IRREDUCIBILITY OF HECKE POLYNOMIALS

SRINATH BABA AND M. RAM MURTY

ABSTRACT. In this note, we show that if the characteristic polynomial of some Hecke operator T_n acting on the space of weight k cusp forms for the group $SL_2(\mathbb{Z})$ is irreducible, then the same holds for T_p , where p runs through a density one set of primes. This proves that if Maeda's conjecture is true for some T_n , then it is true for T_p for almost all primes p.

1. Introduction

Let V be the d-dimensional space of weight k cusp forms $S_k(\mathrm{SL}_2(\mathbb{Z}))$, and T_n the n^{th} Hecke operator on V. Let $T_n(x)$ denote the characteristic polynomial of T_n . By the theory of eigenforms, it is well known that $T_n(x) \in \mathbb{Z}[x]$ and is monic. Maeda [8] conjectured that for some n, $T_n(x)$ is irreducible with Galois group S_d , where S_d is the symmetric group on d symbols. A popular extension of this conjecture, called **Maeda's conjecture** states that for every n, $T_n(x)$ is irreducible with Galois group S_d .

Recent progress related to Maeda's conjecture has been in two different directions. The first is to verify the conjecture for $T_2(x)$ for different weights k ([1], [12]), and the second has been to show irreducibility of $T_p(x)$ assuming the irreducibility of $T_q(x)$ for some q. In [2], it is shown using the trace formula in characteristic p that if some $T_q(x)$ satisfies Maeda's conjecture, then the same holds for $T_p(x)$ for p in a set of primes of density 5/6. Combining this with computer computations, K. James and D. Farmer have shown in [3] that if $T_q(x)$ satisfies Maeda's conjecture for some q, then the same holds for $T_p(x)$ for primes $p \leq 2000$.

The purpose of this note is to extend the work of both [2] and [3]. As opposed to the mod-p versions of the trace formula used by [2], we study Frobenius distributions and Galois representations of Hecke eigenforms to show that

Theorem 1.1. If $T_q(x)$ is irreducible for some prime q, then

 $\sharp\{p \le x; T_p(x) \text{ is reducible}\} \ll x/(\log x)^{1+\delta},$

for some $\delta > 0$.

In addition, we show the following:

Theorem 1.2. If $T_q(x)$ is irreducible with Galois group S_d for some prime q, then the same holds for $T_n(x)$ for $n \leq d$.

Received October 16, 2001.

The argument is based on the existence of a so called Miller basis for V, and uses linear algebra in combination with the Chebotarev density theorem and theorems of Deligne and Serre on the existence of certain ℓ -adic representations attached to Hecke eigenforms.

2. Preliminaries

For any cusp form g, let $g = \sum_{i=1}^{\infty} a_n(g)q^n$ denote its Fourier expansion at the cusp at ∞ . Let $K(g) = \mathbb{Q}(\{a_i(g)\}_{i=1}^{\infty})$. Let f_1, \ldots, f_d denote a basis of normalised Hecke eigenforms for V. For any $i, 1 \leq i \leq d$, it is known that $K(f_i)$ is a number field of finite degree, and that the a_n are all algebraic integers. Since the f_i are simultaneous eigenvectors of all the Hecke operators, we know that $T_n(x) = \prod_{i=1}^d (x - a_n(f_i)).$

Lemma 2.1. Suppose $T_q(x)$ is irreducible, where q is a prime. Then $K(f_i) = \mathbb{Q}(a_q(f_i))$.

