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Transcendental Nature of
Special Values of L-Functions

Sanoli Gun, M. Ram Murty, and Purusottam Rath

Abstract. In this paper, we study the non-vanishing and transcendence of special values of a varying

class of L-functions and their derivatives. This allows us to investigate the transcendence of Petersson

norms of certain weight one modular forms.

1 Introduction

The algebraic nature of special values of L-functions is shrouded in mystery. The

L-functions arise from various contexts like algebraic number theory (Riemann zeta

function, Dirichlet L-functions, Dedekind zeta functions, L-series associated with

Hecke grossencharacters), representation theory, and theory of automorphic forms

(Artin L-functions, Rankin-Selberg L-functions of classical modular forms and their

generalisations to Hilbert, and Siegel modular forms and to automorphic forms on

more complicated groups) and algebraic geometry (zeta-functions of varieties over

number fields). For all such L-functions, it is believed that the special values of such

L-functions should be, up to an algebraic factor, equal to a predictable period. We

refer to the article of Zagier [21] for further motivations.

However, barring a very few special cases, our understanding of these special val-

ues is rather limited. For L-functions associated with classical Dirichlet characters,

we have had some success thanks to the remarkable theorem of Baker on transcen-

dence of linear forms in logarithms of algebraic numbers (see [1] or [13]). More

precisely, we know that L(1, χ) is transcendental for any non-trivial Dirichlet char-

acter χ. In fact, it is expressible as an algebraic linear combination of logarithms of

algebraic numbers. However, as soon as we consider the Dedekind zeta functions or,

more generally, special values of Artin L-series, we run into difficulty.

The theme of our present work is to investigate the non-vanishing of a varying

class of L-functions as well as their derivatives, mainly at the point s = 1. In such

cases, we also study the algebraic nature of these L-values. Also, where the L-function

has a pole at s = 1, as for Dedekind zeta functions and certain Artin L-functions, we

wish to investigate the algebraic nature of the residue at that point.

We begin our work by enlisting some transcendental prerequisites essential for

our work. We do this in the next section. We derive an important consequence of a

conjecture of Schanuel. This is central to investigating the special values of Dedekind

zeta functions as well as Artin L-functions. Admittedly, this is a strong conjecture,
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but it does suggest that the transcendence of L(1, χ), where χ is a non-trivial Dirich-

let character, is not an isolated phenomenon and perhaps is a very special case of a

general transcendence theorem embracing a wide class of L-functions. As our inves-

tigation suggests, a proof of Schanuel’s conjecture will establish the transcendence of

special values of a plethora of L-functions.

In Section three, we consider L-functions that are generalisations of the classical

Dirichlet L-functions. We consider the non-vanishing as well as the algebraic nature

of derivatives of such L-functions L ′(s, f ), where f is a Dirichlet-type function at

both s = 0 as well as s = 1. For instance, we prove the following.

Theorem 1.1 If f is an even Dirichlet-type periodic function which takes algebraic

values, then L ′(0, f ) is either zero or transcendental.

For odd functions, a conjecture of Lang about the independence of gamma values

is relevant. We suggest the following conjecture which is a variant of his conjecture.

Conjecture 1.2 For any positive integer q > 2, let VΓ(q) denote the vector space over

Q spanned by the real numbers

log Γ(a/q), 1 ≤ a ≤ q, (a, q) = 1.

Then the dimension of VΓ(q) is ϕ(q).

Then we have the following.

Theorem 1.3 Let q > 2. Assume that the above conjecture is true. Then L ′(1, χ) = 0

for at most one primitive odd character mod q.

In the next section, we consider L-functions associated with different classes of

modular forms, primarily cuspidal eigenforms. We establish various non-vanishing

as well as transcendence results. For instance, we prove the following.

Theorem 1.4 Let f be a normalized cuspidal eigenform of weight 2k for Γ0(N). As-

sume that L(k, f ) 6= 0. Then one has

L ′(k, f )

L(k, f )
= −ψ(k) + log 2π − 1

2
log N,

where ψ is the logarithmic derivative of the gamma function. Further, for such an f ,

L ′(k, f ) 6= 0.

We derive various consequences of the above theorem. For instance, we have the

following.

Corollary 1.5 Let E be an elliptic curve over Q . Suppose that L(1, E) 6= 0. Then

L ′(1, E) 6= 0.

