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In 1927, Artin [ 1 ] enunciated the following hypothesis: given any nonzero 
integer a # * 1, or a perfect square, there exist infinitely many primes p for 
which a is a primitive root, modulo p. Moreover, if N,(x) denotes the 
number of such primes up to x, he conjectured that for a certain constant 
A (a), 

N,(x) - A(a) -?f- 
logs‘ 

as s + co. In 1967, Hooley [ 3 ] proved this conjecture assuming the Riemann 
hypothesis for a certain (infinite) set of Dedekind zeta functions. Later, 
Goldstein ]2] formulated a general conjecture, a special case of which was 
Artin’s conjecture. His conjecture was as follows: for each prime q, let L, be 
an algebraic number field, normal and of finite degree over Q. For each 
squarefree k, set 

where L, is taken to 
primes which do not 
where 

L,= TTL,, 
qlk 

be Q. Let n(li) = IL, : U4]. Then, the set of rational 
split completely in any L, has a natural density 6, 

and p denotes the usual Mobius function. Simple ideas from algebraic 
number theory reveal that Artin’s conjecture is recaptured by the special case 
L, = O(&,, a”9), where c, is a primitive qth root of unity. 
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Weinberger [7/ showed that Goldstein’s conjecture is not true, in general. 
His counterexample consisted of certain extensions L,, abelian over 0, and 
satisfying 

4< log Id I 2-e q, 
4s) 

where d, denotes the discriminant of L,/Q. It was then realized that further 
conditions need to be imposed for the conjecture to be true. 

Utilizing the methods of Hooley, Goldstein [2] proved the following 
theorem under the assumption of the generalized Riemann hypothesis. 

THEOREM 1. If for q sufjciently large, the extensions L,/Q are abelian 
and 

(i) l/n(k) log ldkl = O(log k), 

(ii) l$ a prime p splits complete@ in L, then for q sufficient& large, 
p > f,, where f, is the conductor of L,, 

(iii) Ck>y l/n(k) = o( l/log .v), as J ) + co, then the set of primes which 
do not split completely in any L, has a density 

The purpose of this paper is to supply an unconditional proof of this 
theorem. In fact, we shall prove a slightly general result from which the 
above theorem can be deduced. 

Remarks. There seem to be numerous misprints in 121. We address 
ourselves to [2] in these remarks. First, condition (i) of the theorem there 
should be as we have stated it above. Weinberger’s counterexample confirms 
this. A careful study of the proof also reveals this fact (especially, Eq. 22, 
p. 109). The calculation in Eq. 24 should be 

Therefore, we need to assume that if p splits completely in L,, then p > f,, 
not merely p > q. Finally, condition (iii) in (2) is insufficient to imply the 
absolute convergence of 
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Counterexamples are easily constructed by taking an infinite tower for the 
L,‘S. 

To prove Theorem 1, we need the following lemmas. 

LEMMA 1 (Lagarias-Odlyzko 141). Let L/Q be a normal extension of 
degree n and discriminant d (over 0). There are effective constants .4 and B 
such that for 

x >, exp(lOn(log IdI)*), 

71(x, L) = 
li x 
n 

+ 
li(x4) + 

n 0(x exp(-A dGm). 

where x(x, L) denotes the number of rational primes <x which split 
completely in L and li x denotes the familiar logarithmic integral, and if the ,!I 
term is present at all then 

1 1 
i 410gd’ BIdI”” ’ 

The constant implied by the 0 symbol is absolute. 

LEMMA 2. With the same notation as in Lemma 1, there is an absolute 
constant c, such that tf 

then 

\/logxln > c max(log (dl, Id]““). 

x(x, L) = 5 + 0(x exp(-A vGg$)), 

where the implied constant is absolute. 

Proof. The lemma follows by utilizing the bound of Stark [6] for /I given 
in Lemma 1. 

The next lemma computes the discriminant of an arbitrary abelian 
extension L/Q. Set for any natural number 6, 

m(J) = IL n Q(id : 01, 

where ia denotes a primitive 6th root of unity. Let f be the conductor of L 
(i.e.. the smallest f such that L c C&(4’,>). 
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LEMMA 3. For an abelian extension L/Q, 

log IdI = m(f) logf- \’ in 
Gf 

where 

A(n) = log p if n = pa, p prime. 

