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1. Introduction

In 1918, Ramanujan studied [8] the following sum of roots of unity.

Definition 1. For positive integers r, n,

cr(n) :=
∑

a∈(Z/rZ)∗
ζanr ,

where ζr denotes a primitive r-th root of unity.

These sums are now known as Ramanujan sums. It is also possible to write cr(n) in 
terms of the Möbius function μ (see [6]). One has

cr(n) =
∑

d|n,d|r
μ(r/d)d (1)

for any positive integers r, n.
Ramanujan studied these sums in the context of point-wise convergent series expan-

sions of the form 
∑

r arcr(n) for various arithmetical functions. Such expansions are now 
known as Ramanujan expansions. More precisely:

Definition 2. We say an arithmetical function f admits a Ramanujan expansion (in the 
sense of Ramanujan) if for each n, f(n) can be written as a convergent series of the form

f(n) =
∑
r≥1

f̂(r)cr(n)

for appropriate complex numbers f̂(r). The number f̂(r) is said to be the r-th Ramanujan 
coefficient of f with respect to this expansion.

Shifted convolution sums are ubiquitous in number theory and recently such sums 
have been studied for functions with absolutely convergent Ramanujan expansions. It has 
been done systematically in [4,7,2,9]. For two arithmetical functions f and g we study the 
convolution sum of the form 

∑
n≤N f(n)g(n +h). In this article we introduce the concept 

of finite Ramanujan expansion of an arithmetical function. This idea particularly enables 
us to avoid technical infinite sums and obtain an asymptotic formula with explicit error 
terms for the convolution sum Cf,g(h) :=

∑
n≤N f(n)g(n + h) for some fixed positive 

integer N and non-negative integer h.
Let us write our functions f and g as

f(n) =
∑

f ′(d) and g(n) =
∑

g′(d),

d|n d|n
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where f ′ := f ∗μ and g′ := g ∗μ. Here μ denotes the Möbius function and ∗ denotes the 
Dirichlet convolution. Then

Cf,g(h) =
∑
n≤N

∑
d|n

f ′(d)
∑

q|n+h

g′(q) =
∑
d≤N

f ′(d)
∑

q≤N+h

g′(q)
∑
n≤N

n≡0 mod d
n+h≡0 mod q

1.

Hence from the point of view of studying the convolution sums, we may put

f(n) =
∑

d|n,d≤N

f ′(d) (2)

and

g(n + h) =
∑

d|n+h,d≤N+h

g′(d), (3)

i.e. we are enforcing that f ′(n) vanishes if n > N and g′(n) vanishes if n > N + h. 
This will definitely change the values our f(n), g(n) that we started with, but only 
for n > N and n > N + h respectively. Hence this will not alter our convolution sum ∑

n≤N f(n)g(n + h). At this point we note the following interesting property satisfied 
by Ramanujan sums.

Lemma 1.

1
d

∑
r|d

cr(n) =
{

1 if d|n,
0 otherwise.

For a proof see Section 2. Now, using Lemma 1, we get

f(n) =
∑

d|n,d≤N

f ′(d) =
∑
d≤N

f ′(d)1
d

∑
r|d

cr(n)

=
∑
r≤N

cr(n)

⎛
⎝ ∑

r|d,d≤N

f ′(d)
d

⎞
⎠ =

∑
r≤N

f̂(r)cr(n),

where

f̂(r) :=
∑

r|d,d≤N

f ′(d)
d

. (4)

Similarly

g(n + h) =
∑

ĝ(s)cs(n + h),

s≤N+h
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where

ĝ(s) :=
∑

s|d,d≤N+h

g′(d)
d

. (5)

Thus we obtain a finite series expansion for our functions f and g which is more like 
a Ramanujan expansion. This we refer to as finite Ramanujan expansion relative to N
and h. Note that such kind of an expansion depends on the fixed parameters N and h. 
This helps us to avoid dealing with infinite sums, which was not the case in [7,2,9]. From 
now on, all these above notations will be used freely without referring to them.