We also derive various transcendence results for special values of L-functions and

symmetric square L-functions associated to modular forms.
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In the penultimate section, we begin by considering Dedekind zeta functions. We

show that the regulator of a number field is transcendental under a weaker version of

the conjecture of Schanuel. We refer to the next section for the statement of the Weak

Schanuel Conjecture. We also show that the residue of the Dedekind zeta function

at s = 1 is also transcendental, again under the conjecture of Schanuel. Then more

generally, we consider the special values of Artin L-functions motivated by the work

of Stark. We have the following result.

Theorem 1.6 Assume that the Weak Schanuel Conjecture is true. Then for any ratio-

nal non-trivial irreducible character χ, L(1, χ, K/k) is transcendental.

Finally, the work of Stark also allows us to interpret these in terms of the tran-

scendence of the Petersson norms of special classes of modular forms of weight one.

This motivated us to consider the possible transcendence of norms of such modular

forms. For instance, we prove the following.

Theorem 1.7 Let f be a normalised weight 1 Hecke eigen cusp form on Γ0(N) with

nebentypus ǫ. Suppose f has rational coefficients. Then its Petersson norm 〈 f , f 〉 is

transcendental under the Weak Schanuel Conjecture.

In some special cases, we can deduce the transcendence of such Petersson norms

unconditionally.

2 Transcendental Requisites

The most important ingredient for many of our results is the following theorem due

to Baker. Let L denote the set of logarithms of non-zero algebraic numbers. Then we

have the following.

Theorem 2.1 If λ1, λ2, . . . , λn are Q-linearly independent elements of L, then

1, λ1, λ2, . . . , λn are Q̄-linearly independent.

An immediate consequence of the above theorem is that any non-zero element in

the Q vector space

{α1λ1 + · · · + αnλn | n ∈ N, αi ∈ Q, λi ∈ L}

is necessarily transcendental. Following [13], the elements of this vector space will be

called a Baker period. Thus a non-zero Baker period is transcendental.

On the other hand, the question of algebraic independence of transcendental

numbers or even more specifically those of numbers connected with the exponen-

tial function is rather delicate. One of the very few general results is the following

classical result due to Lindemann and Weierstrass [19].

Theorem 2.2 If β1, . . . , βn are algebraic numbers that are linearly independent over

Q , then the numbers eβ1 , . . . , eβn are algebraic independent.

The most far-reaching conjecture in this set-up is the following, due to Schanuel

([10]).
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Schanuel’s Conjecture Suppose α1, . . . , αn are complex numbers that are linearly

independent over Q . Then the transcendence degree of the field

Q(α1, . . . , αn, eα1 , . . . , eαn )

over Q is at least n.

This conjecture is believed to include all known transcendence results as well as all

reasonable transcendence conjectures on the values of the exponential function. We

will need the following special case of Schanuel’s conjecture.

Weak Schanuel Conjecture Let α1, . . . , αn be non-zero algebraic numbers such that

log α1, . . . , log αn are linearly independent over Q . Then these numbers are alge-

braically independent.

We shall need the following important consequence of the Weak Schanuel Con-

jecture.

Proposition 2.3 Assume the Weak Schanuel Conjecture. Let α1, · · · , αn be non-zero

algebraic numbers. Then for any polynomial f (x1, · · · , xn) with algebraic coefficients

such that f (0, · · · , 0) = 0, f (log α1, · · · , log αn) is either zero or transcendental.

Proof We use induction on n. For n = 1, the lemma is true by the classical Hermite–

Lindemann theorem. Suppose f (x1, . . . , xn) ∈ Q[x1, . . . , xn], n ≥ 2 such that A :=

f (log α1, . . . , log αn) is algebraic. By the Weak Schanuel Conjecture, the numbers

log α1, . . . , log αn are linearly dependent over Q . Then there exist integers c1, . . . , cn

such that

c1 log α1 + · · · + cn log αn = 0.

Suppose c1 6= 0. Then log α1 =
1
c1

(c2 log α2 + · · · + cn log αn). Replacing this value of

log α1 in the expression for A, we have

A = g(log α2, . . . , log αn),

where g(x1, . . . , xn−1) is a polynomial with algebraic coefficients in n − 1 variables.

Then by induction hypothesis, A = 0. This completes the proof of the lemma.