=o if not. 

Proof. By the conductor discriminant formula, 

where s(e) is the number of characters of Gal(L/Q) which have conductor e. 
We know for any g, 

\’ s(e) = m(g) = [L n Cl(&) : Q]. 
dR 

MGbius inversion gives 

Therefore, 

log 1 dl = x s(e) log e 
e If 

The inner sum can be rewritten as 

\- p(t) log(&) = (log 6) ” p(t) -A 3 . 
IIZS) IIZS, (3 

We finally get, 

log ldl= m(f) logy- \‘ m 
Bii 0 

$j A(d), 

as desired. 



ARTIN'S CONJECTURE 245 

COROLLARY 1. For any abelian extension L/Q of degree n, discriminant 
d, and conductorf, we have 

; logf< log I4 ---< logf. 
n 

Proof. As f is the conductor of L. 

f 0 m(f) ms< 2 for 621. 

By Lemma 3, we deduce 

hldl>m(f)logf- F \' A(d)> m(f) 

CT/ 
--+ogf +ogJ: 

The inequality 

is easily deduced from the conductor-discriminant formula. 

COROLLARY 2. For any abelian extension L/Q of degree n and 
discriminant d, 

LEMMA 4. For any abelian extension L/Q of degree n and conductor f, 

74% L 1 < 
2x 

n h(x/f) ’ 

Proof. There are reduced residue class representatives a, ,..., a, (mod f), 
where t = #(f)/n, such that any p splits completely in L if and only if one of 
p = a, ,..., p = a, (mod f) holds. 

The Brun-Titchmarsh inequality [5 1 states that for f < x, 
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where rc(x,f, a) is 
(mod f). Therefore, 
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the number of primes <x which are congruent to u 

2tx 

i=l 
$!?(f) log (+I G n lof;i) - 

as desired. 

We now prove 

THEOREM 2. Suppose that for q sufficiently large, L,/Q is abelian and 
that 

“, ,2(k) < o. - . 
2, n(k) 

If 

6) lim sup log IdA 
k-cc n(k) log k 

<c< a,and 

(ii) for some 0 < 19 < 1/2c, 

M(xO) = o(x/log x), 

where A4( y) is the number of primes <x which split completely in some L,, 
q > JJ. then the set of primes which do not split completely in any L, has a 
densitv 

ProoJ Let N(x, y) be the number of primes <x which do not split 
completely in any L,. q < y. It is evident that for any y, 

f(.x) = N(& Y) + O(M(Y)). 

wheref(x) is the number of primes <x which do not split completely in any 
L,. Lemma 3 and condition (i) imply that for q sufficiently large, 

+ logfq < ~ logCdJ < c log q 
49) ’ ’ 

where f, denotes the conductor of L,/Q. Hence, 

f, < qzc. 
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Moreover. 

Set y = (1,’ 16~) log log x. Then 

Now, for squarefree k < (log x)““, we have by (i), 

n(k) ILI~~“~‘% (log ,)I;’ . (log x)‘lJ -G (log x)“’ 

and 

tz(k)(log Id,l)’ 6 log x. 

This means, for k < (log x)“~‘, we can apply Lemma 2, and deduce 

N(x, .I,) = \“ ,u(k) n(x. L,) 
x 

where the dash on the summation indicates that all prime divisors of k are 
<.r. The error term is easily estimated by 

-G x(2?‘) exp(-A(log xY)~‘) < x/(log x)‘. 

since n(k) < (log x)“‘. Therefore, 

N(x, y) = “’ 
f 

The M term is handled easily. First, 

M( 4’) < M( J’, X0) + M(xO). 

By (ii), M(x’) = o(s/log x). By Lemma 4, 

and by (ii) 6’ < 1/2c. As 

and 2ce< 1, 
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we deduce 
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M(y, X>O = o(x/log x). 

Therefore, 

f(x) = ;’ “$; x + o(x/log xl 

and so 

lim f(x)= - “r, 0) 
x -73 x/log x k;, n(k) ’ 

as desired. 

We can deduce Theorem 1 from Theorem 2, since by (iii), and Lemma 4, 

WY),< “ 
2x 

- = @x/log x) 
4y.v 4s) 

for any )I= xv, q > 0. 
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