Proof. Let $h_1, \ldots h_d$ be the Miller basis for V. This basis is characterised by the property that $K(h_i) = \mathbb{Q}$ for every i, and $a_i(h_j) = \delta_{i,j}$, for $1 \leq i, j \leq d$, where $\delta_{i,j} = 1$ if i = j and 0 otherwise (see [6]). Let f be any of the eigenforms. Expressing f as a linear combination of the h_i , we have

$$f = \sum_{i=1}^{d} a_i(f)h_i = h_1 + \sum_{i=2}^{d} a_i(f)h_i.$$

Since $T_q(x)$ is irreducible, it is immediate that not all of the coefficients $a_q(h_2)$, ..., $a_q(h_d)$ are 0. Without loss of generality, we assume that $a_q(h_2) \neq 0$. By row reducing the Miller basis, we can obtain a basis $g_1 \dots g_d$ so that $a_1(g_1) =$ $1, a_1(g_j) = 0$ for $j \neq 1$, and $a_q(g_2) = 1, a_q(g_j) = 0$ for $j \neq 2$, and $K(g_j) = \mathbb{Q}$ for every g_j .

Expressing f in terms of the new basis, we realise that one of the Fourier coefficients $a_{q^2}(g_3), \ldots, a_{q^2}(g_d)$ must be non-zero. By repeating the row reduction argument and producing a new basis each time, we construct a basis F_1, \ldots, F_d with the property that $a_{q^{i-1}}(F_j) = \delta_{i,j}$. In addition, $K(F_i) = \mathbb{Q}$ for every F_i . Expressing f in terms of this basis, and observing that $a_{q^l}(f) \in \mathbb{Q}(a_q(f))$ for every $l \in \mathbb{Z}$, we have

$$f = \sum_{i=1}^{d} a_{q^{i-1}}(f) F_i = \sum_{i=1}^{d} b_i F_i \text{ where } b_i \in \mathbb{Q}(a_q).$$

Thus, for any $n, a_n(f) \in \mathbb{Q}(a_q(f))$, and so the lemma follows.

Lemma 2.2. If $T_q(x)$ is irreducible for some prime q with Galois group G, then for any other n, $T_n(x)$ has exactly one irreducible factor. In addition, if $G = S_d$, then the irreducible factor of T_n has degree d or 1.

Proof. Suppose $T_q(x)$ is irreducible with Galois group G. Then G acts transitively on the roots of $T_q(x)$. Since the roots of $T_n(x)$ by Lemma 2.1, are rational linear combinations of the roots of $T_q(x)$, they form a Galois orbit with a G action. Thus, they are all roots of the same irreducible polynomial. If, in addition, $G = S_d$, then the roots of $T_n(x)$ must form an orbit for a transitive S_d action, and thus must all be equal, or all distinct. This proves the lemma.

Consider a Galois extension L/\mathbb{Q} with Galois group G discriminant d_L and degree n_L . Suppose S is the set of primes in K ramified in L. Let C be a collection of conjugacy classes in G. Let

 $\pi_C(x) =$ the number of primes $v \in \mathcal{O}_L; N_{L/\mathbb{Q}}(v) \leq x$ and $\operatorname{Frob}_v \in C$.

The Chebotarev density theorem states that

$$\pi_C(x) \sim \frac{|C|}{|G|} \pi(x)$$

where $\pi(x) =$ the number of primes $p \in \mathbb{Z}; p \leq x$.

The following unconditional effective version of this theorem was provided by Lagarias, Montgomery and Odlyzko in [7], we state a version due to Serre (see [11], Theorem 3, page 132).

Proposition 2.3. (Effective version of the Chebotarev density theorem) If $x \ge 3$ and $\log x \ge c(\log d_L)(\log \log d_L)(\log \log \log 6d_L))$, then $\pi_C(x) \ll \frac{|C|}{|G|}\pi(x)$, where c is an absolute constant.

We can bound the discriminant d_L of L by the following (see [11] Page 129, Proposition 4' for a general statement)

Proposition 2.4. (Hensel) $\log d_L \leq (n_L - 1) \sum_{l \in S} \log l + n_L \log n_L$.

3. Fourier coefficients of Hecke eigenforms

Let f be a normalised Hecke eigenform, and suppose that for some q,

$$[\mathbb{Q}(a_q(f)):\mathbb{Q}] = d.$$

This is the same as saying $T_q(x)$ is irreducible. From Lemma 2.1, we know that $K(f) = \mathbb{Q}(a_q(f))$.