An immediate consequence of Schanuel’s conjecture is that for a non-zero alge-

braic number α, the two numbers eα and π are algebraically independent and so are

the numbers log α and log π. We refer to [7] for some other applications of Schanuel’s

conjecture.

3 L-Functions of Arbitrary Dirichlet-Type Periodic Functions

Here we consider L-functions that are generalisations of the classical Dirichlet

L-functions. Let f be any periodic arithmetic function with period q > 1 such that

f (a) ∈ Q for (a, q) = 1 and f (a) = 0 for (a, q) > 1.
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We call such a function a Dirichlet-type function. Associated with such a function,

we have

L(s, f ) :=

∞
∑

n=1

f (n)

ns
=

q
∑

a=1

f (a)

∞
∑

n=0

1

(a + qn)s
= q−s

q
∑

a=1

f (a)ζ(s, a/q),

where ζ(s, x) is the Hurwitz zeta function defined by

ζ(s, x) =

∞
∑

n=0

1

(n + x)s
, 0 < x ≤ 1.

When x = 1, we retrieve the familiar Riemann zeta function. The Hurwitz zeta

function extends meromorphically to the entire complex plane with a simple pole at

s = 1, where it has a residue 1. We also have the following interesting identities due

to Lerch [11]:

(3.1) ζ(0, a/q) =
1

2
− a/q, ζ ′(0, a/q) = log Γ(a/q) − 1

2
log 2π.

We note that the series
∑∞

n=1
f (n)

n
converges if and only if

∑q
a=1 f (a) = 0 and in

which case (see [13, Theorem 16]),

L(1, f ) =
−1

q

q
∑

a=1

f (a)ψ(a/q).

Here we consider the derivative of the function L(s, f ). Interestingly, when f is an

even function, the existence of a pole at s = 1 does not preclude us from concluding

the nature of L ′(0, f ). More precisely, we have the following.

Theorem 3.1 If f is an even Dirichlet-type periodic function that takes algebraic val-

ues, then L ′(0, f ) is either zero or transcendental.

Proof For Re(s) > 1, we have

L ′(s, f ) =

∞
∑

n=1

− f (n) log n

ns
=

− log q

qs

q
∑

a=1

f (a)ζ(s, a/q) +
1

qs

q
∑

a=1

f (a)ζ ′(s, a/q).

Using the identities in (3.1), we derive

L ′(0, f ) = − log q

q
∑

a=1

f (a)(1/2 − a/q) +

q
∑

a=1

f (a) log Γ(a/q) − 1

2
log(2π)

q
∑

a=1

f (a).
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Since f is even, we have f (a) = f (q − a) and hence

L ′(0, f ) = − log q

q
∑

a=1

f (a)(1/2 − a/q) +

[q/2]
∑

a=1

f (a){log Γ(a/q) + log Γ(1 − a/q)}

− log(2π)

[q/2]
∑

a=1

f (a)

= − log q

q
∑

a=1

f (a)(1/2 − a/q) +

[q/2]
∑

a=1

f (a)
{

log π − log sin
( πa

q

)}

− log(2π)

[q/2]
∑

a=1

f (a).

Here we have used the fact that Γ(x)Γ(1 − x) = π/ sin(πx). Finally, we have the

following expression for L ′(0, f ):

L ′(0, f ) = − log q

q
∑

a=1

f (a)(1/2 − a/q) −
[q/2]
∑

a=1

f (a) log sin
( πa

q

)

− log 2

[q/2]
∑

a=1

f (a).

The right-hand side is an algebraic linear combination of logarithms of algebraic

numbers, i.e., a Baker period and hence is either zero or transcendental.

For even primitive Dirichlet characters, we have the following.

Corollary 3.2 If χ is an even primitive Dirichlet character modulo q, then L ′(0, χ) is

transcendental.

Proof For a primitive even Dirichlet character, the functional equation is

L(s, χ) =
1

π

( 2π

q

) s

Γ(1 − s)S(χ) sin
( πs

2

)

L(1 − s, χ̄),

where S(χ) =
∑q

a=1 χ(a)e2πia/q is a non-zero algebraic number. Taking the derivative

and evaluating at s = 0, we have L ′(0, χ) =
1
2
S(χ)L(1, χ̄), and the non-vanishing of

L(1, χ̄) gives the corollary.

