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Abstract. The explicit construction of infinite families of d-regular graphs which are Ram-
anujan is known only in the case d � 1 is a prime power. In this paper, we consider the case
when d � 1 is not a prime power. The main result is that by perturbing known Ramanujan
graphs and using results about gaps between consecutive primes, we are able to construct infi-
nite families of ‘‘almost’’ Ramanujan graphs for almost every value of d. More precisely, for
any fixed e > 0 and for almost every value of d (in the sense of natural density), there are infi-
nitely many d-regular graphs such that all the non-trivial eigenvalues of the adjacency matrices
of these graphs have absolute value less than ð2 þ eÞ

ffiffiffiffiffiffiffiffiffiffiffi
d � 1

p
.

2000 Mathematics Subject Classification: 05C50, 15A18, 11N05, 11F30.

1 Introduction

Our graph notation is standard (see [42]). For a graph X on n vertices, we denote by
l1ðXÞb l2ðXÞb � � �b lnðXÞ the eigenvalues of its adjacency matrix. Let lðXÞ ¼
maxli0kjlij. Following Alon (see [25]), a graph X is called an ðn; k; lÞ-graph if it is
k-regular and lðX Þa l.

Given kb 3, it is of great interest to construct infinite families of ðn; k; lÞ-graphs
with l < k as small as possible. These graphs are called expanders. By the Alon and
Boppana theorem [1], it is easy to see l ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
is best possible. See [1, 11, 23] for

related results.
A k-regular graph X is Ramanujan if it is an ðn; k; 2

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
Þ-graph. These graphs

are examples of expander graphs and their explicit construction has applications
to communication theory (see Bien [4]). When k � 1 is a prime or a prime power,
explicit constructions of infinite families of Ramanujan graphs were derived by
Lubotzky-Phillips and Sarnak [29] and Margulis [31] (in the prime case) and Mor-
genstern [33] (in the prime power case). In both cases, the explicit construction turns
out to be a consequence of the Ramanujan conjecture for eigenvalues of certain
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Hecke operators. This also explains the appellation for such k-regular graphs. The
Ramanujan conjecture (in its full generality) is still an open problem in the theory of
automorphic forms. However, in the two cases needed above in the construction, it is
a theorem due to Deligne [18] (in the prime case) and Drinfeld [19] (in the prime
power case). We refer the reader to Li [27] for more details.

In this paper, we would like to address the question of constructing Ramanujan
graphs when k � 1 is not a prime power. In this context, no explicit constructions of
infinite families are known, though there is the important non-constructive work of
Friedman [20].

Our goal is to begin with the infinite families of Ramanujan graphs described
above and perturb them in an explicit way to obtain what we call almost Ramanujan
graphs. Thus, when k � 1 is not a prime power, the question of how close it is to a
prime power becomes important. It turns out that when gaps between consecutive
primes are small, the almost Ramanujan graphs are easily constructed.

The study of gaps between primes has a large history. Recently, a major advance
was made in the theory by Goldston, Pintz and Yildirim [21]. If pn denotes the n-th
prime, they proved that

lim inf
n!y

pnþ1 � pn

log pn
¼ 0ð1Þ

Applied to our context, this means that almost Ramanujan graphs can be constructed
by perturbing known Ramanujan graphs for infinitely many values of k in the case
that k � 1 is not a prime power.

There is also some classical work of Selberg [41] (see Theorem 3.2 below) that can be
applied to our setting. Generally speaking, Selberg’s theorem shows that assuming
the Riemann hypothesis, there is always a prime between x and xþ ðlog xÞ1þe for
almost all values of x (in the sense of Lebesgue measure).

The main result of this paper is the following theorem.

Theorem 1.1. Let e > 0. Then for almost all d, one can explicitly construct infinite

families of ðn; d; ð2 þ eÞ
ffiffiffiffiffiffiffiffiffiffiffi
d � 1

p
Þ-graphs.

The proof of this result is contained in Section 4. In Section 2, we present some
results connecting the existence of perfect matchings to the eigenvalues of regular
graphs and describe some methods for explicitly finding perfect matchings in regular
graphs. In Section 3, we present some results regarding the gaps between consecutive
primes. In Section 4, we combine the results from the previous two sections to prove
Theorem 1.1.

