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1. Introduction

Let q be a positive integer and f be a complex-valued periodic function with period 
q which is not identically zero. The Dirichlet L-function L(s, f) associated with f is 
defined by the series

L(s, f) :=
∞∑

n=1

f(n)
ns

. (1)

Since f is periodic with period q, the above series can be written as

L(s, f) = q−s

q∑
a=1

f(a)ζ(s, a/q), for �(s) > 1,

where ζ(s, x) is the Hurwitz zeta function defined for �(s) > 1 by

ζ(s, x) =
∞∑

n=0

1
(n + x)s , for 0 < x ≤ 1.

Hurwitz [6] showed that ζ(s, x) extends analytically to the entire complex plane except 
at s = 1, where it has a simple pole with residue 1.

This shows that L(s, f) extends analytically to the whole complex plane with a possi-
ble simple pole at s = 1 with residue q−1 ∑q

a=1 f(a). Hence L(s, f) is an entire function 
if and only if 

∑q
a=1 f(a) = 0. From now on we will assume 

∑q
a=1 f(a) = 0. In this case, 

we would like to know whether L(1, f) = 0.
Partly motivated by prime number theory, this question was first raised by Chowla [4]

in the case that q is prime and f is rational-valued.
If f is algebraic-valued, its non-vanishing was established by Baker, Birch and Wirsing 

[2] under the additional conditions that f(a) = 0 for each a (mod q) satisfying 1 <
(a, q) < q and the field generated by the values of f is disjoint from the q-th cyclotomic 
field. In this way, they answered the question of Chowla since the conditions are satisfied 
in the case q is prime and f is rational-valued. Okada [12] was the first to derive necessary 
and sufficient conditions on f to ensure that L(1, f) �= 0. His derivation is long and 
complicated. In this paper, we offer another approach using Dirichlet’s L-functions and 
deduce Okada’s criterion from analytic properties of the classical L-functions. We also 
revisit the approach of Baker, Birch and Wirsing. We are hopeful that this approach 
will find new applications such as in the study of the folklore Erdös conjecture discussed 
in [3].

Since f is a periodic function, we can define the Fourier transformation of f by

f̂(b) = 1
q

q∑
f(a)ζ−ab

q

a=1
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where ζq = e
2πi
q and hence we have the Fourier inversion formula

f(b) =
q∑

a=1
f̂(a)ζabq .

It is also convenient to introduce the inner product on the group of coprime residue 
classes (mod q):

(f, g) := 1
ϕ(q)

q∑
a=1

(a,q)=1

f(a)g(a).

Henceforth, we suppose f is rational-valued. Then, we have f̂(b) ∈ Q(ζq).
Let 1 = ω1, · · · , ωϕ(q) be an integral basis of Q(ζq) over Q. Then f̂(b) can be written 

as

f̂(b) =
ϕ(q)∑
j=1

cbjωj (2)

where cbj ’s are rational numbers. Note that, f̂(q) = 0 as 
∑q

a=1 f(a) = 0.
Here is an outline of the results of this paper. In Section 3, we prove new neces-

sary and sufficient conditions for the non-vanishing of L(1, f) in terms of the following 
theorems:

Theorem 1. L(1, f) = 0 if and only if

q−1∏
b=1

(
1 − ζbq

)cbj = 1 (3)

for all j = 1, · · · , ϕ(q).

Theorem 2. L(1, f) = 0 if and only if L(1, fe) = 0 and L(1, fo) = 0, where fe and fo are 
the even and odd part of f respectively.

Let M(q) be the monoid generated by all the prime divisors of q. We prove:

Theorem 3. L(1, f) = 0 if and only if

∑
b∈M(q)

f(ab)
b

= 0

for every a with 1 ≤ a < q, (a, q) = 1, and
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∑
b∈M(q)

(fb, χ0)
b

log b = 0,

where χ0 is the principal Dirichlet character mod q and fb(a) = f(ab).