For an even primitive Dirichlet character χ modulo q, it is of interest to consider

the non-vanishing of L ′(1, χ). For q > 1, let Zq be the following set

Zq :=
{

α : α =
L ′(1, χ)

L(1, χ)
for some even primitive character χ mod q

}

.

It will be of interest to show that for all such q, the set Zq does not contain 0. Presum-

ably, Zq ∩ Q = ∅.
When χ is an odd character, the recipe followed above for even characters does

not work. For q > 1, we can consider the analogous set Zq defined for odd primitive

characters. An important ingredient for studying this set is the following conjecture

due to Lang. This is a generalisation of an earlier conjecture due to Rohrlich.



142 S. Gun, M. R. Murty, and P. Rath

Conjecture 3.3 (Rohrlich–Lang) For any integer q > 2, the extension of Q generated

by the set

{π} ∪ {Γ(a/q) : 1 ≤ a ≤ q, (a, q) = 1}

has transcendence degree 1 + ϕ(q)/2.

We suggest the following variant of the Rohrlich–Lang conjecture.

Conjecture 3.4 For any positive integer q > 2, let VΓ(q) denote the vector space over

Q spanned by the real numbers

log Γ(a/q), 1 ≤ a ≤ q, (a, q) = 1.

Then the dimension of VΓ(q) is ϕ(q).

For recent developments related to this conjecture, see [8, Theorem 4].

We have the following theorem.

Theorem 3.5 Let q > 2. Assume that the above variant of Rohrlich–Lang conjecture

is true. Then L ′(1, χ) = 0 for at most one odd primitive character mod q.

Proof Let χ be a primitive odd character mod q. For such a character, the functional

equation for L(s, χ) is

L(s, χ) =
1

πi

( 2π

q

) s

Γ(1 − s)S(χ) cos
( πs

2

)

L(1 − s, χ̄).

Taking the logarithmic derivative, we get

L ′(s, χ)

L(s, χ)
= log

( 2π

q

)

− ψ(1 − s) − π

2
tan

( πs

2

)

− L ′(1 − s, χ̄)

L(1 − s, χ̄)
,

and hence

(3.2)
L ′(0, χ)

L(0, χ)
= log

( 2π

q

)

+ γ − L ′(1, χ̄)

L(1, χ̄)
.

Using the identities of Lerch and the orthogonality of characters, we have

(3.3) L ′(0, χ) = − log q

q
∑

a=1

χ(a)(1/2 − a/q) +

q
∑

a=1

χ(a) log Γ(a/q).

Further,

L(0, χ) =

q
∑

a=1

χ(a)ζ(0, a/q) =
−1

q

q
∑

a=1

aχ(a)
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is a non-zero algebraic number. Using (3.2) and (3.3), we have

L ′(1, χ)

L(1, χ)
=

γ + log(2π/q) +
log q

L(0, χ̄)

q
∑

a=1

χ̄(a)(1/2 − a/q) − 1

L(0, χ̄)

q
∑

a=1

χ̄(a) log Γ(a/q),

which simplifies to

L ′(1, χ)

L(1, χ)
= γ + log(2π) − 1

L(0, χ̄)

q
∑

a=1

χ̄(a) log Γ(a/q).

Suppose that for two different odd primitive characters χ1 and χ2 modulo q, we have

L ′(1, χ1)

L(1, χ1)
= 0 =

L ′(1, χ2)

L(s, χ2)
.

This implies that

q
∑

a=1

χ̄1(a)

L(0, χ̄1)
log Γ(a/q) =

q
∑

a=1

χ̄2(a)

L(0, χ̄2)
log Γ(a/q).

Then our conjecture will imply that for all (a, q) = 1,

χ̄1(a)

L(0, χ̄1)
=

χ̄2(a)

L(0, χ̄2)
.

Since χ̄1(1) = χ̄2(1), we have L(0, χ̄1) = L(0, χ̄2) and hence χ1 = χ2.

4 L-Functions of Modular Forms

Our purpose in this section is to study L-functions and symmetric square L-functions

associated with modular forms. Let k, N ≥ 1 be natural numbers. Also let f =
∑

n≥1 a(n)qn be a normalized cuspidal eigenform of weight 2k for Γ0(N) and let

L(s, f ) =

∑

n≥1

a(n)

ns
, s ∈ C, ℜ(s) > k + 1

denote the L-function associated with f . Recall that

ΛN (s) := N s/2(2π)−s
Γ(s)L(s, f )

has a holomorphic continuation to the entire complex plane and satisfies the func-

tional equation

(4.1) ΛN (s) = ± ΛN (2k − s).