Using the dual Möbius inversion formula (see page 4 of [1]) it is also possible to express 
f ′ in terms of f̂ . We have

f ′(r) = r
∑

r|d,d≤N

μ(d/r)f̂(d) (6)

and

g′(s) = s
∑

s|d,d≤N+h

μ(d/s)ĝ(d). (7)

For arithmetical functions with usual Ramanujan expansion that are absolutely con-
vergent, the following theorem was proved in [2].

Theorem 1 (Coppola–Murty–Saha). Suppose that f and g are two arithmetical functions 
with absolutely convergent Ramanujan expansions (in the sense of Ramanujan):

f(n) =
∑
r≥1

f̂(r)cr(n), g(n) =
∑
s≥1

ĝ(s)cs(n)

respectively. Further suppose that

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣ � 1

r1+δ

for some δ > 0 and h is a non-negative integer. Then we have

∑
n≤N

f(n)g(n + h) =

⎧⎪⎪⎨
⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + O(N1−δ(logN)4−2δ) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)cr(h) + O(log3 N) if δ = 1,
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + O(1) if δ > 1.

Now suppose we impose the conditions

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣ � 1 for some δ > 0 (8)
r1+δ
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on the coefficients of the finite Ramanujan expansions of the arithmetic functions f
and g, defined in (4) and (5). Using the dual Möbius inversion formula, these conditions 
can be rewritten equivalently as

∣∣f ′(r)
∣∣, ∣∣g′(r)∣∣ � 1

rδ
for some δ > 0. (9)

With these conditions in place we can derive a theorem that is analogous to Theorem 1
and we are also able to improve the error term in the case of δ ≤ 1 by certain exponents 
of logN .

Theorem 2. Let N be a positive integer and f and g be two arithmetical functions for 
which we want to estimate the shifted convolution sums

∑
n≤N

f(n)g(n + h)

for a positive integer h. Further suppose that

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣ � 1

r1+δ
for some δ > 0,

where f̂(r), ĝ(r) are as in (4) and (5). Then we have

∑
n≤N

f(n)g(n + h) = N

∞∑
r=1

f̂(r)ĝ(r)cr(h) + Oδ,h

(
N1−δ log2 N + 1

)
.

The study of shifted convolution sums in the context of arithmetical functions with ab-
solutely convergent Ramanujan expansions was initiated by Gadiyar, Murty and Padma 
in [4]. The authors in [3] showed that if we ignore convergence questions, a Ramanu-
jan expansion of the function φ(n)

n Λ(n), which is due to Hardy, can be used to derive 
the Hardy–Littlewood conjecture about prime tuples. Later in [4] it was investigated 
whether the work in [3] can be justified for arithmetical functions with absolutely con-
vergent Ramanujan expansion, under certain hypothesis on the Ramanujan coefficients. 
The objective of [9] was to reach the minimality of such hypothesis. In that quest the 
last author proved the following theorem in [9].

Theorem 3 (Saha). Let f , g be two arithmetical functions with absolutely convergent 
Ramanujan expansions (in the sense of Ramanujan)

f(n) =
∑
r≥1

f̂(r)cr(n), g(n) =
∑
s≥1

ĝ(s)cs(n).

Further suppose that there exists α > 4 such that
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∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣ � 1

r logα r

and h is a positive integer. Then for a positive integer N , we have

∑
n≤N

f(n)g(n + h) = N
∑
r≥1

f̂(r)ĝ(r)cr(h) + O

(
N

(logN)α−4

)
.

Now for the Ramanujan coefficients coming from finite Ramanujan expansions we first 
observe the following.

Lemma 2. Suppose that the Ramanujan coefficients f̂(r) coming from the finite Ramanu-
jan expansion of f satisfy

∣∣f̂(r)
∣∣ � 1

r logα r
for some α > 1.

Then we have

∣∣f ′(r)
∣∣ � 1

logα−1 r
.

Similarly if we assume

∣∣f ′(r)
∣∣ � 1

logβ r
for some β > 1,

then we have

∣∣f̂(r)
∣∣ � 1

r logβ−1 r
.

The proof uses the conversion formulas (4) and (6) and partial summation formula. 
For a detailed proof see Section 2. Next we prove the following theorem.

