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FROM THE BIRCH AND SWINNERTON-DYER CONJECTURE

TO NAGAO’S CONJECTURE

SEOYOUNG KIM AND M. RAM MURTY,
WITH AN APPENDIX BY ANDREW V. SUTHERLAND

Abstract. Let E be an elliptic curve over Q with discriminant ΔE . For
primes p of good reduction, let Np be the number of points modulo p and
write Np = p + 1 − ap. In 1965, Birch and Swinnerton-Dyer formulated a
conjecture which implies

lim
x→∞

1

logx
∑
p≤x

p∤ΔE

ap log p

p
= −r +

1

2
,

where r is the order of the zero of the L-function LE(s) of E at s = 1, which
is predicted to be the Mordell-Weil rank of E(Q). We show that if the above
limit exits, then the limit equals −r + 1/2. We also relate this to Nagao’s
conjecture. This paper also includes an appendix by Andrew V. Sutherland
which gives evidence for the convergence of the above-mentioned limit.

1. Introduction

Let E be an elliptic curve over Q with discriminant ΔE and conductor NE . For
each prime p ∤ΔE , we write the number of points of E (mod p) as
(1.1) Np ∶=#E(Fp) = p + 1 − ap,

where ap satisfies Hasse’s inequality ∣ap∣ ≤ 2
√
p. For p ∣ ΔE , we define ap = 0 if E

has additive reduction at p, ap = 1 if E has split multiplicative reduction at p, and
ap = −1 if E has non-split multiplicative reduction at p (for precise definitions of
this terminology, we refer the reader to [16, p. 449]).

The L-function attached to E, denoted as LE(s), is then defined as an Euler
product:

(1.2) LE(s) = ∏
p∣ΔE

(1 − ap

ps
)
−1

∏
p∤ΔE

(1 − ap

ps
+ p

p2s
)
−1

,

which converges absolutely for Re(s) > 3/2 by virtue of Hasse’s inequality. More-
over, the Euler product shows that LE(s) does not vanish for Re(s) > 3/2. Ex-
panding the Euler product into a Dirichlet series, we write

(1.3) LE(s) =
∞
∑
n=1

an
ns

.
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If we write αp, βp as the eigenvalues of the Frobenius morphism at p, for p ∤ΔE ,
we can write ap = αp + βp, and our L-function can be re-written as

(1.4) LE(s) = ∏
p∣ΔE

(1 − ap

ps
)
−1

∏
p∤ΔE

(1 − αp

ps
)
−1
(1 − βp

ps
)
−1

,

and by Hasse’s inequality ∣αp∣ = ∣βp∣ =
√
p.

By the elliptic modularity theorem (formerly the Taniyama conjecture) for
semistable elliptic curves over Q by Wiles [21], and its complete extension to all
elliptic curves over Q by Breuil, Conrad, Diamond, and Taylor [1], LE(s) extends
to an entire function and satisfies a functional equation which relates LE(s) to
LE(2 − s). More precisely, if we define

(1.5) ΛE(s) = N
s/2
E (2π)−sΓ(s)LE(s),

then ΛE(s) is entire and satisfies the following functional equation:

(1.6) ΛE(s) = wEΛE(2 − s),

where wE ∈ {1,−1} is the root number of E. As LE(s) ≠ 0 for Re(s) > 3/2, the same
is true for ΛE(s). Since Γ(s) has simple poles at s = 0,−1, . . ., we see that LE(s) has
“trivial zeros” at s = 0,−1, . . .. These zeros are simple by virtue of the functional
equation and the non-vanishng of LE(s) for Re(s) > 3/2. Thus, for m = 0, 1, 2,⋯,
we have

(1.7) 1 = Res
s=−m

L′E(s)
LE(s)

= Res
s=−m

[Λ
′
E(s)

ΛE(s)
− Γ′(s)

Γ(s) ] .

This summarises our report on E from the analytic perspective.
From the algebraic perspective, a celebrated theorem of Mordell states that the

group of rational points E(Q) is a finitely generated abelian group with rank rM . In
1965, Birch and
Swinnerton-Dyer [2] conjectured that LE(s) has a zero of order rM at s = 1. In
other words, the algebraic rank rM equals the “analytic rank” which is the order
of zero at s = 1 of LE(s). This conjecture is often referred to as the Birch and
Swinnerton-Dyer conjecture. The first step towards this conjecture was taken by
Coates and Wiles in 1977 when they studied the CM case.

However, before they formulated this conjecture in this form, Birch and
Swinnerton-Dyer stated a stronger conjecture motivated by a heuristic “local-global”
principle: the rank should be reflected by “modulo p” information for many primes
p. More precisely, they conjectured that there is a constant CE such that

(1.8) ∏
p<x

p∤ΔE

Np

p
∼ CE(logx)r,

as x → ∞. We refer to this as the original Birch and Swinnerton-Dyer conjecture
(or OBSD for short).

Several authors have noted the “severity” of this conjecture in that it implies
the analog of the Riemann hypothesis for LE(s), and much more. This was first
announced by Goldfeld [7]. Kuo and Murty [8, Theorem 2, Theorem 3], and K.
Conrad [3, Theorem 1.3] independently noticed that (1.8) goes well beyond the
analog of the Riemann hypothesis for LE(s). They proved that (1.8) is true if and
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only if

(1.9) ∑
pk≤x
p∤ΔE

αk
p + βk

p

k
= o(x),

as x→∞, or equivalently

(1.10) ∑
pk≤x
p∤ΔE

(αk
p + βk

p) log p = o(x logx),

as x →∞, whereas, the Riemann hypothesis for LE(s) is equivalent to the weaker
assertion

(1.11) ∑
pk≤x
p∤ΔE

(αk
p + βk

p) log p = O(x(logx)2),

as x→∞.
If we return to the heuristic “local-global” principle that perhaps motivated

Birch and Swinnerton-Dyer to make their OBSD conjecture, we are led to formulate
several gradations of their conjecture.

The first is that (1.8) is equivalent to

(1.12) ∑
pk≤x
p∤ΔE

αk
p + βk

p

kpk
= −r log logx +A + o(1),

for some constant A, as x→∞. If we weight each prime power pk by log p (following
Chebysheff), we have that (1.8) implies via partial summation that

(1.13) ∑
pk≤x
p∤ΔE

αk
p + βk

p

kpk
log p = −r logx + o(logx),

which already implies the analog of the Riemann hypothesis for LE(s) and still
leads to an analytic determination of the rank r using the “local” data ap. The
error term in (1.13) cannot be O(1) as will be shown in section 4.

There are good reasons to believe that (1.11) is not the optimal estimate. Mont-
gomery [10] and Gallagher [6] have suggested in the context of the Riemann zeta
function (but here applied to our context) that the error in (1.11) should be

(1.14) O(x(log log logx)2)
or even the “weaker” O(x(log logx)2).

In either case, it is conceivable that OBSD is true, even though it goes well
beyond the analog of the Riemann hypothesis for LE(s).