2 Eigenvalues and perfect matchings

For a real symmetric matrix A, we denote by liðAÞ its i-th largest eigenvalue. For
a A R, let EðA; aÞ ¼ fx A Rn : Ax ¼ axg. Obviously, EðA; aÞ ¼ f0g unless a ¼ liðAÞ
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for some i. The next theorem is due to H. Weyl (see [24], page 181). It follows from
the Courant-Fisher theorem.

Theorem 2.1 (Weyl). For any real symmetric matrices A and B of order n and for any

1a ia n, the following inequalities hold:

lnðBÞa liðAþ BÞ � liðAÞa l1ðBÞð2Þ

A matching P in a graph X is a set of mutually disjoint edges. The vertices incident to
the edges in P are saturated by P. We call P a perfect matching if all the vertices of G
are saturated by P, i.e. P is a 1-regular graph with vertex set VðXÞ. A factor of X is a
spanning subgraph of X . A t-factor is a spanning t-regular subgraph. Thus, a perfect
matching is the same as a 1-factor.

For each SJVðX Þ, denote by NðSÞ the set of vertices adjacent to at least one
vertex in S. The following theorem is well-known (see West [42], page 110).

Theorem 2.2 (P. Hall, 1935). A bipartite graph X with partite sets A and B has a

matching that saturates A if and only if jNðSÞjb jSj, for each SJA.

The following corollary to Hall’s theorem is also known as the Marriage Theorem. It
was originally proved by Frobenius in 1917.

Corollary 2.3. For k > 0, every k-regular bipartite graph has a perfect matching.

For the existence of perfect matchings in general (not necessarily bipartite) graphs,
the following characterization was found by Tutte in 1947. An odd component of a
graph is a component of odd order. The number of odd components of a graph G

will be denoted by oddðGÞ.

Theorem 2.4 (Tutte, 1947). A graph X contains a perfect matching if and only if

oddðXnSÞa jSj;

for each SJVðGÞ.

Brouwer and Haemers [9] used Tutte’s theorem to prove the following eigenvalue
condition that is su‰cient for the existence of a perfect matching in a regular graph.
In [14], the authors found a best possible upper bound for the third largest eigenvalue
of a regular graph X that is su‰cient to guarantee that X contains a perfect match-
ing.

Theorem 2.5 (Cioabă-Gregory-Haemers [14]). If X is a connected, k-regular graph on

n vertices (n even) and
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l3ðX Þa

2:85577; if k ¼ 3
k�2þ

ffiffiffiffiffiffiffiffiffiffi
k2þ12

p

2 ; if k even

k�3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ1Þ2þ16

p
2 ; if k odd;

8>><
>>:

ð3Þ

then X has a perfect matching.

This result is best possible in the sense that there exist k-regular graphs with an even
number of vertices that contain no perfect matchings and have l3 equal to the right
hand side (3). The previous theorem improves results from [9, 12, 13].

We should note here that the converse of previous theorem is not true, i.e. the
existence of perfect matchings in X does not imply k � l3ðXÞ > e > 0. The Cayley
graph of Z2n with generating set S ¼ fG1; ng is a 3-regular graph that contains 3
disjoint perfect matchings and satisfies l3ðXÞ ¼ 2 cos 4p

n
þ 1. The di¤erence k � l3 ¼

2 � 2 cos 4p
n

tends to 0 as n gets large.
The adjacency matrix of a perfect matching on 2n vertices is a permutation matrix.

Its eigenvalues are 1 and �1, each with multiplicity n. Notice that the vertex set may
be indexed so that EðAðPÞ; 1Þ ¼

�
x
x

� �
: x A Rn

�
and EðAðPÞ;�1Þ ¼

� �x
x

� �
: x A Rn

�
.

If A is the adjacency matrix of a k-regular graph X and B is the adjacency matrix
of a perfect matching P on VðX Þ, then from Theorem 2.1 we obtain that

jliðX WPÞ � liðXÞja 1;ð4Þ

for each integer i with 1a ia n. Note that X WP might have multiple edges. Using
(4), we immediately obtain the following lemma.

Lemma 2.6. Let X be a k-regular graph on n vertices (assume n even) and P be a

perfect matching on VðXÞ such that EðX ÞXEðPÞ ¼ j. If X is an ðn; k; lÞ-graph, then
X WP is an ðn; k þ 1; lþ 1Þ-graph.

Of course, if we extend the definition of ðn; k; lÞ-graphs to ðn; k; lÞ-multigraphs, then
the previous theorem is true without the assumption that EðX ÞXEðPÞ ¼ j.