Theorem 4. Let N be a positive integer and f and g be two arithmetical functions for 
which we want to estimate the shifted convolution sums

∑
n≤N

f(n)g(n + h)

for a positive integer h. Further suppose that

∣∣f ′(d)
∣∣, ∣∣g′(d)∣∣ � 1

logβ d
for some β > 2,

where f ′(d), g′(d) are as in (2) and (3). Then we have
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∑
n≤N

f(n)g(n + h) = N
∞∑
r=1

f̂(r)ĝ(r)cr(h) + Oβ,h

( N

logβ−2 N

)
.

As an immediate corollary of Theorem 4, we can now derive (using Lemma 2) the 
following theorem, which is an analogue of Theorem 3, in the setting of finite Ramanujan 
expansions.

Theorem 5. Let N be a positive integer and f and g be two arithmetical functions for 
which we want to estimate the shifted convolution sums

∑
n≤N

f(n)g(n + h)

for a positive integer h. Further suppose that

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣ � 1

r logα r
for some α > 3,

where f̂(r), ĝ(r) are as in (4) and (5). Then we have

∑
n≤N

f(n)g(n + h) = N
∞∑
r=1

f̂(r)ĝ(r)cr(h) + Oα,h

( N

logα−3 N

)
.

2. Proofs of the lemmas

Proof of Lemma 1. The lemma follows from the known identity

1
d

d∑
a=1

ζand =
{

1 if d|n,
0 otherwise,

where ζd denotes a primitive d-th root of unity. We then partition the sum in the left 
hand side in terms of gcd and using the definition we write

1
d

d∑
a=1

ζand = 1
d

∑
r|d

d∑
a=1

(a,d)=r

ζand = 1
d

∑
r|d

cd/r(n) = 1
d

∑
r|d

cr(n). �

Proof of Lemma 2. We use the formula (6) and write

∣∣f ′(d)
∣∣ =

∣∣∣∣∣∣d
∑

N

μ(j)f̂(jd)

∣∣∣∣∣∣ �
∑

N

1
j logα(jd) .
j≤ d j≤ d
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Without loss of generality we take d > 1 and break the above sum in two different cases: 
one for d ≤

√
N and the other for d >

√
N . When d ≤

√
N , we have d ≤ N

d . Thus we 
have

∑
j≤N/d

1
j logα(jd) �

∑
j≤d

1
j logα d

+
∑

d<j≤N
d

1
j logα j

�α
1

logα−1 d
+ 1

logα−1(N/d)
�α

1
logα−1 d

.

Next, if d >
√
N then Nd < d. Thus

∑
j≤N/d

1
j logα(jd) ≤

∑
j≤d

1
j logα d

� 1
logα−1 d

.

This completes the proof of the first part. For the second part we use the formula (4)
and write

∣∣f̂(r)
∣∣ =

∣∣∣∣∣∣
∑

r|d,d≤N

f ′(d)
d

∣∣∣∣∣∣ �
1
r

∑
n≤N/r

1
n logβ(rn)

.

Again we take r > 1 and break the above sum in two different cases: one for r ≤
√
N

and the other for r >
√
N . If r ≤

√
N , then r ≤ N

r and hence

∑
n≤N/r

1
n logβ(rn)

�
∑
n≤r

1
n logβ r

+
∑

r<n≤N
r

1
n logβ n

�β
1

logβ−1 r
+ 1

logβ−1(N/r)
�β

1
logβ−1 r

.

Further if r >
√
N , then Nr < r and thus

∑
n≤N/r

1
n logβ(rn)

�
∑
n≤r

1
n logβ r

� 1
logβ−1 r

.

This completes the proof. �
3. Proofs of the theorems

Proof of Theorem 2. We start with
∑
n≤N

f(n)g(n + h) =
∑
n≤N

∑
d|n

f ′(d)
∑

q|n+h

g′(q) =
∑
d≤N

f ′(d)
∑

q≤N+h

g′(q)
∑
n≤N

n≡0 mod d

1.
n+h≡0 mod q
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Now gathering by gcd and changing variables d, q we get
∑
n≤N

f(n)g(n + h) =
∑
l|h

b:=−h
l

∑
d≤N

l

f ′(ld)
∑

q≤N+h
l

g′(lq)
∑

m≤ N
ld

m≡db mod q

1.