The purpose of this note is to show that if the limit

(1.15) lim
x→∞

1

logx
∑
pk≤x
p∤ΔE

αk
p + βk

p

kpk
log p

exists, then the limit is −r. Moreover, this implies that if the limit

(1.16) lim
x→∞

1

logx
∑
p<x

ap log p

p
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exists, then the Riemann hypothesis for LE(s) is true, and the limit is −r + 1/2.
We apply a technique of Cramér [4] to prove our theorem. We also relate the limit
(1.16) to a conjecture of Nagao to formulate a conjecture which links the rank of an
elliptic curve over Q(T ) to its fibral elliptic curves (defined using the specialization).

In an appendix by Sutherland, we tabulate some numerical evidence that sug-
gests the limit (1.16) always exists and equals our conjectured value. We respect-
fully dedicate this paper to Professor John H. Coates. Professor Coates asked the
senior author back in 1989 if one can determine the rank effectively from a knowl-
edge of the coefficients ap alone. This paper is a partial answer to that question.

2. Preliminaries

For an elliptic curve E defined over Q with discriminant ΔE and conductor
NE , we defined its L-function LE(s) in (1.2). Hence, we can write its logarithmic
derivative as

(2.1) −L
′
E(s)

LE(s)
=
∞
∑
n=1

cnΛ(n)
ns

,

where Λ(n) is the von Mangoldt function, and

(2.2) cn =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

αm
p + βm

p , if n = pm and p ∤ N ,

amp , if n = pm and p ∣ N ,

0, otherwise.

Our first goal will be to derive a truncated explicit formula for

∑
n≤x

cnΛ(n)

in terms of the non-trivial zeros of LE(s). The method for deriving this is standard
(see for example, chapter 7 of [12]) where all the technical details are given in living
colour. However, we will highlight the salient steps of the method. An important
role is played by the following result which is of independent interest.

Proposition 1. If x is not an integer, then

∑
1
2x<n<2x

∣ log x

n
∣
−1
= O(x logx∥x∥ ) ,

where ∥x∥ is the distance of x to the nearest integer and the sum is over natural
numbers n lying in the interval ( 1

2
x, 2x).

Proof. This is contained in Exercise 7.2.2 of [12]. �

We will also need an asymptotic formula for the number NE(T ) of non-trivial
zeros ρ of LE(s) with ∣ Im(ρ)∣ < T . A very general result of Selberg [15] can be
specialized to our context. We record it below.

Proposition 2. Let NE(T ) be the number of zeros ρ = β + iγ of LE(s) satisfying
0 < γ ≤ T . Then

(2.3) NE(T ) =
T

π
(logT + c) + O(logT ),

where c is a constant which depends only on E.
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We apply the previous proposition to estimate the following sums over non-trivial
zeros of LE(s):

Proposition 3. We have

∑
∣γ∣<R

1

∣ρ∣ = O(log
2R),

and for any α > 1, we have

∑
ρ

1

∣ρ ∣α < ∞,

where the sums are over non-trivial zeros of LE(s).

Proof. By partial summation, the sum on the left hand side is dominated by

≪ ∫
R

1

NE(t)
t2

dt≪ ∫
R

1

log t

t
dt≪ log2R.

The second assertion also follows from partial summation and the convergence of
the integral

∫
∞

1

log t

tα
dt.

�

3. The truncated explicit formula

We will now derive a truncated explicit formula alluded to in the previous section.
Let C be the (oriented) rectangle with vertices c − iR, c + iR,−U + iR,−U − iR, and
its edges denoted by I1, I2, I3, and I4 respectively, with c = 2 (R is chosen so that
it is not the ordinate of a zero of LE(s), see [12, Ex. 7.2.5]) and U a positive
non-integral number. We have by the Cauchy residue theorem,

1

2πi ∫C −
L′E(s)
LE(s)

xs

s
ds = − ∑

∣γ∣<R
nρ

xρ

ρ
− ∑

m<U
Res
s=−m

[L
′
E(s)

LE(s)
xs

s
] ,(3.1)

where the first sum is over all non-trivial zeros ρ = β + iγ of LE(s), and nρ is the
multiplicity of each ρ. The second sum is the contribution from the trivial zeros.
Separating m = 0 and m ≥ 1 in the second sum, and computing the residue for the
term m = 0, we find

1

2πi ∫C −
L′E(s)
LE(s)

xs

s
ds = − ∑

∣γ∣<R
nρ

xρ

ρ
+ ∑

1≤m<U

x−m

m
− logx.(3.2)

On the other hand, for x not an integer, we have by the truncated Perron’s formula
(see Theorem 4.1.4 as well as Exercise 4.4.15 of [12]):
(3.3)

∑
n≤x

cnΛ(n) =
1

2πi ∫
2+iR

2−iR
−L

′
E(s)

LE(s)
xs

s
ds+O(

∞
∑
n=1

(x
n
)
2

∣cnΛ(n)∣ ⋅min(1, 1

R∣ log x
n
∣ )) .
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Injecting information from (3.2) for the integral on the right hand side, we get

∑
n≤x

cnΛ(n) = − ∑
∣γ∣<R

nρ
xρ

ρ
+ ∑

1≤m<U

x−m

m
− logx + 1

2πi ∫C/I1
L′E(s)
LE(s)

xs

s
ds

(3.4)

+O(
∞
∑
n=1

(x
n
)
2

∣cnΛ(n)∣ ⋅min(1, 1

R∣ log x
n
∣ )) ,(3.5)

= −∑
∣γ∣<R

nρ
xρ

ρ
+ ∑
1≤m<U

x−m

m
−logx+ 1

2πi∫C/I1
L′E(s)
LE(s)

xs

s
ds+E(x,U,R), (say)(3.6)

where the first sum is over all non-trivial zeros ρ = β + iγ of LE(s) (note that β = 1
under the Riemann hypothesis for LE(s)), and nρ is the multiplicity of each ρ. We
note that E(x,U,R) is the error term arising from the last term in (3.5). We first
estimate the error term in (3.5) and (3.6):

E(x,U,R) = O(
∞
∑
n=1

(x
n
)
2

∣cnΛ(n)∣ ⋅min(1, 1

R∣ log x
n
∣)) .

We consider the following three parts of the sum in E(x,U,R) separately:
⎛
⎝ ∑
n<x/2

+ ∑
x/2<n<2x

+ ∑
n>2x

⎞
⎠
(x
n
)
2

∣cnΛ(n)∣ ⋅min(1, 1

R∣ log x
n
∣) .(3.7)

The first sum is for n < x/2, and hence we have log(x/n) > log 2, and

(3.8) ∑
n<x/2

(x
n
)
2

∣cnΛ(n)∣ ⋅min(1, 1

R∣ log x
n
∣ ) = O

⎛
⎝
x2

R
∑

n<x/2

∣cnΛ(n)∣
n2

⎞
⎠
= O(x

2

R
) ,

for big enough R. Similarly, for the third sum of (3.7), the condition n > 2x implies
∣ log(x/n)∣ > log 2, and hence

(3.9) ∑
n>2x

(x
n
)
2

∣cnΛ(n)∣ ⋅min(1, 1

R∣ log x
n
∣ ) = O(x

2

R
) .