This theorem is reminiscent of Okada’s criterion [12] and in Section 5, we establish 
the equivalence of Theorem 3 and Okada’s criterion. In particular we prove the following 
theorem:

Theorem 4.

∑
b∈M(q)

(fb, χ0)
b

log b = 0

if and only if

q∑
r=1

(r,q)>1

f(r)ε(r, p) = 0

for every prime divisor p of q, where

ε(r, p) =
{
vp(r) if vp(r) < vp(q),
vp(q) + 1

p−1 otherwise

and for any integer r, vp(r) is the exponent of p dividing r.

These questions and conjectures have a long history. As the Dirichlet series (1) in gen-
eral does not have an Euler product, even the existence of zeros in the domain of absolute 
convergence �(s) > 1 cannot be ruled out. In 1969, as mentioned earlier, S. Chowla [4]
asked the question whether there exists a rational valued periodic function f with prime 
period, such that L(1, f) = 0. In 1973, Baker, Birch and Wirsing [2] proved using Bak-
er’s theory of linear forms of logarithms, the following proposition which answered the 
question of Chowla.

Proposition 1. If f is a non-vanishing function defined on the integers with algebraic 
values and period q such that (i) f(r) = 0 if 1 < (r, q) < q, (ii) the q-th cyclotomic 
polynomial Φq is irreducible over Q(f(1), · · · , f(q)), then

L(1, f) =
∞∑

n=1

f(n)
n

�= 0.

In the last section, we give a new proof of the above proposition.
One can also study these questions at points other than s = 1, and this was the focus 

of study in [5]. In addition, the authors of [5] obtain there a new generalization of the 
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theorem of Baker, Birch and Wirsing over number fields particularly in cases where the 
field generated by the values of f is not necessarily disjoint from the q-th cyclotomic 
field.

2. Notations and preliminaries

In this section, we collect for the convenience of exposition, several results that will 
be used in the paper. From now onwards, we denote the field of rationals by Q, algebraic 
numbers by Q and a number field by F. The digamma function ψ is the logarithmic 
derivative of the classical gamma function and is defined by the series

−ψ(x) = γ + 1
x

+
∞∑

n=1

(
1

n + x
− 1

n

)
. (4)

2.1. A quick review of Baker’s theory

The following theorems due to Baker (see Theorems 2.1 and 2.4 of [1]) will play a 
crucial role in proving some of the theorems.

First version. If α1, · · · , αn are non-zero algebraic numbers such that logα1, · · · , logαn

are linearly independent over the field of rational numbers, then 1, logα1, · · · , logαn are 
linearly independent over the field of algebraic numbers.

Second version. αβ1
1 , · · · , αβn

n is transcendental for any algebraic numbers α1, · · · , αn

other than 0 or 1, and any algebraic numbers β1, · · · , βn with 1, β1, · · · , βn linearly inde-
pendent over the field of rationals.

2.2. Okada’s criterion

In 1986, Okada [12] proved a proposition about the non-vanishing of L(1, f) and 
Saradha and Tijdeman [13] modified his proposition, which we call Okada’s criterion for 
the non-vanishing of L(1, f). Here is the proposition:

Proposition 2. Let the q-th cyclotomic polynomial Φq be irreducible over Q(f(1), · · · , f(q)). 
As before, let M(q) be the set of positive integers which are composed of prime factors 
of q. Then L(1, f) = 0 if and only if

∑
m∈M(q)

f(am)
m

= 0

for every a with 1 ≤ a < q, (a, q) = 1, and
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q∑
r=1

(r,q)>1

f(r)ε(r, p) = 0

for every prime divisor p of q.

We record here a variation of Lemma 5 in [9] (see also [11]) which is useful in the last 
section of this paper, but is also of independent interest.

Proposition 3. Let α1, α2, ..., αn be positive units in a number field of degree > 1. Let 
r be a positive rational number unequal to 1. If c0, c1, ..., cn, are algebraic numbers with 
c0 �= 0, and d is an integer, then

c0π +
n∑

j=1
cj logαj + d log r

is a transcendental number and hence non-zero.