Here, we prove the following.
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Theorem 4.1 Let f be a normalized cuspidal eigenform of weight 2k for Γ0(N). As-

sume that L(k, f ) 6= 0. Then one has

(4.2)
L ′(k, f )

L(k, f )
= −ψ(k) + log 2π − 1

2
log N.

Further, L ′(k, f ) 6= 0.

Proof By (4.1), we have

N s/2(2π)−s
Γ(s)L(s, f ) = ± N(2k−s)/2(2π)−2k+s

Γ(2k − s)L(2k − s, f ).

Taking the logarithmic derivative with respect to s, we see that

(4.3) log N + ψ(s) +
L ′(s, f )

L(s, f )
= 2 log 2π − ψ(2k − s) − L ′(2k − s, f )

L(2k − s, f )
.

Since L(k, f ) 6= 0, putting s = k in (4.3), we get the first part of the theorem. To

prove the second part of the theorem, note that

(4.4) −ψ(k) = γ −
k−1
∑

n=1

1

n
, where 0.577215 < γ < 0.577216.

Now if
L ′(k, f )

L(k, f )
= 0,

then by (4.4), we will have

(4.5) γ + log 2π =

k−1
∑

n=1

1

n
+

1

2
log N.

We will show that (4.5) can never happen. Since

2.41421 < γ + log 2π < 2.415116, 2.418 <
1

2
log 126 and

6
∑

n=1

1

n
= 2.45,

we obtain that

γ + log 2π <
k−1
∑

n=1

1

n
+

1

2
log N

is true for all pairs (k, N), where either k ≥ 7 or N ≥ 126. For the remaining cases,

that is, when k ≤ 6 and N ≤ 126, one can similarly check that (4.5) can never

happen.

As immediate corollaries, we have the following.
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Corollary 4.2 Let f be as in the previous theorem. Then

exp
( L ′(k, f )

L(k, f )
+ ψ(k)

)

is transcendental.

Proof The corollary follows from equation (4.2).

Corollary 4.3 Let k ≥ 1 be a fixed natural number. For an N ≥ 1, let E(N) denote the

set of all normalized cuspidal eigenforms f of weight 2k and level N such that L(k, f ) 6=
0. Then the infinite set

{ L ′(k, f )

L(k, f )
: f ∈ E(N), N ≥ 1

}

has at most one algebraic element.

Proof We note that since f1, f2 have the same level N, by (4.2),

L ′(k, f1)

L(k, f1)
=

L ′(k, f2)

L(k, f2)
.

Hence, we only need to consider forms corresponding to different levels. Let f1 ∈
E(N1) and f2 ∈ E(N2), where N1 6= N2. Now if both

L ′(k, f1)
L(k, f1)

and
L ′(k, f2)
L(k, f2)

are algebraic,

then their difference 1
2

log N2

N1
is algebraic, a contradiction.

Corollary 4.4 Assume Schanuel’s conjecture is true. Then

L ′(k, f )

L(k, f )
− γ and exp

( L ′(k, f )

L(k, f )
− γ

)

are transcendental.

Proof We have

L ′(k, f )

L(k, f )
− γ = log 2π − 1

2
log N − α and

exp
( L ′(k, f )

L(k, f )
− γ

)

= e−α 2π

N
1
2

, where α =

k−1
∑

n=1

1

n
∈ Q.

Since by Schanuel’s conjecture π and any non-zero algebraic power of e are alge-

braically independent, both the elements are transcendental.

Let E be an elliptic curve defined over Q with conductor N. Since every elliptic

curve over Q is modular (see [3, 4, 6, 16, 20]), we have the following corollaries.



146 S. Gun, M. R. Murty, and P. Rath

Corollary 4.5 Let E be an elliptic curve defined over Q of conductor N. Suppose that

L(1, E) 6= 0. Then L ′(1, E) 6= 0. Further,

exp
( L ′(1, E)

L(1, E)
− γ

)

is transcendental.

Corollary 4.6 Let

S :=
{ L ′(1, E)

L(1, E)
: E an elliptic curve over Q, L(1, E) 6= 0

}

.

Then S has at most one algebraic element.