Now, it remains to compute the second sum of (3.7)

∑
x/2<n<2x

(x
n
)
2

∣cnΛ(n)∣ ⋅min(1, 1

R∣ log x
n
∣ ) .

We observe that x/2 < n < 2x implies that x/n is bounded and cnΛ(n)=O(x1/2 logx)
for n in this range. Choosing x = N +1/2, an integer plus half, we see that ∥x∥ = 1/2
and so, an application of Proposition 1 gives the result

(3.10) ∑
x/2<n<2x

(x
n
)
2

∣cnΛ(n)∣ ⋅min(1, 1

R∣ log x
n
∣ ) = O(2x

√
x(logx)2
R

) .

In conclusion, we obtain from (3.8), (3.9), and (3.10),

E(x,U,R) = O (x
2

R
) ,

for x = N + 1/2 (as above). The third term in (3.6)

(3.11)
1

2πi ∫C/I1
L′E(s)
LE(s)

xs

s
ds
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can be estimated with the usual method (see, for example, [12, Ex. 7.2.7]). Again,
as the method is standard, we indicate the main steps. The line integral has two
horizontal paths and one vertical. Using the growth of the logarithmic derivative
of the Γ-function along with the functional equation, one has

(3.12) −L
′
E(s)

LE(s)
≪ log(2∣s∣) −U ≤ Re(s) ≤ −1,

for U equal to M + 1/2 with M a positive integer and we exclude circles of a fixed
(small) radius around the trivial zeros. (See Exercise 7.2.6 of [12].) The choice of R
has been alluded to earlier and it is so chosen to have the estimate (by the method
indicated on page 392 of [12]),

(3.13) −L
′
E(s)

LE(s)
≪ log2R, −1 ≤ Re(s) ≤ 2.

With these estimates in place, the top horizontal line integral in (3.11) is now easily
estimated in two steps: first moving from 2+ iR to −1+ iR and then from −1+ iR to
−U +iR and using (3.12) and (3.13) in the respective steps. The same holds true for
the bottom horizontal line integral. Finally, the vertical line integral is estimated
using (3.13). Putting everything together, we get

O(x
2 log2R

R
+ x−U log2R) .

Letting U tend to infinity gives:

Proposition 4. For x > 3/2 and R chosen as above, in essence, not equal to the
ordinate of a non-trivial zero of LE(s), we have

(3.14) ψE(x) ∶= ∑
n≤x

cnΛ(n) = − ∑
∣γ∣<R

nρ
xρ

ρ
+O(x1/2 logx) + O(x

2 log2R

R
) .

Proof. The discussion preceding the statement of the theorem essentially contains
the proof. We need to tie things up. Firstly, the contribution from the trivial zeros
is

− logx − log (1 − 1

x
) = − log(x − 1).

This can easily be absorbed into the O(x1/2 logx) term. In our discussion, we
needed x = N + 1

2
. We can remove this restriction by noting that the summand on

the left hand side is O(x1/2 logx) and so

ψE(N + 1/2) −ψE(x) = O(x1/2 logx).
This completes the proof. �

We consider the following part of the sum from primes of good reduction:

(3.15) ψE(t) = ∑
n≤t

cnΛ(n),

and similar to the estimation of Cramér [4], we have the following result:

Theorem 5. Assuming the Riemann hypothesis for LE(s) is true, we obtain

(3.16) lim
x→∞

1

logx
∫

x

1

ψ2
E(t)
t3

dt =∑
ρ

∣nρ

ρ
∣
2

,
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where the sum is over all non-trivial zeros ρ of LE(s), and nρ is the multiplicity of
each ρ.

Proof. From (3.14), we have for t > 3/2,

(ψE(t) − O(t1/2 log t))2
t3

= 1

t3
⎛
⎝∑ρ

nρ
tρ

ρ
+O( t

2 log2R

R
)
⎞
⎠

2

= ∑
ρ

nρ∑
ρ′
nρ′

tρ+ρ
′−3

ρρ′
+O(t log

4R

R2
)+O

⎛
⎝
log2R

R

%%%%%%%%%%%
∑
ρ

nρ
tρ−1

ρ

%%%%%%%%%%%

⎞
⎠
,

where the sums involving ρ and ρ′ are taken over the zeros of LE(s) satisfying
∣ Im(ρ)∣ < R and ∣ Im(ρ′)∣ < R (for simplifying the notation); we assume the same
condition for such sums throughout the proof. Applying Proposition 3 to estimate
the last error term above, we obtain assuming the Riemann hypothesis for LE(s)
(that is, Re(ρ) = 1), that the sum in absolute value is O(log2R). Thus

(ψE(t) − O(t1/2 log t))2
t3

= ∑
ρ

nρ∑
ρ′

nρ′
tρ+ρ

′−3

ρρ′
+O( t log

4R

R2
) +O( log

4R

R
) .

Both of the error terms can be combined to give

(ψE(t) −O(t1/2 log t))2
t3

=∑
ρ

nρ∑
ρ′

nρ′
tρ+ρ

′−3

ρρ′
+O( t log

4R

R
) .

We integrate this equation from 1 to x. The left hand side is

∫
x

1

ψE(t)2
t3

dt +O(1)

because ψE(t) = O(t log2 t) assuming the Riemann hypothesis for LE(s). To treat
the right hand side, we use the relation ρ(2−ρ) = ∣ρ∣2 and ρ = 2−ρ, and thus obtain

∫
x

1

ψ2
E(t)
t3

dt =∑
ρ

nρ

ρ
∑
ρ′

nρ′

ρ′
∫

x

1
tρ+ρ

′−3dt +O(1) + O(x
2 log4R

R
)

=∑
ρ

nρ

ρ

⎡⎢⎢⎢⎢⎣
∑

ρ′=2−ρ

nρ′

ρ′
∫

x

1
tρ+ρ

′−3dt + ∑
ρ′≠2−ρ

nρ′

ρ′
∫

x

1
tρ+ρ

′−3dt

⎤⎥⎥⎥⎥⎦

+O(1) + O(x
2 log4R

R
)

= logx∑
ρ

∣nρ

ρ
∣
2

+∑
ρ

nρ

ρ
∑

ρ′≠2−ρ

nρ′

ρ′
⋅ x

ρ+ρ′−2 − 1

ρ + ρ′ − 2
+O(1)+O(x

2 log4R

R
) .

Note that ρ′ = 2 − ρ implies Im(ρ′) = − Im(ρ). We now estimate the second term:

(3.17) ∑
ρ

nρ

ρ
∑

ρ′≠2−ρ

nρ′

ρ′
⋅ x

ρ+ρ′−2 − 1

ρ + ρ′ − 2
.