Here and from now on d denotes an inverse of d modulo q. Next we split the summations 
with conditions dq ≤ N/l and dq > N/l (the ∗ in q-sums abbreviates (q, d) = 1 hereafter):

∑
n≤N

f(n)g(n + h) =
∑
l|h

b:=−h
l

∑
d≤N

l

f ′(ld)
∑∗

q≤N
ld

g′(lq)
∑

m≤ N
ld

m≡db mod q

1

+ O

( ∑
l|h

b:=−h
l

1
l2δ

∑
d≤N

l

1
dδ

∑
N
ld<q≤N+h

l

1
qδ

∑
m≤ N

ld
md≡b mod q

1
)
,

where the last sum is (thanks to condition dq > N/l)

�δ

∑
l|h

1
l2δ

( l

N

)δ ∑
n≤N

l

d(n)d(n + h/l) �δ,h N1−δ(logN)2.

Here we have used the equivalent form of our hypothesis as per (8) and (9). We now 
have the term

∑
l|h

b:=−h
l

∑
d≤N

l

f ′(ld)
∑∗

q≤N
ld

g′(lq)
∑

m≤ N
ld

m≡db mod q

1 =
∑
l|h

∑
d≤N

l

f ′(ld)
∑∗

q≤N
ld

g′(lq)
( N

ldq
+ O(1)

)
,

where the part with O(1) contributes

�δ

∑
l|h

1
l2δ

∑
d≤N

l

1
dδ

∑
q≤N

ld

1
qδ

�δ

∑
l|h

1
l2δ

∑
d≤N

l

1
dδ

(N
ld

)1−δ

�δ N1−δ(logN)

if δ �= 1 and � log2 N if δ = 1. The main term is then coming from

N
∑
l|h

1
l

∑
d≤N

l

f ′(ld)
d

∑∗

q≤N
ld

g′(lq)
q

which is written as

N
∑
l|h

1
l

∑
d≤N

l

f ′(ld)
d

∑∗

q≤N+h
l

g′(lq)
q

+ Oδ

(
N

∑
l|h

1
l1+2δ

∑
d≤N

l

1
d1+δ

∑
N
ld<q≤N+h

l

1
q1+δ

)

= N
∑
l|h

l
∑
d

f ′(ld)
ld

∑∗

q

g′(lq)
lq

+ Oδ

(
N1−δ

∑
l|h

1
l1+δ

∑
N

1
d

)

d≤ l
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= N
∑
l|h

l
∑
d

f ′(ld)
ld

∑
q

(q,d)=1

g′(lq)
lq

+ Oδ

(
N1−δ logN

)
.

Next we use the following fundamental property of the Möbius function (see page 3 
of [1]).

Lemma 3.

∑
d|n

μ(d) =
{

1 if n = 1,
0 otherwise.

Using Lemma 3, for n = (q, d), we write

∑
l|h

l
∑
d

f ′(ld)
ld

∑
q

(q,d)=1

g′(lq)
lq

=
∑
l|h

l
∑
t

μ(t)
∑
d′

f ′(ltd′)
ltd′

∑
q′

g′(ltq′)
ltq′

=
∑
l|h

l
∑
t

μ(t)f̂(lt)ĝ(lt)

=
∞∑
r=1

f̂(r)ĝ(r)
∑
l|h
l|r

lμ
(r
l

)

=
∞∑
r=1

f̂(r)ĝ(r)cr(h).

Thus we get

∑
n≤N

f(n)g(n + h) = N
∞∑
r=1

f̂(r)ĝ(r)cr(h) + Oδ,h

(
N1−δ log2 N + 1

)
. �

Remark 1. One can also follow steps of [7] and [2]. The proof obtained in this way will be 
a little shorter. However, this will only prove a weaker version of this result. We briefly 
sketch it below.