Finally, we consider the symmetric square L-function associated with a normal-

ized cuspidal eigenform. For a normalized cuspidal eigenform f =
∑

n≥1 a(n)qn of

weight 2k for Γ0(1), we denote by

L(s, Sym2 f ) =
∏

p

(1 − α2
p p−s)−1(1 − αpβp p−s)−1(1 − β2

p p−s)−1, ℜ(s) > 2k

the symmetric square L-function of f , where the product is over all primes p and

αp , βp are defined by αp + βp = a(p), αpβp = p2k−1. Recall that L(s, Sym2 f ) has a

holomorphic continuation (see [15]) to C, and the function

L∗(s, Sym2 f ) = 2−sπ−3s/2
Γ(s)Γ

( s − 2k + 2

2

)

L(s, Sym2 f )

satisfies the functional equation

(4.6) L∗(s, Sym2 f ) = L∗(4k − 1 − s, Sym2 f ).

Here we prove the following.

Theorem 4.7 Let f be a normalized cuspidal eigenform of weight 2k for Γ0(1). As-

sume that L(2k − 1/2, Sym2 f ) 6= 0. Then one has

L ′(2k − 1/2, Sym2 f )

L(2k − 1/2, Sym2 f )
= log 2π3/2 − ψ(2k − 1/2) − 1

2
ψ(3/4).

Further, L ′(2k − 1/2, Sym2 f ) 6= 0 for all k > 48.

Proof Taking the logarithmic derivative with respect to s in (4.6), one proves the first

part of the theorem. Since

ψ(2k − 1/2) = −γ − 2 log 2 +

2k−1
∑

n=1

1

n − 1/2
,
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therefore

(4.7)
L ′(2k − 1/2, Sym2 f )

L(2k − 1/2, Sym2 f )
=

3

2
γ +

3

2
log π +

9

2
log 2 − π

4
−

2k−1
∑

n=1

1

n − 1/2
.

We know
3

2
γ +

3

2
log π +

9

2
log 2 − π

4
< 4.93

and since
2k−1
∑

n=1

1

n − 1/2
> 4.93

for all k > 48, (4.7) is non-zero for all such k.

Corollary 4.8 Let f be as in the previous theorem. Then one has that

π−3/2 exp
( L ′(2k − 1/2, Sym2 f )

L(2k − 1/2, Sym2 f )
− 3

2
γ +

π

4

)

is transcendental. Further, if we assume the Schanuel’s conjecture, then both

exp
( L ′(2k − 1/2, Sym2 f )

L(2k − 1/2, Sym2 f )
− 3

2
γ
)

and
L ′(2k − 1/2, Sym2 f )

L(2k − 1/2, Sym2 f )
− 3

2
γ

are transcendental.

5 Transcendence of Artin L-Functions at s = 1

We begin with the investigation of the nature of the residue at s = 1 of Dedekind

zeta functions. Let K be a number field of degree n. For ℜ(s) > 1, the Dedekind zeta

function of K is defined as

ζK (s) =

∑

a

1

N(a)s
,

where the sum is over all integral ideals of OK , the ring of integers of K. This is

analytic for ℜ(s) > 1, and (s − 1)ζK (s) extends to an entire function with

lim
s→1+

(s − 1)ζK (s) = Ress=1 ζK (s) =
2r1 (2π)r2 hK RK

ωK

√

|dK |
,

where r1 is the number of real embeddings, 2r2 is the number of complex embed-

dings, hK is the class number, RK is the regulator, ωK is the number of roots of unity

in K, and dK is the discriminant of K.

We are interested in the possible algebraic nature of Ress=1 ζK (s) and the regu-

lator RK . Interestingly, because of the presence of π, the transcendence of any one

of the above does not necessarily imply the transcendence of the other unless K is a

totally real field. We have the following.
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Theorem 5.1 Assume the Weak Schanuel Conjecture. Let K be a number field. Then

both the regulator RK and Ress=1 ζK (s) are transcendental.

Proof By the class number formula,

Ress=1 ζK (s) =
2r1 (2π)r2 hK RK

ωK

√

|dK |
,

where r1 and 2r2 are the number of real and complex embeddings. Let u( j) be the

j-th conjugate of u ∈ K and

{u1, u2, . . . , ur}

be a set of generators of the ordinary unit group modulo the roots of unity. Then the

regulator RK , up to a rational multiple, is given by

∣

∣

∣

∣

∣

∣

∣

1 log |u(1)
1 | · · · log |u(1)

r |
...