Let η > 0 be sufficiently small, which is independent of x, so that it is smaller than
the smallest positive ∣γ∣. We will estimate the sum separately for two different
cases:

∣ρ + ρ′ − 2∣ ≥ η and ∣ρ + ρ′ − 2∣ < η.
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In the first case, by symmetry, it is sufficient to show that the following two sums
converge for all zeros satisfying ∣ρ + ρ′ − 2∣ ≥ η and ρ′ ≠ 2 − ρ:

∑
γ>0

nρ

∣ρ∣ ∑γ′>0
nρ′

∣ρ′∣(γ + γ′) ,(3.18)

∑
γ>0

nρ

∣ρ∣ ∑
0<γ′≤γ−η

nρ′

∣ρ′∣(γ − γ′) .(3.19)

Let us observe that both the cases γ′ > 0 and γ′ < 0 are covered by these cases by
taking negative sign if necessary. Note also that all sums in (3.18) and (3.19) are
over zeros which satisfy ∣ρ + ρ′ − 2∣ ≥ η. The convergence of the first sum follows
from Proposition 2 because by the arithmetic mean - geometric mean inequality,
we have (γ + γ′) ≥ 2(γγ′)1/2 and so,

∑
γ>0

nρ

∣ρ∣ ∑γ′>0
nρ′

∣ρ′∣(γ + γ′) ≪
⎛
⎝∑ρ

1

∣ρ∣3/2
⎞
⎠

2

.

Now, we consider the second sum (3.19). We apply Propositions 2 and 3 to estimate
the inner sum of (3.19) by breaking the sum into two parts:

∑
0<γ′≤γ−η

nρ′

∣ρ′∣(γ − γ′) =
⎛
⎜
⎝

∑
0<γ′≤γ−γ

2
3

+ ∑
γ−γ

2
3 <γ′≤γ−η

⎞
⎟
⎠

nρ′

∣ρ′∣(γ − γ′)

In the first part, we observe that ∣γ − γ′∣ ≫ ∣γ∣2/3, and by Proposition 3, we see it is

≪ log2 γ

γ2/3 .

In the second part, ∣ρ′∣ ≫ ∣γ∣, and using the formula for the zero counting function
(Proposition 2), we get

≪ 1

γ
(NE(γ) −NE(γ − γ2/3)) = O ( log γ

γ1/3 ) ,

for this part. Therefore, the sum in (3.19) converges since it is

≪ ∑
γ>0

nρ

∣ρ∣
log γ

γ1/3 < ∞

by the second part of Proposition 3. Therefore, we can write the sum in (3.17) as

∑
ρ

nρ

ρ
∑

ρ′≠2−ρ,
∣γ+γ′∣<η

nρ′

ρ′
⋅ x

ρ+ρ′−2 − 1

ρ + ρ′ − 2
+O(1).

Returning to our integral, and letting R tend to infinity, we therefore have

∫
x

2

ψ2
E(t)
t3

dt = logx∑
ρ

∣nρ

ρ
∣
2

+∑
ρ

∑
ρ′≠2−ρ

0<∣γ+γ′∣<η

nρnρ′(xρ+ρ′−2 − 1)
ρρ′(ρ + ρ′ − 2) + O(1)

= logx∑
ρ

∣nρ

ρ
∣
2

+∑
ρ

∑
ρ′≠2−ρ

0<∣γ+γ′∣<η

nρnρ′(xi(γ+γ′) − 1)
iρρ′(γ + γ′) + O(1).
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As the left hand side is real, we need only consider
(3.20)

Re

⎛
⎜⎜⎜
⎝
∑
ρ

∑
ρ′≠2−ρ

0<∣γ+γ′∣<η

nρnρ′(xi(γ+γ′) − 1)
iρρ′(γ + γ′)

⎞
⎟⎟⎟
⎠
= −∑

ρ
∑

ρ′≠2−ρ
0<∣γ+γ′∣<η

Im(nρnρ′(xi(γ+γ′) − 1)
ρρ′(γ + γ′) ) .

The summand can be written as
nρnρ′

∣ρ∣2∣ρ′∣2(γ + γ′) Im (ρρ′(xi(γ+γ′) − 1)) .

Noting that ρ = 1 + iγ and ρ′ = 1 + iγ′, a routine calculation shows

Im (ρρ′(xi(γ+γ′) − 1)) = −(γ + γ′) cos[(γ + γ′) logx] + (1 − γγ′) sin[(γ + γ′) logx].

Using the elementary inequality that ∣ sin θ∣ ≤ ∣θ∣, we see for x ≥ 3 that this quantity
is bounded by

∣γ + γ′∣ + ∣1 + γγ′∣∣γ + γ′∣ logx ≤ ∣γ + γ′∣(2 + ∣γγ′∣) logx ≤ ∣γ + γ′∣ ( 2

η2
+ 1) ∣γγ′∣ logx,

because ∣γ∣, ∣γ′∣ > η. Inserting this estimate into (3.20), we must bound

( 2

η2
+ 1) logx∑

ρ
∑

0<∣γ+γ′∣<η

nρnρ′

γγ′
.

For a given constant A > 0, we first consider the sum

∑
γ>A

∑
0<∣γ+γ′∣<η

nρnρ′

γγ′
.

By partial summation, we see that this is bounded by

∑
γ>A

nρ

γ ∫
−γ+η

−γ−η

NE(t)
t2

dt≪ ∑
γ>A

nρ

γ ∫
−γ+η

−γ−η

log ∣t∣
t

dt≪ ∑
γ>A

nρ log ∣γ∣
γ2

.

Applying Proposition 3, and choosing A large, we can make this arbitrarily small.
It remains to consider γ < A and the contribution from γ′ such that 0 < ∣γ + γ′∣ < η.
The set of such γ ≠ γ′ is a finite set and we choose η smaller than any of the elements
∣γ + γ′∣ so that the sum is vacous. This proves that for any ε > 0, there is an η > 0
such that

%%%%%%%%%%%
∑
ρ

∑
ρ′≠2−ρ

0<∣γ+γ′∣<η

nρnρ′(xρ+ρ′−2 − 1)
ρρ′(ρ + ρ′ − 2)

%%%%%%%%%%%
< ε logx.

Dividing by logx and letting x tend to infinity, we obtain

(3.21) lim
x→∞

1

logx
∫

x

2

ψ2
E(t)
t3

dt =∑
ρ

∣nρ

ρ
∣
2

.

�

Corollary 6. Let c > 0. For sufficiently large x > 0, there exists t ∈ [x, 2x] which
satisfies

(3.22) ∣ψE(t)∣ < ct
√
log t.
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Proof. Note that Theorem 5 implies

(3.23) ∫
2x

x

ψ2
E(u)
u3

du = o(logx).

Assume that for every t ∈ [x, 2x], we have ∣ψE(t)∣ ≥ ct
√
log t. This implies

(3.24) ∫
2x

x

ψ2
E(u)
u3

du ≥ ∫
2x

x

c2u2 logu

u3
du ≥ c2 log 2 logx,

which contradicts (3.23). �

4. Birch and Swinnerton-Dyer conjecture and related works

The Birch and Swinnerton-Dyer conjecture describes the rank rM of the Mordell-
Weil group of E and relates it to the order of vanishing of its L-function. The
conjecture has been improved over time with numerical evidence, and there are
several ways to describe their conjecture. In this paper, we are interested in the
following version of the conjecture from [2], which we previously introduced as
“OBSD”:

Conjecture 7 (Birch and Swinnerton-Dyer). For some constant CE, we have

(4.1) ∏
p<x

p∤ΔE

Np

p
∼ CE(logx)r,

where r is the order of the zero of the L-function LE(s) of E at s = 1.