Theorem 3.1. Let $L \subset K(f)$ be any proper subfield. Then,

$$\sharp \{ p \le x; a_p(f) \in L \} \ll \frac{x}{(\log x)^{1+\delta}} ,$$

for some $\delta > 0$.

Proof. Let K(f) = K, and let $L \subset K(f)$ be a proper subfield. Let $\lambda \in \mathcal{O}_K$ be a prime of degree $f \geq 2$ lying above $l \in \mathcal{O}_L$. By a well-known construction of Deligne and Serre (see [10], pages 260-261), there exists a continuous representation

$$\rho_{f,\lambda} : \operatorname{Gal}(\mathbb{Q}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathcal{O}_K/\lambda)$$

satisfying the following conditions for $p \neq l$:

- (i) $\rho_{f,\lambda}$ is unramified at p
- (ii) trace $(\rho_{f,\lambda}(\operatorname{Frob}_{\pi})) = a_p(f)$, for any prime ideal π lying above p.

Let $S \subset \operatorname{GL}_2(\mathcal{O}_K/\lambda)$ be the set of elements whose trace lies in the subfield $\mathcal{O}_L/l \subset \mathcal{O}_K/\lambda$. By a simple counting argument, we see that

$$\sharp(S) \ll l^{3f+1}$$
 and $\sharp(\operatorname{GL}_2(\mathcal{O}_K/\lambda)) \sim l^{4f}$.

Let M be the fixed field of the kernel of the representation $\rho_{f,\lambda}$. By the effective version of the Chebotarev density theorem in M, if $l \sim (\log x)^{\delta}$, then

$$\sharp\{p \le x; \operatorname{trace}(\rho_{f,\lambda}(\operatorname{Frob}_p)) \in \mathcal{O}_L/l \subset \mathcal{O}_K/\lambda\} \ll \frac{\sharp(S)}{\sharp(\operatorname{GL}_2(\mathcal{O}_K/\lambda))} x/\log x$$

By the bounds on $\sharp(S)$ and $\sharp(\operatorname{GL}_2(\mathcal{O}_K/\lambda))$ and on l, we see that

$$\sharp \{ p \le x; \operatorname{trace}(\rho_{f,\lambda}(\operatorname{Frob}_p)) \in \mathcal{O}_L/l \subset O_K/\lambda \} \ll \frac{x}{l^{f-1}\log x} \ll \frac{x}{(\log x)^{1+\delta}}.$$

This proves the theorem.

Proof of Theorem 1.1. By Lemma 2.2, if $T_q(x)$ is irreducible, then $T_p(x)$ is reducible if and only if it has a repeated root. Thus, $K(f_1)$ contains $\mathbb{Q}(a_p(f_1))$ as a proper subfield. Since there are only finitely many proper subields of $K(f_1)$, we can apply Theorem 3.1 to each subfield. Thus, we see that

$$\sharp\{p \le x; T_p(x) \text{ is reducible }\} \ll \frac{x}{(\log x)^{1+\delta}}.$$

This proves the theorem.

4. Initial Fourier coefficients

Proof of Theorem 1.2. By Lemma 2.2, we know that $T_n(x)$ is reducible only if it has a single repeated root, i.e., $a_n(f_1) = \cdots = a_n(f_d) = a \in \mathbb{Z}$. Suppose this holds for some $i, 2 \leq i \leq d$. Let h_i be as in Lemma 2.1. Let h_i be written as a linear combination of the eigenforms as

$$h_i = \sum_{i=1}^d c_{i,j} f_j$$

Since $a_1(h_i) = 0$ and $a_1(f_j) = 1$ for every f_j , we conclude that $\sum_{i=i}^d c_{i,j} = 0$. Thus,

$$1 = a_i(h_i) = \sum_{i=1}^d c_{i,j} a_i(f_j) = \sum_{i=1}^d c_{i,j} a = 0,$$

which shows us that our assumption is false. This proves the theorem.