Proof. Let S be such that logαj (j ∈ S) is a maximal Q-linearly independent subset of 
the logαj ’s so that we can write

n∑
j=1

cj logαj =
∑
j∈S

dj logαj .

Our linear form can now be re-written as

−ic0 log(−1) +
∑
j∈S

dj logαj + d log r.

By Baker’s theorem, this is either zero or transcendental. We need to show that the 
former case cannot arise. This will follow if we can show that

log(−1), logαj (j ∈ S), log r

are linearly independent over Q. But this is indeed the case since

b0 log(−1) +
∑
j∈S

bj logαj + b log r = 0,

for integers b, b0, bj (j ∈ S) implies that

∏
j∈S

α
2bj
j = r−2b.

Since the αj ’s are units we see that r2 = 1. Since r �= 1, we have b = 0.
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By the multiplicative independence of αj , j ∈ S, we deduce that bj = 0 for all 
j ∈ S. Finally, this forces b0 = 0 and so the numbers are linearly independent over Q as 
required. �
3. The non-vanishing of L(1, f)

3.1. Proof of Theorem 1

Proof. We first observe that for �(s) > 1,

L(s, f) =
∞∑

n=1

f(n)
ns

=
∞∑

n=1

1
ns

q−1∑
b=1

f̂(b)ζbnq

=
q−1∑
b=1

f̂(b)
∞∑

n=1

ζbnq
ns

,

keeping in mind that f̂(q) = 0.
Now let s → 1+ to deduce

L(1, f) = −
q−1∑
b=1

f̂(b) log
(
1 − ζbq

)
.

Using (2), we get

L(1, f) = −
q−1∑
b=1

(
ϕ(q)∑
j=1

cbjωj

)
log

(
1 − ζbq

)

= −
ϕ(q)∑
j=1

ωj

q−1∑
b=1

cbj log
(
1 − ζbq

)

=
ϕ(q)∑
j=1

ωj logαj (say)

where αj =
∏q−1

b=1(1 − ζbq)−cbj �= 0 as none of the factors are zero.
Now L(1, f) = 0 if and only if,

−ω1 logα1 =
ϕ(q)∑

ωj logαj
j=2
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if and only if,

α−1
1 =

ϕ(q)∏
j=2

α
ωj

j

as ω1 = 1. Notice that, if some αj is not equal to 1, then by Baker’s theory the right 
hand side of the above identity is a transcendental number. But the left hand side is 
a non-zero algebraic number. This contradiction shows that, L(1, f) = 0 if and only if 
αj = 1 for all j = 1, · · · , ϕ(q), i.e.

q−1∏
b=1

(
1 − ζbq

)cbj = 1

for all j = 1, · · · , ϕ(q). This completes the proof. �
Let us pause to highlight the significance of the previous theorem. Given a rational-

valued function f , we can define ϕ(q) functions fj(b) = cbj which are all rational-valued. 
Even if f is not rational-valued, a similar analysis leads again to the study of rational-
valued functions and identity (3).

For 1 ≤ a < q with (a, q) = 1, let us consider the automorphism σa of Q(ζq) given by 
σa(ζq) = ζaq . Applying σa to the identity (3), we get

q−1∏
b=1

(
1 − ζabq

)cbj = 1 (5)

for all j = 1, · · · , ϕ(q).
We define a new function fa for 1 ≤ a < q with (a, q) = 1, by fa(b) = f(ab). Clearly 

fa is also a rational-valued periodic function with period q. Hence by the above theorem 
we have L(1, fa) = 0 if and only if

q−1∏
b=1

(
1 − ζabq

)cbj = 1

for all j = 1, · · · , ϕ(q).
Hence an immediate corollary of Theorem 1 is following:

Corollary 1. L(1, f) = 0 if and only if L(1, fa) = 0 for any 1 ≤ a < q with (a, q) = 1.