Furthermore, Birch and Swinnerton-Dyer conjectured that the order of the zero
of the L-function LE(s) of E is equal to the rank rM of the Mordell-Weil group
E(Q) of E.

Kuo and Murty [8] and Conrad [3] independently showed that Conjecture 7 is
equivalent to an asymptotic condition of a sum involving the eigenvalues of the
Frobenius at each prime. We cite the result from [8, Theorem 2 and 3] and [3,
Theorem 1.3]:

Theorem 8. Conjecture 7 is true if and only if

(4.2) ∑
pk≤x
p∤ΔE

αk
p + βk

p

k
= o(x).

We also note that (4.2), and hence Conjecture 7, is equivalent to

(4.3) ∑
pk≤x
p∤ΔE

(αk
p + βk

p) log p = o(x logx).

As noted earlier, the Riemann hypothesis for LE(s) is equivalent to the following
asymptotic condition of the sum (4.3):

(4.4) ∑
pk≤x
p∤ΔE

(αk
p + βk

p) log p = O(x(logx)2).

Hence, as Kuo and Murty [8] and Conrad [3] pointed out, Conjecture 7 is much
deeper than the Riemann hypothesis for LE(s) according to our current knowledge.

Using Theorem 5, we prove the following result:
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Theorem 9. Assume the Riemann hypothesis is true for LE(s). Then there is a
sequence xn ∈ [2n, 2n+1] such that

(4.5) lim
n→∞

1

logxn
∑

p<xn

ap log p

p
= −r + 1

2
,

where r is the order of LE(s) at s = 1.

Proof. For x > 1, d > 3/2 and any real number a satisfying d > a, Perron’s formula
implies

(4.6)
1

2πi
∫

d+i∞

d−i∞
−L

′
E(s)

LE(s)
xs

s − a
ds = xa ∑

n≤x

cnΛ(n)
na

,

where the last sum in (4.6) is weighted by 1/2 if x is an integer. We consider the
case when a = 0, 1, and d = 2, we get

(4.7)
1

2πi
∫

2+i∞

2−i∞
−L

′
E(s)

LE(s)
xs

s(s − 1) ds = x ∑
n≤x

cnΛ(n)
n

− ∑
n≤x

cnΛ(n).

Noting that LE(s) has a simple zero at s = 0, we write the expansion of
L′E(s)
LE(s) at

s = 0 and s = 1 as

(4.8)
L′E(s)
LE(s)

= 1

s
+ d′ +⋯,

L′E(s)
LE(s)

= r

s − 1
+ d +⋯.

By following the residue computations as in [3, (6.8)], we have

(4.9) Res
s=ρ

(−L
′
E(s)

LE(s)
xs

s(s − 1)) =
⎧⎪⎪⎨⎪⎪⎩

(logx + 1) + d′ if ρ = 0,

−rx(logx − 1) − dx if ρ = 1.

As usual, we move the line of integration in (4.7) to the left (the methodology
being similar to our derivation of the truncated explicit formula) and considering
the contribution from the trivial and non-trivial zeros of LE(s), we get

(4.10) −rx logx +O(x) = x ∑
n≤x

cnΛ(n)
n

− ∑
n≤x

cnΛ(n),

as x tends to infinity, and we get

(4.11) ∑
n≤x

cnΛ(n)
n

= −r logx + ∑n≤x cnΛ(n)
x

+O(1),

where cn is defined as in (2.2). On the other hand, we can separate the left hand
side sum of (4.11)

∑
n≤x

cnΛ(n)
n

= ∑
p≤x

ap log p

p
+ ∑

p2≤x

(α2
p + β2

p) log p
p2

+O(1)

= ∑
p≤x

ap log p

p
+ ∑

p≤
√
x

(a2p − 2p) log p
p2

+O(1)

= ∑
p≤x

ap log p

p
+ ∑

p≤
√
x

a2p log p

p2
− ∑

p≤
√
x

2 log p

p
+ o(logx)

= ∑
p≤x

ap log p

p
− 1

2
logx + o(logx).
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Note that the fourth equality follows from calculations in the proof of [8, Lemma 1]
using the theory of the Rankin-Selberg convolution. The proof is similar to that in
[8]. To treat our sum which is weighted by log p, one needs the partial summation
formula. Combining this with (4.11), we obtain

(4.12) ∑
p≤x

ap log p

p
= (−r + 1

2
) logx + ∑n≤x cnΛ(n)

x
+ o(logx),

where r is the order of LE(s) at s = 1.
Now, using Corollary 6, for n ≥ 2, we can define a sequence by selecting xn ∈

[2n−1, 2n] such that

(4.13) ∣ψE(xn)∣ < cxn

√
logxn.

From (4.11) and (4.13), we have

(4.14) ∑
p≤xn

ap log p

p
= (−r + 1

2
) logxn +O(

√
logxn) + o(logxn),

and

(4.15)
1

logxn
∑

p≤xn

ap log p

p
→ −r + 1

2
as n→∞,

where r is the order of LE(s) at s = 1. �

Furthermore, Theorem 9 implies the following:

Corollary 10. If the limit

(4.16) lim
x→∞

1

logx
∑
p<x

ap log p

p

exists, then the Riemann hypothesis for LE(s) is true, and the limit is −r + 1/2.

Proof. From the assumption, we can write

(4.17) ∑
p<x

ap log p

p
=K logx + o(logx),

for some constant K. Taking into account the contribution from the higher powers
of primes on the left hand side of (4.11), we deduce that

∑
n≤x

cnΛ(n)
n

= (K − 1

2
) logx + o(logx).

Equation (4.11) now implies

∑
n≤x

cnΛ(n) = O(x logx),

which we have already noted, implies the Riemann hypothesis for LE(s). We can
therefore apply Theorem 9. If the limit of the theorem exists, then any subsequence
will also converge to the same limit. We therefore take for our subsequence the
xm ∈ [2m, 2m+1] provided by Theorem 9. For this subsequence, the limit is −r+1/2,
as desired. �
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Corollary 11. If the limit

(4.18) lim
x→∞

1

logx
∑
p<x

ap log p

p

exists, then Conjecture 7 is true.

Proof. From (4.11), we observe that

(4.19) ∑
pk≤x
p∤ΔE

(αk
p + βk

p) log p = ∑
n≤x

cnΛ(n) = x ∑
n≤x

cnΛ(n)
n

+ rx logx +O(x),

where the last equality follows from (4.11). Using the theory of Rankin-Selberg
convolution (as in the proof of [8, Lemma 1]), we obtain

∑
n≤x

cnΛ(n) = x∑
p≤x

ap log p

p
− 1

2
x logx + rx logx +O(x)

= (−r + 1

2
)x logx + o(x logx) − 1

2
x logx + rx logx +O(x)

= o(x logx),

where r is the order of LE(s) at s = 1 (as in (4.8)). This is equivalent to Conjecture
7, which is remarked as in Theorem 8. �

We make one final remark before concluding this section. This has to do with
the fact that one can actually show that the statement

∑
n≤x

cnΛ(n)
n

= −r logx +O(1)

is false. Indeed, if true, this would imply via (4.11) that

∑
n≤x

cnΛ(n) = O(x),

which is false by Theorem 6 of [11] which implies high oscillations of the error term
tending to infinity. Thus the error term cannot be bounded.