Keeping the principle of [7] and [2] in mind, we consider a parameter U tending to 
infinity which is to be chosen later. Then we write

∑
n≤N

f(n)g(n + h) = A + B,

where

A :=
∑
n≤N

∑
r,s

f̂(r)ĝ(s)cr(n)cs(n + h) and B :=
∑
n≤N

∑
r,s

f̂(r)ĝ(s)cr(n)cs(n + h).

rs≤U rs>U
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As per our derivation in [2], we have

A =

⎧⎪⎪⎨
⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + Oh

(
N

U1/2+δ

)
+ O(U1−δ log2 U) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)cr(h) + Oh

(
N

U3/2

)
+ O(log3 U) if δ = 1,

N
∑

r≥1 f̂(r)ĝ(r)cr(h) + Oh

(
N

U1/2+δ

)
+ O(1) if δ > 1.

Using (1) and the hypotheses on f̂(r) and ĝ(r) we write

|B| �
∑

r≤N,s≤N+h
rs>U

1
(rs)1+δ

∑
r′|r

r′
∑
s′|s

s′
∑
n≤N

r′|n,s′|n+h

1.

Next we put r = r′nr and s = s′ns. Hence

|B| �
∑

r′≤N,s′≤N+h

1
(r′s′)δ

∑
nr,ns

nrns>U/r′s′

1
(nrns)1+δ

∑
n≤N

r′|n,s′|n+h

1

=
∑

r′≤N,s′≤N+h

1
(r′s′)δ

∑
t>U/r′s′

d(t)
t1+δ

∑
n≤N

r′|n,s′|n+h

1

�
∑

r′≤N,s′≤N+h

1
(r′s′)δ

log(U/r′s′)
(U/r′s′)δ

∑
n≤N

r′|n,s′|n+h

1

� log(UN2)
U δ

∑
n≤N

d(n)d(n + h)

�h
N log2 N log(UN2)

U δ
.

To optimize the error terms, we choose

U =

⎧⎪⎪⎨
⎪⎪⎩
N logN if δ < 1,
N if δ = 1,
N1/δ(logN)3/δ if δ > 1.

These choices yield

∑
n≤N

f(n)g(n + h) =

⎧⎪⎪⎨
⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + O(N1−δ(logN)3−δ) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)cr(h) + O(log3 N) if δ = 1,
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + O(1) if δ > 1.
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Proof of Theorem 4. This proof starts off similarly. We just rewrite the hypotheses on 
f ′ and g′ as

∣∣f ′(d)
∣∣, ∣∣g′(d)∣∣ � 1

1 + logβ d

and obtain∑
n≤N

f(n)g(n + h) =
∑
l|h

b:=−h
l

∑
d≤N

l

f ′(ld)
∑∗

q≤N
ld

g′(lq)
∑

m≤ N
ld

m≡db mod q

1

+ O

( ∑
l|h

b:=−h
l

∑
d≤N

l

1
1 + logβ(ld)

∑∗

N
ld<q≤N+h

l

1
1 + logβ(lq)

∑
m≤ N

ld
m≡db mod q

1
)

=
∑
l|h

b:=−h
l

∑
d≤N

l

f ′(ld)
∑∗

q≤N
ld

g′(lq)
∑

m≤ N
ld

m≡db mod q

1 + O(R1),

where

R1 :=
∑
l|h

b:=−h
l

∑
d≤N

l

1
1 + logβ(ld)

∑∗

N
ld<q≤N+h

l

1
1 + logβ(lq)

∑
m≤ N

ld
m≡db mod q

1.

To estimate R1 we separate according to the cases d ≤
√
N and d >

√
N . If d ≤

√
N

then

logβ(lq) �β logβ N

for all q > N/ld, while d >
√
N implies

logβ(ld) �β logβ N.