3.2. Proof of Theorem 2

Proof. We apply Corollary 1 with σ−1 (the complex conjugation) to (3), and get 
L(1, f) = 0 if and only if L(1, f−) = 0 where f−(x) = f(−x). Again, f can be writ-
ten as
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f = fe + fo

where

fe = f + f−
2

and

fo = f − f−
2

are the even and odd part of f respectively. Hence L(1, f) = 0 if and only if L(1, fe) = 0
and L(1, fo) = 0. �
4. Variation of Okada’s criterion

As noted earlier, Okada [12] gave a criterion for the non-vanishing of L(1, f). We 
derive several variations of this here using Dirichlet L-series.

Proof of Theorem 3. Let M(q) be as before the monoid generated by the prime factors 
of q. Then we have

L(s, f) =
∞∑

n=1

f(n)
ns

=
∑

b∈M(q)
(a,q)=1

f(ab)
asbs

,

since any natural number n can be factored uniquely as n = ab with (a, q) = 1 and 
b ∈ M(q).

Thus

L(s, f) =
∑

b∈M(q)

1
bs

∞∑
a=1

(a,q)=1

f(ab)
as

=
∑

b∈M(q)

1
bs

∞∑
a=1

(a,q)=1

fb(a)
as

.

Observe that fb is a function supported on the coprime residue classes mod q. Thus, 
we can write (using the inner product on the group of coprime residue classes (mod q)):

fb =
∑

(fb, χ)χ

χ (mod q)
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where χ runs over all the Dirichlet characters mod q and

(fb, χ) = 1
ϕ(q)

q∑
a=1

(a,q)=1

fb(a)χ(a).

Thus, we have

L(s, f) =
∑

b∈M(q)

1
bs

∑
χ (mod q)

(fb, χ)L(s, χ).

Again, note that for the principal Dirichlet character χ0 modulo q, we have

L(s, χ0) = ζ(s)
∏
p|q

(
1 − 1

ps

)

=
{

1
s− 1 + γ + O(s− 1)

}{∑
d|q

μ(d)
d

−
(∑

d|q

μ(d)
d

log d
)

(s− 1) + · · ·
}

= φ(q)/q
s− 1 −

∑
d|q

μ(d)
d

log d + γ
φ(q)
q

+ O(s− 1),

since ζ(s) = { 1
s−1 + γ + O(s − 1)} and

∏
p|q

(
1 − 1

ps

)
=

∑
d|q

μ(d)
ds

.

Hence, we get

L(1, f) =
∑

b∈M(q)

1
b

∑
χ (mod q)

χ �=χ0

(fb, χ)L(1, χ)

+ lim
s→1+

∑
b∈M(q)

1
b

{
1 − (s− 1) log b + · · ·

}
(fb, χ0)L(s, χ0)

Again, for any c with (c, q) = 1, we have

(fcb, χ) = 1
ϕ(q)

q∑
a=1

(a,q)=1

fcb(a)χ(a)

= 1
ϕ(q)

q∑
t=1

(t,q)=1

fb(t)χ
(
c−1t

)

= χ(c)(fb, χ).
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So, we deduce that

L(s, fc) =
∑

b∈M(q)

1
bs

∑
χ (mod q)

χ(c)(fb, χ)L(s, χ). (6)

Now, consider the sum

q∑
c=1

(c,q)=1

L(s, fc).

Note that, for χ �= χ0, we have

q∑
c=1

(c,q)=1

χ(c) = 0

and

q∑
c=1

(c,q)=1

χ0(c) = φ(q).

Hence from (6), we get

q∑
c=1

(c,q)=1

L(s, fc) = ϕ(q)
∑

b∈M(q)

1
bs

(fb, χ0)L(s, χ0)

= ϕ(q)
∑

b∈M(q)

1
b

{
1 − (s− 1) log b + · · ·

}
(fb, χ0)L(s, χ0)

so that, we have

q∑
c=1

(c,q)=1

L(s, fc) = ϕ(q)
[(

ϕ(q)
q

∑
b∈M(q)

(fb, χ0)
b

)
1

s− 1

+
∑

b∈M(q)

(fb, χ0)
b

(
−
∑
d|q

μ(d)
d

log d + γ
ϕ(q)
q

− ϕ(q)
q

log b
)

+ O(s− 1)
]
.