...
...

...

1 log |u(r+1)
1 | · · · log |u(r+1)

r |

∣

∣

∣

∣

∣

∣

∣

.

Clearly, by Proposition 2.3, the regulator RK is transcendental.

Further,

πr2 Rk = F
(

log(−1), log |u(1)
1 |, . . . , log |u(r+1)

r |
)

where F is a polynomial with algebraic coefficients whose constant term is zero.

Assume that the Weak Schanuel Conjecture is true. Then by Proposition 2.3,

Ress=1 ζK (s) is necessarily transcendental.

Now, we wish to extend our study to the special values of certain Artin L-

functions, following the work of Stark [14]. We refer to [12] for a more detailed

account of Artin L-functions. Let K/k be Galois extension of number fields with Ga-

lois group G = Gal(K/k). Corresponding to any finite dimensional representation

(φ,V ) of G with character χ, the Artin L-function is defined by

L(s, χ, K/k) =
∏

P

det(1 − N(P)−sφ(σβ)|V Iβ )−1,

where P runs over all the prime ideals in Ok, β is a prime ideal lying over P, Iβ is its

inertia group and σβ is the associated Frobenius element in the Galois group. Stark

in [14] made the following conjecture.

Conjecture 5.2 (Stark) Suppose χ does not contain χ0 as a constituent. Then

L(1, χ, K/k) =
W (χ̄)2aπb

(|dk|N( f ))1/2
θ(χ̄)R(χ̄).

We refer to Stark’s article for descriptions of the terms involved. Stark proved the

above conjecture for all rational characters. We have the following assertion:
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Theorem 5.3 Assume that the Weak Schanuel Conjecture is true. Then for any ratio-

nal non-trivial irreducible character χ, L(1, χ, K/k) is transcendental.

Proof Let χ be a character as above. Then, as proved by Stark,

L(1, χ, K/k) =
W (χ̄)2aπb

(|dk|N( f ))1/2
θ(χ̄)R(χ̄).

In the expression on the right-hand side, there are two possible transcendental ob-

jects, namely πb and R(χ). But we have a description of the number R(χ). It is

the determinant of an a by a matrix whose entries are linear forms in logarithms

of absolute values of units in K and its conjugate fields. For instance, when k is

equal to Q , the entries of this matrix are given by ci j =
∑

σ∈G ai j(σ) log(|ǫσ|), where

A(σ) =
(

ai j(σ)
)

is a representation of G whose character is χ, and ǫ is a Minkowski

unit. Since log(−1) = iπ, the residue is the value of a polynomial of the form men-

tioned in Proposition 2.3 evaluated at logarithms of algebraic numbers. By the work

of Brauer and Aramata, we know that for any irreducible character χ of G, for all

t ∈ R, L(1 + it, χ, K/k) 6= 0 and hence by appealing to Proposition 2.3, we see that

L(1, χ, K/k) is transcendental under the Weak Schanuel Conjecture.

In general, the Weak Schanuel Conjecture will imply the transcendence of

L(1, χ, K/k) whenever Stark’s conjecture is true.

6 Transcendence of the Petersson Norm

In this section, we discuss the transcendence of the Petersson norm of cuspidal eigen-

forms of weight one. Suppose that

f =

∞
∑

n=1

a(n)e2πinz and g =

∞
∑

n=1

b(n)e2πinz

are cusp forms on Γ0(N) of weight k ≥ 1 and character χN . The Petersson inner

product of f and g is defined as:

〈 f , g〉 :=

∫ ∫

Γ0(N)\H

yk−2 f (z)g(z) dxdy.

Further, if 〈 f , g〉 6= 0, then we have (see [14, Section 6]):

lim
s→k

(s − k)G(s) = (4π)k(2N2
Γ(k))−1πϕ(N)〈 f , g〉,

where

G(s) := ζ(2s + 2 − 2k)
∏

p|N

(1 − p−2s−2+2k)
∑

n≥1

a(n)b(n)n−s.

Now let f be a normalised cuspidal eigenform on Γ0(N) of weight one and char-

acter χN . Then G(s) has a pole at s = 1 having a residue

Ress=1 G(s) = 4π2(2N2)−1ϕ(N)〈 f , f 〉.