5. Comparison Theorems for Fourier coefficients of two eigenforms

Let f and g be two distinct Hecke eigenforms for $SL_2(\mathbb{Z})$ of weights k_1 and k_2 respectively. If $k_1 = k_2$, then Theorem 1.1 implies the following:

Theorem 5.1. If $T_q(x)$ is irreducible for some prime q, then

$$\sharp \{ p \le x; a_p(f) = a_p(g) \} \ll \frac{x}{(\log x)^{1+\delta}}$$

for some $\delta > 0$

In the case $k_1 \neq k_2$, we can prove a similar result unconditionally.

Theorem 5.2. If $k_1 \neq k_2$, then

$$\sharp \{ p \le x; a_p(f) = a_p(g) \} \ll \frac{x}{(\log x)^{1+\delta}}$$

for some $\delta > 0$

In [10], section 5, Ribet studied pairs of Galois representations and showed that if l is sufficiently large, the two Galois representations $\rho_{f,\lambda}$ and $\rho_{g,\lambda}$ are "as independent as possible", i.e., the image of the product representation is as large as possible. In the case f and g are as in Theorem 5.2, we state Ribet's theorem as follows:

Lemma 5.3. Im $(\rho_{f,\lambda}, \rho_{g,\lambda}) =$ $\{(u, u') \in GL_2(\mathcal{O}_{\lambda}) \times GL_2(\mathcal{O}_{\lambda}); det(u) = v^{k_1-1}; det(u') = v^{k_2-1}, v \in \mathcal{O}_{\lambda}\}$

Let $\mathbf{F}_{\lambda} = \mathcal{O}_{\lambda}/\lambda$. If we let $\bar{\rho}_{f,\lambda} : \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbf{F}_{\lambda})$ denote the residual representation of $\rho_{f,\lambda}$, we see that

$$\operatorname{Im}\left(\bar{\rho}_{f,\lambda},\bar{\rho}_{g,\lambda}\right) = \{(u,u') \in \operatorname{GL}_2(\mathbf{F}_{\lambda}) \times \operatorname{GL}_2(\mathbf{F}_{\lambda}); \det(u) = v^{k_1-1}; \det(u') = v^{k_2-1}, v \in \mathbf{F}_{\lambda}\}.$$

Proof of Theorem 5.2. Let E/\mathbb{Q} be an extension containing both E_f and E_g , and λ a degree one prime in E of norm l (by the prime number theorem in number fields, we know that degree 1 primes are of full density, see [6], Theorem 4, Page 350). Let

$$S = \{(u, u') \in \operatorname{GL}_2(\mathbf{F}_{\lambda}) \times \operatorname{GL}_2(\mathbf{F}_{\lambda}); \ \det(u) = v^{k_1 - 1}, \det(u') = v^{k_2 - 1}, v \in \mathbf{F}_{\lambda}\},\$$

$$S' = \{(u, u') \in S; \ \operatorname{trace}(u) = \operatorname{trace}(u')\},\$$
(1)
$$|S| \le l^7 \text{ and } |S'|/|S| \le 1/l.$$

By the above, we know that the image of the product representation $\bar{\rho}_{f,\lambda} \times \bar{\rho}_{g,\lambda}$ is exactly the group S. Let K be the fixed field of the kernel of the representation, i.e., $\operatorname{Gal}(K/\mathbb{Q}) = S$. Then, by the calculation in (a) above, the proportion of elements of $\operatorname{Gal}(K/\mathbb{Q})$ whose image lies in S' is approximately 1/l.