5. Connections to Nagao’s conjecture

We make here a few remarks that relate our results to Nagao’s conjecture. Recall
that this conjecture focuses on the elliptic surface

E ∶ y2 = x3 +A(T )x +B(T )
with A(T ),B(T ) ∈ Z[T ] and Δ(T ) ∶= 4A(T )3 + 27B(T )2 ≠ 0. For each t ∈ Z such
that Δ(t) ≠ 0, we have an elliptic curve Et defined over Q, and Nagao [13] defined
the fibral average of the trace of Frobenius for each prime p as follows:

Ap(E) ∶=
1

p

p

∑
t=1

ap(Et),

where ap(Et) is the trace of the Frobenius automorphism at p (that we have studied
in the previous sections) of Et. In [13], Nagao conjectured that

(5.1) − lim
X→∞

1

X
∑
p≤X

Ap(E) logp = rankE(Q(T )).
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Now the sum can be re-written as

(5.2) ∑
p≤X

1

p
∑
t≤p

ap(Et) log p = ∑
t≤X

⎛
⎝ ∑

t≤p≤X

ap(Et) log p
p

⎞
⎠
,

and from our analysis, for a fixed t, the inner sum is (ignoring error terms)

(−rt +
1

2
) log X

t
,

where rt = rank Et(Q). Thus, one may expect

− 1

X
∑
p≤X

Ap(E) log p ∼
1

X
∑
t≤X

(rt −
1

2
) log X

t
.

This suggests the following (modified) form of Nagao’s conjecture:

(5.3) lim
X→∞

1

X
∑
t≤X

(rt −
1

2
) log X

t
= rank E(Q(T )).

Now, note that

∑
t≤X

log
X

t
=X +O(logX)

by a simple application of Stirling’s formula. Thus, it would seem that

lim
X→∞

1

X
∑
t≤X

rt log
X

t
= rank E(Q(T )) + 1

2
.

By letting R(u) = ∑t≤u rt, using Abel summation formula, it is not difficult to see
that

∑
t≤X

rt log
X

t
= ∫

X

1
( ∑

t≤u
rt)

du

u
.

Thus, perhaps we have

∫
X

1

R(u)
u

du ∼ (rank E(Q(T )) + 1

2
)X,

as X →∞.
We now invoke the following elementary lemma: if f(x) is a positive nondecreas-

ing function such that as x→∞

∫
x

1

f(u)
u

du ∼ x,

then f(x) ∼ x as x →∞ [18, 3.7, Page 54]. Thus, our question becomes: is it true
that

(5.4) ∑
t≤X

rt ∼ (rankE(Q(T )) +
1

2
)X

as X →∞, which can be viewed as a variant of Nagao’s conjecture?

Remark 12. The upper bound of the sum (5.4) has been studied by several authors
assuming various standard conjectures. For instance, assuming OBSD (Conjecture
7), the Riemann hypothesis for L-series attached to elliptic curves, and Tate’s
conjecture for elliptic surfaces, Michel [9] proved the upper bound

(5.5)
1

2X
∑
∣t∣≤X

rt ≤ (degΔ(T ) + degN(T ) − 3

2
) (1 + o(1))
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as X →∞, where N(T ) denotes the conductor of E . Moreover, assuming the same
standard conjectures as Michel’s result [9], Silverman [17] obtained the upper bound

(5.6)
1

2X
∑
∣t∣≤X

rt ≤ (degN(T ) + rankE(Q(T )) + 1

2
) (1 + o(1))

as X → ∞. Besides, Fermigier [5] studied (93 different) one-parameter families of
elliptic curves of generic rank r = rankE(Q(T )) with 0 ≤ r ≤ 4. More precisely, let
t be an integer, then 32% of the specialized curves Et (defined over Q) had rank r,
48% had rank r + 1, 18% had rank r + 2, and only 2% of the specialized curves had
rank r + 3. For every family of elliptic curves and bound which are considered in
[5], Fermigier found the quantity

(5.7)
1

2X
∑
∣t∣≤X

rankEt(Q) − rankE(Q(T )) − 1

2

ranges from 0.08 to 0.54 and averages around 0.35. This suggests that the quantity
1/2 appearing in our question (5.4) may have to be modifed by a small amount.

Remark 13. The following one parameter family of elliptic curves was studied by
Washington [19]:

(5.8) E ∶ y2 = x3 + Tx2 − (T + 3)x + 1,

then j(T ) = 256(T 2 + 3T + 9), and E , viewed as an elliptic curve defined over
Q(T ) has rankE(Q(T )) = 1. Interestingly, Rizzo [14, Theorem 1] proved that the
family has extreme bias in its fibral root numbers. More precisely, the root number
(defined in (1.6)) of each fiber is

wEt = −1, for every t ∈ Z.
Hence, via the parity conjecture (or the Birch and Swinnerton-Dyer conjecture),
we can expect the rank of all fibers will be odd and, in particular, positive with
infinitely many rational points. On the other hand, via Silverman’s specialization
theorem, it is known that rankE(Q(T )) ≤ rank Et(Q) for all but finitely many t.
Furthermore, one conjectures that rankEt(Q) is equal to either rankE(Q(T )) or
rankE(Q(T )) + 1 up to a zero density subset of Q, depending on the parity given
by the root numbers. This tells us that, outside of a zero density subset of Q, the
fibers of E have odd rank, and most likely have rank 1. Therefore, it is likely that

(5.9) lim
X→∞

1

2X
∑
∣t∣≤X

rankEt(Q) = rankE(Q(T )),

where the extra 1/2 disappears since the fibral parity of the family E has large bias.

Based on the heuristics suggested as in (5.4), Remark 13, and in [5,17], the above
remark, we propose Conjecture 14:

Conjecture 14. We define

(5.10) T ∶= {t ∈ Z ∶ wEt = (−1)rankE(Q(T ))+1} .
Then we have

(5.11) lim
X→∞

1

2X
∑
∣t∣≤X

rt = rankE(Q(T )) + δ(T )

where δ(T ) is the natural density of T as a subset of Z.
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Note that the conjecture reflects the heuristic (5.3), Remark 13, as well as the
experimental results of Fermigier: more precisely, the results in [5, Tableau 2] show
that the quantity (5.7) does not tend to depend significantly as the other invariants
of the elliptic curves change, such as rank E(Q(T )), degN(T ), and degΔ(T ),
which appear in the known upper bounds, as in (5.5) and (5.6). The work of
Fermigier also suggests that the average of the error term in (5.2) is bounded.

A curious consequence of this conjecture is that the specializations Et with rt
large are very rare. It may be possible to prove such consequences of the conjecture
by other methods.