This yields

R1 �β

∑
l|h

b:=−h
l

1
logβ N

∑
d≤N

l

∑
N
ld<q≤N+h

l

∑
m≤ N

ld
md≡b mod q

1

�β
1

logβ N

∑
l|h

∑
n≤N

l

d(n)d(n + h/l)

�β,h
1

logβ N

∑
l|h

N

l
log2 N

l

�β,h
N

logβ−2 N
.
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Here we used the asymptotic estimate

∑
n≤N/l

d(n)d(n + h/l) ∼ 6
π2σ−1(h/l)

N

l
log2(N/l),

due to Ingham [5]. So now we are left to estimate

∑
l|h

b:=−h
l

∑
d≤N

l

f ′(ld)
∑∗

q≤N
ld

g′(lq)
∑

m≤ N
ld

m≡db mod q

1 = N
∑
l|h

1
l

∑
d≤N

l

f ′(ld)
d

∑∗

q≤N
ld

g′(lq)
q

+ O(R2),

where

R2 :=
∑
l|h

∑
d≤N

l

|f ′(ld)|
∑
q≤N

ld

|g′(lq)|.

Here we used the fact that

∑
m≤ N

ld
m≡db mod q

1 = N

ldq
+ O(1).

Using the hypothesis we get that

R2 �
∑
l|h

∑
d≤N

l

1
1 + logβ(ld)

∑
q≤N

ld

1
1 + logβ(lq)

.

To treat the q-sum on the right hand side we split as follows:

∑
q≤N

ld

1
1 + logβ(lq)

�β

∑
q≤ 1

l

√
N
d

1 + 1
1 + logβ(N/d)

∑
1
l

√
N
d <q≤N

ld

1,

where we used that

q >
1
l

√
N

d
⇒ 1

1 + logβ(lq)
�β

1
1 + logβ(N/d)

.

Hence

R2 �β

∑
l|h

∑
d≤N

l

1
1 + logβ(ld)

N

ld(1 + logβ(N/d))

�β
N

logβ N

∑
l|h

1
l

⎛
⎝1 +

∑
√

1
d logβ(ld)

+
∑

√
N

1
d(1 + logβ(N/d))

⎞
⎠

1<d≤ N N<d≤ l
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�β
N

logβ N

∑
l|h

1
l

∑
d≤N

l

1
d

�β,h
N

logβ−1 N
.

Thus so far we have obtained that

∑
n≤N

f(n)g(n + h) = N
∑
l|h

1
l

∑
d≤N

l

f ′(ld)
d

∑∗

q≤N
ld

g′(lq)
q

+ Oβ,h

(
N

logβ−2 N

)
.

Now we essentially repeat what we did in the proof of Theorem 2 and write

N
∑
l|h

1
l

∑
d≤N

l

f ′(ld)
d

∑∗

q≤N
ld

g′(lq)
q

= M + O(R3),

where

M := N
∑
l|h

1
l

∑
d≤N

l

f ′(ld)
d

∑∗

q≤N+h
l

g′(lq)
q

= N
∞∑
r=1

f̂(r)ĝ(r)cr(h)

and

R3 := N
∑
l|h

1
l

∑
d≤N

l

|f ′(ld)|
d

∑
N
ld<q≤N+h

l

|g′(lq)|
q

.

Using the hypothesis we get that

R3 � N
∑
l|h

1
l

∑
d≤N

l

1
d(1 + logβ(ld))

∑
N
ld<q≤N+h

l

1
q(1 + logβ(lq))

� N
∑
l|h

1
l

∑
d≤N

l

1
d(1 + logβ(ld))(1 + logβ(N/d))

∑
N
ld<q≤N+h

l

1
q

� N

logβ N

∑
l|h

1
l

∑
d≤N

l

1
d

∑
N
ld<q≤N+h

l

1
q

�h
N

logβ−2 N
.

This completes the proof. �
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4. Concluding remarks

The method outlined in this paper will undoubtedly have further applications as the 
theory moves forward. It offers us yet another way to approach these general convolution 
sums. The technical issues regarding absolute convergence of infinite series that compli-
cated our earlier work have now been simplified through the use of finite Ramanujan 
expansions. As demonstrated in the paper, all arithmetical functions now afford a finite
Ramanujan expansion. Convolution sums lie at the heart of analytic number theory. Ear-
lier, there have been attempts to study such sums. Our paper offers yet another route 
to this study. We expect to investigate in future work further refinements of the theory.
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