Let C denote the set $\{\operatorname{Frob}_{\pi}\}$ for primes $\pi \in K$ with $\bar{\rho}_{f,\lambda} \times \bar{\rho}_{g,\lambda}(\operatorname{Frob}_{\pi}) \in S'$. Then C is clearly invariant under conjugation, and thus we can apply the

effective version of the Chebotarev density theorem, Proposition 2.3. We see that $|C|/|\text{Gal}(K/\mathbb{Q})| = |S'|/|S|$ and thus,

$$\pi_C(x) \ll \frac{|S'|}{|S|} \pi(x).$$

By property (ii) of the Galois representations $\rho_{f,\lambda}$ and $\rho_{g,\lambda}$, we see that

$$\sharp\{p \le x; a_p(f) = a_p(g)\} \ll \sharp\{p \le x; \operatorname{Frob}_{\pi} \in C\},\$$

for some π dividing p. Thus, we see that

$$\#\{p \le x; a_p(f) = a_p(g)\} \ll \frac{|S'|}{|S|} \pi(x)$$

if x is sufficiently large. By property (i) of the representations, we know that K is ramified only at l, and so we can apply Proposition 2.4. Using equation 1, we see that

$$\log d_L \le 8l^7 \log l.$$

Thus, for large x, if we choose $l \sim (\log x)^{1/8}$, we see that the conditions of Proposition 2.3 are satisfied, and so we have, by all of the above,

$$\sharp \{ p \le x; \operatorname{Frob}_{\pi} \in C \} \ll \frac{1}{l} \pi(x) \ll x / (\log x)^{9/8}.$$

This proves the theorem.

6. Conditional estimates

The estimates in Theorem 1.1 and Theorem 5.2 can be improved considerably if we assume the generalised Riemann hypothesis for Dedeking Zeta functions of number fields (GRH) (see [9]). By the methods of [9], it follows that we have the following results.

Theorem 6.1. Assume GRH for Dedekind zeta functions of number fields. If $T_a(x)$ is irreducible for some prime q, then

$$\sharp\{p \le x; T_p(x) \text{ is reducible}\} \ll x^{1-\delta}$$

for some $\delta > 0$.

Theorem 6.2. Assume GRH for Dedekind Zeta functions of number fields. If $k_1 \neq k_2$, then

$$\sharp\{p \le x; a_p(f) = a_p(g)\} \ll x^{1-\delta}$$

for some $\delta > 0$.

References

- K. Buzzard, On the eigenvalues of the Hecke operator T₂, J. Number Theory 57 (1996), 130–132.
- [2] J.B. Conrey, D.W. Farmer, P.J. Wallace, Factoring Hecke polynomials modulo a prime, Pacific J. Math. 196 (2000), 123–130.
- [3] D. W. Farmer, K. James, The irreducibility of some level-1 Hecke polynomials, Math Comp, 71 (2002) 1263-1270.
- [4] K. James, K. Ono, A note on the irreducibility of Hecke polynomials, J. Number Theory 73 (1998), 527–532.
- [5] S. Lang, Introduction to modular forms, Grundlehren der mathematischen Wissenschaften, No. 222. Springer-Verlag, Berlin-New York, 1976.
- [6] _____, Algebraic number theory, Second edition. Graduate Texts in Mathematics, 110. Springer-Verlag, New York, 1994.
- [7] J. C. Lagarias, H. L. Montgomery, A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), 271–296.
- [8] H. Hida, Y. Maeda, Non-abelian base change for totally real fields, Olga Taussky-Todd: in memoriam. Pacific J. Math. (1997), Special Issue, 189–217.
- [9] M.R. Murty, V.K. Murty, N. Saradha, Modular forms and the Chebotarev density theorem, Amer. J. Math. 110 (1988), 253–281.
- [10] K. Ribet, On l-adic representations attached to modular forms, Invent. Math. 28 (1975), 245–275.
- [11] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, (French)
 [Some applications of the Chebotarev density theorem] Inst. Hautes Études Sci. Publ. Math. No. 54, (1981), 323-401.
- [12] W. Stein, www.modular.fas.harvard.edu/~stein

MAX PLANCK INSTITUT FÜR MATHEMATIK, VIVATSGASSE 7, D-53111, BONN, GERMANY. *E-mail address:* sbaba@mpim-bonn.mpg.de

DEPARTMENT OF MATHEMATICS AND STATISTICS, QUEEN'S UNIVERSITY, KINGSTON, ON-TARIO, K7L 3N6, CANADA.

E-mail address: murty@mast.queensu.ca