Also, note that the bounds (5.5) and (5.6) have been also considered for a family
of abelian varieties over Q by Wazir [20]. More concretely, let π ∶ A → P1 be a proper
flat morphism of smooth projective varieties defined over Q, with an abelian variety
A over Q(T ) as its generic fiber. Then, by assuming standard conjectures as in [17],
Wazir obtains the following bound

(5.12)
1

2X
∑
∣t∣≤X

rankAt(Q) ≤ (
LX

2X logX
+ rankA(Q(T )) + g

2
) (1 + o(1))

as X →∞, where At is the fiber at t ∈ P1, which is an abelian variety defined over
Q, and

(5.13) LX = ∑
∣t∣≤X

logNAt
,

where NAt
is the conductor of At. For a more detailed definition of LX and the

conductor, please refer to [20, 1.1]. Hence, one can expect a similar conjectural
estimation as Conjecture 14 involving g/2 in place of 1/2. We leave the details for
future studies.
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Appendix

by Andrew V. Sutherland1

Let ap(E) denote the Frobenius trace of an elliptic curve E/Q at a prime p.
Figures 1, 2, 3 plot the sums

S(x) ∶= 1

logx
∑

p≤x, p∤ΔE

ap(E) logp
p

for elliptic curves E of discriminant ΔE and various ranks; See Table 1 for a list of
the curves and their sources. These sums are conjectured to converge to r − 1/2 as
x → ∞, where r is the analytic rank of LE(s). The ranks rE listed in Table 1 are
lower bounds on the Mordell-Weil rank that are also upper bounds on the analytic
rank under the Generalized Riemann Hypothesis (GRH), and equal to both the
Mordell-Weil rank and the analytic rank under the Birch and Swinnerton–Dyer
conjecture (BSD). Ranks listed with no asterisk are equal to the Mordell-Weil rank;
for those marked with a single (resp. double) asterisk this equality is conditional
on GRH (resp. GRH and BSD). Lower bounds on the Mordell-Weil rank were
confirmed by verifying the existence of rE independent points using the Néron-Tate
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height pairing, while GRH-based upper bounds on the analytic rank were confirmed
using Bober’s method [3]. GRH-based upper bounds on the Mordell-Weil rank were
confirmed using magma [1] for rE ≤ 19; for rE ≥ 20 we rely on the results of [22].
Exact values of Mordell-Weil ranks were confirmed using Cremona’s mwrank [8]
package for rE ≤ 11; for ranks rE ≥ 12 with no asterisk we rely on computations
reported in the listed sources. The curves of rank rE ≤ 11 have conductors NE that
are close to the smallest possible [16]. This is not likely to be true for the curves for
rank rE ≥ 12, but we chose curves of smaller conductor when several were available.
In many cases the curves we list are not the first known curve of that rank; see [10]
for a history of rank records.

The sums S(x) plotted for x ≤ B = 1012 in Figure 1 were computed using the
smalljac software library [21] with some further optimizations described in [38,39].

The expected time complexity of this approach is O(B5/4 logB log logB). This is

asymptotically worse than both the O(B(logB)4+o(1)) expected time complexity
(under GRH) of using the Schoof-Elkies-Atkin algorithm [40] and the O(B(logB)3)
time complexity of an average polynomial-time approach [20], but it is practically
much faster for B = 1012; it took approximately 100 core-days per curve to compute
the S(x) plots shown in Figure 1.

Figures 2 and 3 show similar plots for Mordell curves y2 = x3 + k of ranks rE =
0, 1, 2,⋯, 17 and congruent number curves y2 = x3 − n2x of ranks rE = 0, 1, 2, . . . , 7.
The corresponding curves listed in Table 1 were chosen to minimize the conductor
among those of a given rank which have appeared in the literature, which generally
means ∣k∣ and n are among the smallest known. These are not necessarily the first
curves of these forms found to achieve these ranks; see [24, 34, 42] for some earlier
examples, and see [41] for unsuccessful attempts to extend the list of congruent
number curves beyond rE = 7.

The Mordell curves and congruent number curves have j-invariants 0, 1728 (re-
spectively), and thus admit (potential) complex multiplication by the ring of inte-
gers O of K = Q(ζ3),Q(i). To efficiently compute ap(E) = tr(ψE(p)) we compute
the trace of the Hecke character ψE corresponding to E evaluated at a prime p of
K above p; this trace is necessarily zero when p is inert. For each prime p ≤ B of
good reduction for E that splits in O we use Cornacchia’s algorithm to compute
all integer solutions (t, v) to the norm equation 4p = t2 − v2disc(O). We then ap-
ply the algorithm of Rubin and Silverberg [37] to determine the correct choice of
t = ap. The algorithm in [37] determines the correct twist of an ordinary elliptic
curve over Fp with a given j-invariant, endomorphism ring and Frobenius trace, but
it can also be used to determine the Frobenius trace of an ordinary elliptic curve
over Fp whose endomorphism ring is known. This yields an algorithm to compute
ap(E) in O((logp)2 log log p) expected time, meaning we can compute S(x) for
x ≤ B in O(B logB log logB) expected time. This makes it feasible to plot S(x)
for x ≤ B = 1015 in Figures 2 and 3 in roughly the same time required for B = 1012

in Figure 1, about 100 core-days per curve.
We end with a note of caution regarding the interpretation of these plots as

evidence supporting the conjectured convergence of S(x). The methods used to
find the higher rank curves shown in these plots typically use S(x) or a closely
related sum as a heuristic method to identify elliptic curves of potentially high
rank; see [5, 28, 32]. Most of the curves of rank rE ≥ 12 listed in Table 1 were
discovered precisely because a partial sum related to S(x) suggested they should
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have large ranks. This is less of a concern for the lower rank curves where searches
have been more exhaustive in an effort to minimize NE , ∣k∣, or n.

Table 1. Elliptic curves listed by Mordell-Weil rank. Asterisks
(double asterisks) indicate ranks conditional on GRH (GRH and
BSD).

