apart from s = 1 where it has a simple pole with residue 1.
Given a Dirichlet character χ mod q, we can write

L(s, χ) =
∞∑

n=1

χ(n)

ns
= q−s

q∑

a=1

χ(a)ζ(s, a/q).

Thus,

L ′(s, χ) = −(log q)q−s
q∑

a=1

χ(a)ζ(s, a/q)+ q−s
q∑

a=1

χ(a)ζ ′(s, a/q).

Using the well-known formulas

ζ(0, x) = 1

2
− x, ζ ′(0, x) = log(	(x)/2π),

where the differentiation is with respect to the s-variable, we deduce that

L(0, χ) =
q∑

a=1

χ(a)(1/2 − a/q),

and

L ′(0, χ) = −(log q)L(0, χ)+
q∑

a=1

χ(a) log	(a/q), (5)
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since
∑q

a=1 χ(a) = 0. Ifχ is odd and primitive, L(s, χ) satisfies a functional equation
of the form

As	((s + 1)/2)L(s, χ) = � A1−s	((2 − s)/2)L(1 − s, χ),

where � (called the root number) is a complex number (see page 71 of [4]) and
A = √

q/π . We also recall that for quadratic characters χ , the root number � is 1.
We logarithmically differentiate this expression to obtain:

log A + 1

2
ψ((s + 1)/2)+ L ′

L
(s, χ) = − log A − 1

2
ψ((2 − s)/2)− L ′

L
(1 − s, χ),

where ψ(s) denotes the digamma function, which is the logarithmic derivative of the
gamma function. Putting s = 1 into the formula, and using (see, for example, p. 301
of [14])

ψ(1) = −γ, ψ(1/2) = −γ − 2 log 2

we deduce

L ′

L
(1, χ) = −2 log A + γ + log 2 − L ′

L
(0, χ). (6)

Now we specialize our discussion to quadratic characters associated to an imaginary
quadratic field K . Such a character is necessarily odd and if K has discriminant D,
then this character, which we denote by χD is a primitive character modulo D. In this
situation, we have from the functional equation

L(0, χD) = 2hD/wD,

where hD and wD denote the class number and number of roots of unity of K . Thus,
injecting formula (5) into equation (6), we get on exponentiating,

exp

(
L ′(1, χD)

L(1, χD)
− γ

)

= (2D/A2)

D∏

a=1

	(a/D)−χD(a)wD/2h D .

By Proposition 15, and the fact that A = √
D/π , Theorem 6 is now immediate.

7 The Chowla–Selberg formula revisited

We can combine the calculation of the previous section with Corollary 20 to deduce
the Chowla–Selberg formula:

∏

C∈HK

g(C)1/3 =
(

1

2π |dK |
)2h D D∏

a=1

	(a/D)wDχD(a).
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We analyze the left hand side of this equation following [7]. Let E be an ellip-
tic curve with complex multiplication by an order in the imaginary quadratic field
K = Q(

√−D). Formula (3) of [7] states that any period of E is up to an algebraic
factor, given by the right hand side of the above equation. In other words,

f (χD) :=
D∏

a=1

	(a/D)χD(a)

is equal to a product of a power of π and a power of the period of the CM elliptic
curve attached to the full ring of integers of Q(

√−D) (up to an algebraic factor).
More generally, we can define for any character χ (mod D),

f (χ) =
D∏

a=1

	(a/D)χ(a).

Let q|D and χ be a real primitive character (mod q). Let χ∗ denote the character
obtained by extending χ to residue classes (mod D). Then, it is not hard to see that
f (χ∗) is (up to a non-zero algebraic factor) equal to f (χ). Indeed, recall that

	(z)	(z + 1/q) · · ·	(z + (q − 1)/q) = q1/2−qz(2π)(q−1)/2	(qz).

Thus,

f (χ∗) =
D∏

a=1

	(a/D)χ
∗(a)

=
q∏

a=1

[
	(a/D)	((a + q)/D) · · ·	((a + (D/q − 1)q)/D)

]χ(a)

=
q∏

a=1

[
	(a/q)(2π)(D/q−1)/2(D/q)1/2−a/q

]χ(a)

= f (χ)(D/q)
∑q

a=1(1/2−a/q)χ(a).

Since χ is a real character, the exponent of D/q is rational and so the second fac-
tor is algebraic and non-zero. Consequently, f (χ) and f (χ∗) are equal apart from a
non-zero algebraic factor. We record this remark here since it will be used in the next
section.