Note that the left hand side does not have a pole at s = 1 and hence from the above 
equation, we get

∑ (fb, χ0)
b

= 0. (7)

b∈M(q)
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Now if L(1, f) = 0, then L(1, fc) = 0 for all 1 ≤ c < q with (c, q) = 1 by Corollary 1. 
Hence from the above equation, we get

∑
b∈M(q)

(fb, χ0)
b

(
−
∑
d|q

μ(d)
d

log d + γ
ϕ(q)
q

− ϕ(q)
q

log b
)

= 0. (8)

Thus using (7), the above identity becomes

∑
b∈M(q)

(fb, χ0)
b

log b = 0. (9)

Again for any Dirichlet character ψ �= χ0 mod q, we have

q∑
c=1

(c,q)=1

ψ(c)L(s, fc) =
q∑

c=1
(c,q)=1

ψ(c)
∑

b∈M(q)

1
bs

∑
χ (mod q)

χ(c)(fb, χ)L(s, χ)

=
∑

b∈M(q)

1
bs

∑
χ (mod q)

(fb, χ)L(s, χ)
q∑

c=1
(c,q)=1

ψ(c)χ(c).

Finally, using orthogonality of characters, we get

q∑
c=1

(c,q)=1

ψ(c)L(s, fc) = ϕ(q)
∑

b∈M(q)

(fb, ψ)
bs

L(s, ψ).

Now, as before, if L(1, f) = 0 then L(1, fc) = 0 for all c with (c, q) = 1 by Corollary 1. 
Hence at s = 1, left hand side of the above identity is 0, so that we have

∑
b∈M(q)

(fb, ψ)
b

L(1, ψ) = 0

and hence

∑
b∈M(q)

(fb, ψ)
b

= 0, (10)

since L(1, ψ) �= 0 by a celebrated theorem of Dirichlet.
Thus, from (7) and (10), we get for all Dirichlet characters χ mod q

∑
b∈M(q)

(fb, χ)
b

= 0.

Now multiplying the above identity by χ(a) and summing over all the Dirichlet char-
acters χ and using the orthogonality of characters, we get
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∑
b∈M(q)

f(ab)
b

= 0 (11)

for any a with (a, q) = 1. Thus (9) and (11) prove the only if statement of our theorem.
The if part is also clear from (7) and the immediate predecessor equation of (7). This 

completes the proof of the theorem. �
5. Equivalence of Okada’s criterion

Theorem 3 looks different from Okada’s criterion [12]. In this section, we prove The-
orem 4, which shows the equivalence of Theorem 3 and Okada’s criterion.

Let us begin with the following lemma, which appears in Okada’s paper [12] without 
proof. Since the proof is important and relevant to our discussion, we give it below.

Lemma 1. The sum

∞∑
j=1

q∑
t=1

pjt≡r (mod q)

1
pj

is equal to ε(r, p), where

ε(r, p) =
{
vp(r) if vp(r) < vp(q),
vp(q) + 1

p−1 otherwise.

Proof. We consider two cases.
Case 1: vp(r) < vp(q). In this case, the congruence pjt ≡ r (mod q) implies j ≤ vp(r), 

for otherwise, there are no solutions. Thus for j ≤ vp(r), the congruence reduces to 
t ≡ pvp(r)−jr1 (mod pvp(q)−jq1) where we have written r = pvp(r)r1, q = pvp(q)q1 with 
(r1, p) = (q1, p) = 1. Thus t is uniquely determined (mod pvp(q)−jq1) for fixed j. Now t
has precisely pj lifts (mod q). Hence our sum is

vp(r)∑
j=1

1
pj

.pj = vp(r) = ε(r, p)

as desired.
Case 2: vp(r) ≥ vp(q). In this case, if j ≤ vp(q), then the congruence pjt ≡ r (mod q)

reduces to t ≡ pvp(r)−jr1 (mod pvp(q)−jq1) so that again, the number of lifts of t (mod q)
is pj . Thus

vp(q)∑ 1
pj

.pj = vp(q).

j=1
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Now if j > vp(q), then our congruence becomes

pj−vp(q)t ≡ pvp(r)−vp(q)r1 (mod q1).