We have the following.
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Theorem 6.1 Let f be a normalised cuspidal eigenform on Γ0(N) of weight one and

nebentypus ǫ. Suppose it has rational Fourier coefficients. Then its Petersson norm

〈 f , f 〉 is transcendental under the Weak Schanuel Conjecture.

Proof Let

G(s) = ζ(2s)
∏

p|N

(1 − p−2s)
∑

n≥1

|a(n)|2n−s.

Then, we have

Ress=1 G(s) = lim
s→1

(s − 1)G(s) = 2π2 ϕ(N)

N2
〈 f , f 〉.

By a theorem of Deligne and Serre [5], there exists an irreducible representation

ρ : Gal(K/Q) → GL(2, C)

of conductor N and determinant ǫ whose Artin L-function is

L(s, χ, K/Q) =

∞
∑

n=1

a(n)n−s.

Here χ is the character of ρ. Then χχ̄ is of degree 4 and the corresponding Artin

L-function is given by

L(s, χχ̄, K/Q) =
∏

p|N

(

1 − p−s
)−1

G(s).

Hence, we have

(6.1) 〈 f , f 〉 =
N

2π2
lim
s→1

(s − 1)L(s, χχ̄, K/Q).

Since ψ = χχ̄ − 1 is rational valued, by Stark, we have:

L(1, ψ, K/Q) =
W (ψ̄)2aπb

(N( f ))1/2
θ(ψ̄)R(ψ̄).

Here other than π and the regulator R(ψ̄), all other terms are algebraic. For complex

numbers A and B, let us denote by A ∼ B when A is an algebraic multiple of B. Thus,

L(1, ψ, K/Q) ∼ πbR(ψ̄).

Now L(s, χχ̄, K/Q) factors as the product of L(s, ψ, K/Q) and a Dedekind zeta func-

tion ζk(s). Since

lim
s→1+

(s − 1)ζk(s) = Ress=1 ζk(s) =
2r1 (2π)r2 hkRk

ωk

√

|dK |
,

we have 〈 f , f 〉 ∼ πb−2+r2 R(ψ̄)Rk by (6.1). But as noted before, the terms R(ψ̄) and Rk

are determinants of matrices whose entries are linear forms in logarithms of algebraic

numbers. Hence by Proposition 2.3, we note that 〈 f , f 〉 is transcendental.
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We now consider some explicit cases where the transcendence of the Petersson

norm can be deduced unconditionally.

Let

S = {23, 31, 59, 83, 107, 139, 283, 307, 331, 379, 499, 547, 643, 883, 907}.

For N ∈ S, let us consider the quadratic extension k = Q(
√
−N). The class number

of k is 3. Let K be the Hilbert class field of k. Then the Galois group G of K/Q is S3.

Then G has a two dimensional irreducible character χ that is rational valued. Let

L(s, χ, K/Q) =

∑

n≥1

a(n)n−s

be the Artin L-function associated with χ. By the works of Langlands and Tunnell

[17], such an L-function is modular. Thus,

f :=

∞
∑

n=1

a(n)e2πinz

is a cusp form of weight 1 on Γ0(N). As before,

〈 f , f 〉 =
N

2π2
lim
s→1

(s − 1)L(s, χχ̄, K/Q).

In this case, the L(s, χχ̄, K/Q) factors as

L(s, χχ̄, K/Q) = ζk(s)L(s, χ, K/Q)

and thus

〈 f , f 〉 =
N

2π2

3π√
N

L(1, χ, K/Q) =
3
√

N

2π
L(1, χ, K/Q)

Substituting the expression for L(1, χ, K/Q) from Stark’s theorem, we have

〈 f , f 〉 =
3
√

N

2π

2π√
N

θ(χ̄)W (χ̄)R(χ̄) ∼ R(χ̄).

In this case, R(χ̄) = log ǫ, where ǫ is the Minkowski unit. Thus, by the classical

theorem of Hermite and Lindemann, 〈 f , f 〉 is transcendental.

Remark 6.2 Let f be a normalised weight one cuspidal eigenform on Γ0(N) with

nebentypus ǫ. Then using the Deligne–Serre theorem and arguing as before, we see

that if Stark’s conjecture is true, 〈 f , f 〉 is transcendental under Schanuel’s conjecture.
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