8 Proof of Theorem 10

We are now ready to prove Theorem 10. For each odd quadratic character χD , we have
associated an imaginary quadratic extension kD . Thus, f (χ) is defined for any odd
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quadratic character. We can associate a CM elliptic curve ED , with ring of endomor-
phisms isomorphic to the ring of integers of kD . Let ωD be the real period of ED . The
Chowla–Selberg formula expresses

D∑

a=1

χD(a) log	(a/D)

as a Q-linear form in logπ , logωD and the logarithm of a non-zero algebraic num-
ber. For any divisor q of 24, every non-trivial Dirichlet character mod q is quadratic.
Noting that

∑

χ even

χ(a) = ϕ(q)/2,

if a ≡ ±1(mod q) and zero otherwise, we deduce that

∑

χ odd

χ(a) =

⎧
⎪⎨

⎪⎩

ϕ(q)/2 if a ≡ 1(mod q)

−ϕ(q)/2 if a ≡ −1(mod q)

0 otherwise.

By considering the combination

∏

χ odd

f (χ)χ(b)

where the product is over odd characters (mod q), we find

∏

χ odd

f (χ)χ(b) =
q∏

a=1

	(a/q)
∑
χ odd χ(ab)

.

Since for any divisor q of 24, b2 ≡ 1(mod q) for any b coprime to q and so we have
ab ≡ 1(mod q) implies a ≡ b(mod q). Thus,

∑

χ odd

χ(ab) =

⎧
⎪⎨

⎪⎩

ϕ(q)/2 if a ≡ b(mod q)

−ϕ(q)/2 if a ≡ −b(mod q)

0 otherwise.

and we deduce that

	(a/q)	(1 − a/q)−1
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is the product of an algebraic number, a power of π and a product of powers of periods
of non-isogenous elliptic curves. On the other hand,

	(a/q)	(1 − a/q)

is a product of π and an algebraic number. Thus, we deduce that 	(a/q) is (up to
an algebraic factor) a product of a power of π and periods of non-isogenous elliptic
curves. This completes the proof.

To prove Corollary 11, we suppose that at least two of the numbers,	(a/8), 	(b/8)
(say), among

	(1/8), 	(3/8), 	(5/8), 	(7/8)

are algebraic. By the proof of the previous theorem, we can write each term as a prod-
uct of powers of π and periods ω1 and ω2 of two non-isogenous CM elliptic curves.
By taking appropriate powers of	(a/8), 	(b/8), we deduce that their quotient, which
is algebraic, is a product of powers of π and ω1. By a result of Chudnovsky [3], we
know that π and ω1 are algebraically independent. This completes the proof.

9 Proof of Theorem 9

As noted in Sect. 1, Ihara et al. proved the following theorem in [10].

Proposition 22 Let �0(1) = 1 and �0(n) = 0 for n > 1. Define for k ≥ 1,

�k(n) =
∑

n1···nk=n

�(n1) · · ·�(nk),

where � denotes the von Mangoldt function. Set

μ(a,b) :=
∞∑

n=1

�a(n)�b(n)

n2 .

Then, for q prime and any ε > 0

Ta,b :=
∑

χ �=χ0

P(a,b)
(

L ′

L
(1, χ)

)

= (−1)a+bμ(a,b)ϕ(q)+ O(qε),

where P(a,b)(z) = zazb.

Proof This is Theorem 5 of [10]. ��
Remark It is easy to see that the series for μ(a,b) converges. Indeed, �(n) ≤ log n so
that�k(n) ≤ dk(n)(log n)k , where dk(n) denotes the number of factorizations of n as
a product of k natural numbers. Consequently, �k(n) = O(nε) for any ε > 0.
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We apply the previous proposition with a = b = k and a = b = 2k. An application
of the Cauchy–Schwarz inequality to the sum

∑

χ �=χ0

P(k,k)
(

L ′

L
(1, χ)

)

shows that for any k ≥ 1,

#{χ �= χ0 : L ′(1, χ) �= 0} ≥ T 2
k,k

T2k,2k
.