As (q1, p) = 1, t is uniquely determined (mod q1). Thus, t has precisely pvp(q) lifts 
(mod q), so that

∑
j>vp(q)

1
pj

.pvp(q) =
∞∑
k=1

1
pk

= 1
p− 1 .

Hence, in this case our sum is

vp(q) + 1
p− 1 = ε(r, p).

This completes the proof. �

5.1. Proof of Theorem 4

Proof. We have

0 =
∑

b∈M(q)

(fb, χ0)
b

log b.

Let Λ be the von Mangoldt function so that

log b =
∑
d|b

Λ(d).

Then the above identity implies and is implied by the following:

0 =
∑

b∈M(q)

(fb, χ0)
b

∑
d|b

Λ(d)

=
∑

d∈M(q)

Λ(d)
∑

b∈M(q)
d|b

(fb, χ0)
b

.

The outer sum is over prime powers in M(q), and we can write each d = pα, with p
a prime divisor of q. Since d|b, we write b = db1 and get

∑
log p

( ∞∑ ∑ (fpαb1 , χ0)
pαb1

)
= 0. (12)
p|q α=1 b1∈M(q)
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Let us study for each prime p|q, the coefficient of log p in (12):

∞∑
α=1

∑
b1∈M(q)

(fpαb1 , χ0)
pαb1

.

We write each b1 as pβc with c ∈ M(q1) where q1 = q/pvp(q). Then our sum becomes

∞∑
α=1

∞∑
β=0

∑
c∈M(q1)

(fpα+βc, χ0)
pα+βc

.

Substituting the value of (fpαb1 , χ0) into the above sum, we get that this is equal to

∞∑
α=1

∞∑
β=0

∑
c∈M(q1)

q∑
a=1

(a,q)=1

f(pα+βca)
pα+βc

.

We can collect the powers of p, observing that for a fixed j, the number of solutions 
of α + β = j with α ≥ 1, β ≥ 0 is precisely equal to j. Thus, our sum becomes

∞∑
j=1

j

pj

∑
c∈M(q1)

1
c

q∑
a=1

(a,q)=1

f
(
pjca

)
.

Now let pjca ≡ r (mod q) so that (r, q) > 1. Then the above sum becomes

q∑
r=1

(r,q)>1

f(r)
∞∑
j=1

j

pj

∑
c∈M(q1)

1
c

q∑
a=1

(a,q)=1
pjca≡r (mod q)

1. (13)

We analyze the inner congruence pjca ≡ r (mod q). As before, we write r = pvp(r)r1
so that the congruence becomes

pjca ≡ pvp(r)r1
(
mod pvp(q)q1

)
. (14)

We consider (as before) two cases.

Case 1: vp(r) < vp(q). As ca is coprime to p, the congruence (14) implies j = vp(r) is 
the only solution for j. Thus (14) reduces to

ca ≡ r1
(
mod pvp(q)−vp(r)q1

)
. (15)
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By the Chinese remainder theorem, this is equivalent to the system

ca ≡ r1
(
mod pvp(q)−vp(r))

ca ≡ r1 (mod q1).

For a given c, the second congruence has a solution for a−1 if and only if (r1, q1)|c
in which case there are (r1, q1) solutions (mod q1). The first congruence has a unique 
solution for a−1 (mod pvp(q)−vp(r)) and thus has pvp(r) solutions (mod pvp(q)). In total 
we obtain that the inner most sum of (13) is pvp(r)(r1, q1) in the case (r1, q1)|c.