rE E(Q)tors logNE [a1, a2, a3, a4, a6] source

0 trivial 2.398 [0,−1,1,0,0] Birch, Kuyk, Swinnerton-Dyer 1972 [2]
1 trivial 3.611 [0,0,1,−1,0] Birch, Kuyk, Sinnwerton-Dyer 1972 [2]
2 trivial 5.964 [0,1,1,−2,0] Cremona 1997 [6]
3 trivial 8.532 [0,0,1,−7, 6] Cremona 1997 [6]
4 trivial 12.365 [1,−1,0,−79, 289] APECS, Cremona 2012 [7], [23]
5 trivial 16.762 [0,0,1,−79, 342] Brumer and McGuinness 1990 [4]
6 trivial 22.370 [1,1,0,−2582, 48720] Elkies and Watkins 2004 [16]
7 trivial 26.670 [0,0,0,−10012, 346900] Elkies and Watkins 2004 [16]
8 trivial 33.151 [1,−1,0,−106384, 13075804] Elkies and Watkins 2004 [16]
9 trivial 38.008 [1,−1,0,−135004, 97151644] Elkies and Watkins 2004 [16]
10 trivial 43.768 [0,0,1,−16312387, 25970162646] Elkies and Watkins 2004 [16]
11 trivial 51.246 [0,0,1,−16359067, 26274178986] Elkies and Watkins 2004 [16]
12∗ trivial 67.767 [0,0,1,−634⋯647, 193⋯036] Mestre 1982 [27]
13∗ trivial 99.778 [1,0,0,−560⋯540, 529⋯600] Nagao 1994 [32]
14∗ trivial 86.484 [0,0,1,−224⋯757, 132⋯406] Mestre 1986 [28]
15∗ trivial 129.440 [1,0,0,−209⋯485, 266⋯897] Mestre 1992 [29]
16 Z/2Z 139.095 [1,0,0,888⋯054, 398⋯0420] Dujella 2009 [9]
17∗ trivial 136.210 [0,1,0,−184⋯145, 966⋯743] Nagao 1992 [30]
18 Z/2Z 149.798 [1,0,0,−171⋯215, 445⋯817] Elkies 2009 [9]
19∗ trivial 149.986 [1,−1,1,−206⋯978, 328⋯881] Fermigier 1992 [17]
20∗ trivial 170.088 [1,0,0,−431⋯166, 515⋯196] Nagao 1993 [31]
21∗ trivial 196.680 [1,1,1,−215⋯835 − 194⋯535] Nagao and Kouya 1994 [33]
22∗ trivial 182.725 [1,0,1,−940⋯864, 107⋯362] Fermigier 1996 [18]
23∗ trivial 205.061 [1,0,1,−192⋯723, 326⋯006] Martin and McMillen 1998 [25]
24∗ trivial 219.927 [1,0,1,−120⋯374, 504⋯116] Martin and McMillen 2000 [26]
25∗∗ trivial 229.186 [1,0,0,−122⋯200, 523⋯000] Elkies 2006 [15]
26∗∗ trivial 247.860 [1,0,0,−271⋯190, 167⋯092] Elkies 2006 [15]
27∗ trivial 287.013 [1,0,0,−556⋯970, 161⋯956] Elkies 2006 [22]
28∗ trivial 368.407 [1,−1,1,−200⋯502, 344⋯429] Elkies 2006 [11]

0 Z/6Z 3.584 [0,0,0,0,1] Birch, Kuyk, Swinnerton-Dyer 1972 [2]
1 trivial 7.455 [0,0,0,0,2] Cremona 1997 [6]
2 trivial 9.478 [0,0,0,0,−11] Gebel, Petho, Zimmer 1998 [19]
3 trivial 14.137 [0,0,0,0,113] Gebel, Petho, Zimmer 1998 [19]
4 trivial 18.872 [0,0,0,0,2089] Gebel, Petho, Zimmer 1998 [19]
5 trivial 24.083 [0,0,0,0,−28279] Gebel, Petho, Zimmer 1998 [19]
6 trivial 31.540 [0,0,0,0,1358556] Womack 2000 [42]
7 trivial 39.296 [0,0,0,0,−56877643] Womack 2000 [42]
8 trivial 45.493 [0,0,0,0,−2520963512] Womack 2000 [42]
9 trivial 52.637 [0,0,0,0,−44865147851] Elkies 2009 [12]
10 trivial 61.126 [0,0,0,0,3612077876156] Elkies 2009 [12]
11 trivial 72.659 [0,0,0,0,−998820191314747] Elkies 2009 [12]
12 trivial 80.089 [0,0,0,0,41025014649039529] Elkies 2009 [12]
13 trivial 87.294 [0,0,0,0,48163745551486811536] Elkies 2009 [12]
14 trivial 103.188 [0,0,0,0,785⋯336] Elkies 2009 [12]
15 trivial 122.905 [0,0,0,0,469⋯417] Elkies 2009 [12]
16 trivial 136.203 [0,0,0,0,116⋯888] Elkies 2016 [13]
17∗ trivial 155.363 [0,0,0,0,−908⋯363] Elkies 2016 [14]

0 (Z/2Z)2 3.466 [0,0,0,−12,0] Birch, Kuyk, Swinnerton-Dyer 1972 [2]
1 (Z/2Z)2 6.685 [0,0,0,−52,0] Cremona 1997 [6]
2 (Z/2Z)2 9.825 [0,0,0,−342,0] Cremona 1997 [6]
3 (Z/2Z)2 17.041 [0,0,0,−12542,0] Rogers 2000 [35]
4 (Z/2Z)2 23.341 [0,0,0,−292742,0] Rogers 2000 [35]
5 (Z/2Z)2 38.850 [0,0,0,−482722392,0] Rogers 2004 [36]
6 (Z/2Z)2 47.997 [0,0,0,−66117198662,0] Rogers 2004 [36]
7 (Z/2Z)2 58.275 [0,0,0,−7975075437352,0] Rogers 2004 [36]

https://www.lmfdb.org/EllipticCurve/Q/11a3/
https://www.lmfdb.org/EllipticCurve/Q/37a1/
https://www.lmfdb.org/EllipticCurve/Q/389a1/
https://www.lmfdb.org/EllipticCurve/Q/5077a1/
https://www.lmfdb.org/EllipticCurve/Q/234446a1/
https://www.lmfdb.org/EllipticCurve/Q/19047851/a/1
https://math.mit.edu/~drew/rk6.html
https://math.mit.edu/~drew/rk7.html
https://math.mit.edu/~drew/rk8.html
https://math.mit.edu/~drew/rk9.html
https://math.mit.edu/~drew/rk10.html
https://math.mit.edu/~drew/rk11.html
https://web.math.pmf.unizg.hr/~duje/tors/rk12.html
https://math.mit.edu/~drew/rk13.html
https://web.math.pmf.unizg.hr/~duje/tors/rk14.html
https://web.math.pmf.unizg.hr/~duje/tors/rk15.html
https://web.math.pmf.unizg.hr/~duje/tors/z2old1415161718.html
https://web.math.pmf.unizg.hr/~duje/tors/rk17.html
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https://web.math.pmf.unizg.hr/~duje/tors/rk24.html
https://math.mit.edu/~drew/rk25.html
https://math.mit.edu/~drew/rk26.html
https://web.math.pmf.unizg.hr/~duje/tors/rk27.html
https://web.math.pmf.unizg.hr/~duje/tors/rk28.html
https://www.lmfdb.org/EllipticCurve/Q/36a1
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https://math.mit.edu/~drew/mrk5.html
https://math.mit.edu/~drew/mrk6.html
https://math.mit.edu/~drew/mrk7.html
https://math.mit.edu/~drew/mrk8.html
https://math.mit.edu/~drew/mrk9.html
https://math.mit.edu/~drew/mrk10.html
https://math.mit.edu/~drew/mrk11.html
https://math.mit.edu/~drew/mrk12.html
https://math.mit.edu/~drew/mrk13.html
https://math.mit.edu/~drew/mrk14.html
https://math.mit.edu/~drew/mrk15.html
https://math.mit.edu/~drew/mrk16.html
https://math.mit.edu/~drew/mrk17.html
https://www.lmfdb.org/EllipticCurve/Q/32a2
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Figure 1. S(x) plot for elliptic curves of rank r = rE listed in Table 1
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Figure 2. S(x) plot for Mordell curves y2 = x3 + k of rank r = rE
listed in Table 1
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Figure 3. S(x) plot for congruent number curves y2 = x3 − n2x
of rank r = rE listed in Table 1
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