Let us note that

T 2
k,k = (μ(k,k))2ϕ(q)2 + O(ϕ(q)qε)

and that

(
μ(k,k)

)2 =
∑

n1,n2

�k(n1)
2�k(n2)

2

n2
1n2

2

=
∞∑

n=1

(�2
k � �

2
k)(n)

n2 ,

where

( f � g)(n) :=
∑

d|n
f (d)g(n/d),

is the Dirichlet convolution. Now, if d(n) denotes the number of divisors of n,

�2k(n)
2 = (�k � �k)

2(n) =
⎛

⎝
∑

d|n
�k(d)�k(n/d)

⎞

⎠

2

≤ d(n)
∑

d|n
�2

k(d)�
2
k(n/d)

= d(n)
(
�2

k � �
2
k

)
(n),

by an application of the Cauchy–Schwarz inequality. As d(n) = O(nε) for any ε > 0,
we obtain

μ(2k,2k) =
∞∑

n=1

�2
2k(n)

n2 ≤
∞∑

n=1

(�2
k � �

2
k)(n)

n2−ε .

Putting

Gk(s) =
∞∑

n=1

(�2
k � �

2
k)(n)

ns
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we conclude

T 2
k,k

T2k,2k
≥ Gk(2)ϕ(q)2 + O(ϕ(q)qε2)

Gk(2 − ε1)ϕ(q)+ O(qε2)

for any ε1, ε2 > 0. Choosing k = 2 and noting that

G2(2 − ε1) = G2(2)+ O(ε1),

we conclude that

T 2
k,k

T2k,2k
≥ ϕ(q)+ O(qε).

The result immediately follows from choosing ε1 = 1/q.

10 Concluding remarks

It is clear from the preceding discussion that the non-vanishing of certain Dirichlet
series is connected with linear independence of special values of L-series. Such a
theme was explored in a classical context in [9]. What is interesting in this paper is
the role played by L ′(1, χ) with χ a Dirichlet character.

The question of non-vanishing of L ′(1, χ) arises in other contexts like the follow-
ing. Let K be an algebraic number field and ζK (s) its Dedekind zeta function. It is
well-known that ζK (s) has a simple pole at s = 1 with residue λK . Here,

λK = 2r1(2π)r2 hK RK

w
√|dK | ,

where r1 is the number of real embeddings of K and 2r2 is the number of non-real
embeddings of K , hK , RK , w and dK are the class number, regulator, the number of
units of finite order and discriminant, respectively, of K . Let us set

gK (s) = ζK (s)− λK ζ(s).

Then, gK (s) is regular at s = 1. In [17], Scourfield asked if for any field K �= Q we
have gK (1) = 0. This question is really about non-vanishing of linear combinations
of derivatives of L-functions.

To see this, we write

ζK (s) = ζ(s)FK (s),

where FK (s) is a product of certain Artin L-series. Using Brauer’s induction theorem
and the non-vanishing of Hecke L-series at s = 1, it is easily seen that FK (s) is regular
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at s = 1. Consequently, FK (1) = λK and since

ζK (s)− λK ζ(s) = ζ(s)(FK (s)− λK ),

we see that gK (1) = F ′
K (1). If K̂ denotes the normal closure of K over Q, and

G = Gal(K̂/Q), one can express FK (s) as a product of Artin L-series attached to
irreducible characters of G. Indeed, if H = Gal(K̂/K ), ζK (s) is the Artin L-series
attached to the character IndG

H 1. If χ is an irreducible character of G, we have by
Frobenius reciprocity,

cχ := (IndG
H 1, χ) = (1, χ |H )

which is the multiplicity of the trivial character in χ restricted to H . Thus, cχ is a
non-negative integer and we have

FK (s) =
∏

χ �=1

L(s, χ)cχ ,

where the product is over the non-trivial irreducible characters of G. Hence,

F ′
K (1)

FK (1)
=

∑

χ �=1

cχ
L ′

L
(1, χ).

In the special case K/Q is Galois, cχ = χ(1). Thus, in the Galois case, the question
of non-vanishing of gK (1) is equivalent to the non-vanishing of

∑

χ �=1

χ(1)
L ′

L
(1, χ).

If K = Q(ζq) is the qth cyclotomic field, with ζq being a primitive qth root of
unity, then Ihara et al. [10] have investigated the asymptotic behaviour of this sum.
They proved that

lim
q→∞,q prime

1

φ(q)

∑

χ �=χ1

L ′

L
(1, χ) = 0.

So the question of non-vanishing of gK (1) is a bit delicate and cannot be deduced
from this limit theorem.

The non-vanishing of L ′(1, χ) seems to be intimately linked with arithmetic ques-
tions. For example, if K/Q is quadratic, then FK (s) = L(s, χD) where χD is the
quadratic character attached to K . In this case, Scourfield’s question reduces to the
question of whether L ′(1, χD) = 0 for any such χD . It is unlikely that such a χD

exists.
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