Thus, the two innermost sums in (13) become (on writing c = (r1, q1)c1 with 
c1 ∈ M(q1)),

∑
c∈M(q1)
(r1,q1)|c

1
c
(r1, q1)pvp(r) = pvp(r)

∑
c1∈M(q1)

1
c1

= pvp(r)
∏
p1|q1

p1 prime

(
1 + 1

p1
+ 1

p2
1

+ · · ·
)

= pvp(r)
∏
p1|q1

p1 prime

(
1 − 1

p1

)−1

= q1
ϕ(q1)

pvp(r).

Thus, in this case, the total contribution for the three innermost sums in (13) is

vp(r)
q1

ϕ(q1)
.

Hence, the coefficient of log p in (12) is a rational number and is equal to

q∑
r=1

(r,q)>1

f(r)vp(r)
q1

ϕ(q1)
=

(
q∑

r=1
(r,q)>1

f(r)ε(r, p)
)

q1
ϕ(q1)

.

Case 2: vp(r) ≥ vp(q). In this case, we must have j ≥ vp(r) and (14) reduces to

c
(
pj−vp(q)a

)
≡ pvp(r)−vp(q)r1 (mod q1). (16)

Again, for a fixed c, this congruence has a solution for a−1 if and only if (r1, q1)|c in 
which case it has (r1, q1) solutions (mod q1). These lift to ϕ(q) (r1, q1) solutions (mod q).
ϕ(q1)
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Thus, in this case the inner sums of (13) become

∞∑
j=vp(q)

j

pj

∑
c∈M(q1)
(r1,q1)|c

1
c

ϕ(q)
ϕ(q1)

(r1, q1) =
∞∑

j=vp(q)

j

pj
q1

ϕ(q1)
ϕ(q)
ϕ(q1)

.

It is easy to check that

∞∑
j=v

jXj = Xv

1 −X

(
X

1 −X
+ v

)

so that our inner sums become

q1
ϕ(q1)

ϕ(q)
ϕ(q1)

(
1
p

)vp(q) 1
1 − 1/p

(
1/p

1 − 1/p + vp(q)
)

which is equal to

q1
ϕ(q1)

(
1

p− 1 + vp(q)
)
.

Thus, again we get the coefficient of log p in (12) is

(
q∑

r=1
(r,q)>1

f(r)ε(r, p)
)

q1
ϕ(q1)

.

Hence, in any case, from our original sum (12) we obtain

∑
p|q

log p
(

q∑
r=1

(r,q)>1

f(r)ε(r, p)
)

q1
ϕ(q1)

= 0.

Finally using the unique factorization theorem for the natural numbers, we conclude 
that

q∑
r=1

(r,q)>1

f(r)ε(r, p) = 0

for every prime divisor p of q.
The converse is also clear from the calculation that led to the penultimate equation. 

This completes the proof of the theorem. �
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6. The theorem of Baker, Birch and Wirsing revisited

Finally, in this section we give a new proof of the theorem of Baker, Birch and Wirs-
ing [2].

For the proof of Proposition 1, we shall need the following lemma (see S. Lang [7], p. 
548).

Lemma 2. Let G be any finite abelian group of order n and F : G → C be any complex-
valued function on G. The determinant of the n × n matrix given by (F (xy−1)) as x, y
range over the group elements is called the Dedekind determinant and is equal to

∏
χ

(∑
x∈G

χ(x)F (x)
)
,

where the product is over all characters χ of G.

We also need the following lemma.

Lemma 3. Let ψ be the digamma function as mentioned in Section 2. The sum

q∑
a=1

(a,q)=1

ψ(a/q) < −γϕ(q),

and is hence non-zero.

Proof. First notice that, for any 1 ≤ a < q we have

∞∑
n=1

1
qn(qn + a) <

1
a2

∞∑
n=1

1
n(n + 1) = 1

a2

as qn(qn + a) > an(an + a) and the last series of the right hand side of the above 
inequality is telescopic. Hence, we get

∞∑
n=1

1
n(qn + a) <

q

a2 . (17)

Again we know that (see (4))

−ψ(x) = γ + 1
x

+
∞∑

n=1

(
1

n + x
− 1

n

)
.

Hence, we have
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−ψ(a/q) = γ + q

a
+

∞∑
n=1

(
1

n + a/q
− 1

n

)

and so that,

−ψ(a/q) = γ + q

a
−

∞∑
n=1

a

n(qn + a) .

Thus, using (17) we get ψ(a/q) < −γ for any 1 ≤ a < q. Hence

q∑
a=1

(a,q)=1

ψ(a/q) < −γϕ(q).

This completes the proof. �
6.1. Proof of Proposition 1

We first suppose that f(q) = 0 and indicate later how this condition can be removed.

Proof. Let F = Q(f(1), · · · , f(q)). Then condition (ii) implies F ∩Q(ζq) = Q and hence 
[F(ζq) : F] = ϕ(q).

Now if L(1, f) = 0, then applying σc ∈ Gal(F(ζq)/F) and using similar arguments as 
in Theorem 1, we get

L(1, fc) = 0

for all 1 ≤ c < q with (c, q) = 1. Here σc is defined by the rule σc(ζq) = ζcq and 
fc(a) = f(ca).

Again we know that (see Theorem 16 of [10])

L(1, f) = −1
q

q∑
a=1

f(a)ψ(a/q).

Thus, we have

q∑
a=1

f(ca)ψ(a/q) = 0

for all 1 ≤ c < q with (c, q) = 1.
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Rewriting the above equation, we get

q∑
b=1

(b,q)=1

f(b)ψ
(
c−1b

q

)
= 0

for all 1 ≤ c < q with (c, q) = 1.
Thus we get a matrix equation with M being the ϕ(q) × ϕ(q) matrix whose (b, c)-th 

entry is given by ψ( c
−1b
q ). Then by the evaluation of the Dedekind determinant as in 

Lemma 2, we get

det(M) =
(

q∑
a=1

(a,q)=1

ψ(a/q)
) ∏

χ �=χ0

qL(1, χ).

Now using Lemma 3 and noting that L(1, χ) �= 0, we get det(M) �= 0.
Thus the matrix M is invertible and hence we have

f(b) = 0, 1 ≤ b < q, (b, q) = 1.

Hence f is identically zero, which is a contradiction to the hypothesis of the theorem. 
Finally, to treat the case that f(q) �= 0, we adopt a simple method of Murty and Murty 
(see section 6 of [9]).

This technique first appears in the prime case in Murty [8]. Without loss of generality, 
we may suppose that f is integer-valued. We define a function g (mod q) such that 
g(a) = 1 if (a, q) = 1 and g(q) = −ϕ(q) so that

qL(1, g) = −γϕ(q) −
∑

(a,q)=1

ψ(a/q) > 0,

by Lemma 3.
As in [9],

L(1, g) = 1
q

∑
d|q

μ(q/d)d log d =
∞∑
j=1

Sj ,

with each Sj > 0 and Sj = O(1/j2). Now define

F (a) = −g(0)f(a) + f(0)g(a),

so that F is an integer valued function defined only on the coprime residue classes 
(mod q). Thus, L(1, F ) = −g(0)L(1, f) +f(0)L(1, g) so that if L(1, f) = 0, then L(1, F ) =
f(0)L(1, g). But qL(1, g) is a Z-linear form in logarithms of natural numbers so that 
exp(qL(1, g)) is a positive rational number r (say) which is greater than 1. On the other 
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hand, L(1, F ) = L(1, Fe) + L(1, Fo) where Fe and Fo are the even and odd parts of F . 
Now, L(1, Fo) is an algebraic multiple of π, and L(1, Fe) is a linear form in logarithms of 
multiplicatively independent real units. By Baker’s theorem, if L(1, F ) = f(0)L(1, g), we 
deduce that π, logarithms of multiplicatively independent real units and the logarithm 
of the rational number r are dependent over the rationals (and hence over the integers). 
But this is a contradiction to Proposition 3.

This completes the proof. �
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