Using Theorem 2.1 and Theorem 2.5 we can prove the following lemma.

Lemma 2.7. Let X be an ðn; k; lÞ-graph such that n is even and k � l > 2. Then X

contains at least one perfect matching and for each perfect matching P of X, XnP is an

ðn; k � 1; lþ 1Þ-graph.

Proof. If k � l > 2, then k � l3ðX Þ > 2. By Theorem 2.5, we deduce that X has a
perfect matching P. Then by Theorem 2.1, we obtain

jliðXnPÞ � liðX Þja 1;
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for each i0 1. It follows that lðXnPÞa lðXÞ þ 1. Since lðXÞ < k � 2, the previous
inequality implies that lðXnPÞ < k � 1. Since GnP is ðk � 1Þ-regular and lðXnPÞ <
k � 1, we deduce that XnP is connected. Hence, XnP is an ðn; k � 1; lþ 1Þ-graph.

r

Again, notice that this theorem is true if ðn; k; lÞ-graph is replaced by ðn; k; lÞ-
multigraph throughout.

Lemma 2.8. If X is an ðn; k; lÞ-graph and n > k þ l, then its complement X is an

ðn; n� k � 1; lþ 1Þ-graph.

Proof. If PX ðxÞ ¼ detðxI � AðGÞÞ is the characteristic polynomial of X , then it fol-
lows (see Biggs [5], page 20) that

ðxþ k þ 1ÞPX ðxÞ ¼ ð�1Þnðx� nþ k þ 1ÞPX ð�x� 1Þ

Thus, if k ¼ l1 > l2 b � � �b ln are the eigenvalues of X , then the eigenvalues of X
are n� k � 1;�1 � l2; . . . ;�1 � ln. Since n� k > l, it follows that n� k � 1 >
�1 � li, for each i with 2a ia n. Hence, X is ðn� k � 1Þ-regular and the multi-
plicity of the eigenvalue n� k � 1 is 1. This implies that X is an ðn; n� k � 1; lþ 1Þ-
graph. r

The following result is an easy consequence of the previous results and of Theorem
2.5.

Corollary 2.9. If n is even and X is an ðn; k; lÞ-graph with nb k þ lþ 3, then the

complement of X contains at least one perfect matching.

We show now how one can explicitly find perfect matchings in complements of reg-
ular graphs.

In general, if X is a k-regular graph, then we can find perfect matchings in its
complement using the following procedure.

If X is a k-regular bipartite graph with partite sets A and B of equal size, then con-
sider the bipartite graph X c with partite sets A and B with xy A EðX cÞ if and only if
xy B EðGÞ. Then X c is ðn� kÞ-regular. By Hall’s theorem, it follows that X c contains
a matching P that saturates A, i.e., a perfect matching. Actually, X c contains ðn� kÞ!
perfect matchings. This implies that X WP is a bipartite ðk þ 1Þ-regular graph with
partite sets A and B. The best known algorithm for finding such a matching P in X c

is due to Rizzi [39] and it has complexity Oðnðlog nÞ2Þ.
If we start with a non-bipartite k-regular graph X , then we can use Lemma 2.8 to

check whether or not we can find a perfect matching in the complement of G. The
best known algorithm for finding a maximum matching in a k-regular graph on n

vertices is due to Micali and Vazirani [34] and has complexity Oðkn3=2Þ.
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3 Gaps between primes

Denote by pm the m-th prime number and let Dm ¼ pmþ1 � pm. Let pðxÞ be the
number of primes that are less than x. The Prime Number Theorem (see Ribenboim
[38] for example) states that pðxÞ@ x

log x or equivalently, pm @m logm, as m ! y.
This implies that

D1 þ D2 þ � � � þ Dm

m
¼ pmþ1 � 2

m
@ logm@ log pm;

as m ! y. Thus, the average order of the di¤erence pmþ1 � pm is log pm.
Problems concerning the maximum and the minimum order of Dm are very di‰-

cult. One of the most famous open problems in mathematics is the twin primes
problem which asks whether or not there are infinitely many m’s such that Dm ¼ 2.

Crámer proved in [16] (see also [15]) the following result concerning the maximum
order of Dm.

Theorem 3.1. If the Riemann hypothesis is true, then there is a positive constant c such

that

pðxþ c
ffiffiffi
x

p
log xÞ � pðxÞ >

ffiffiffi
x

p
;

for each xb 2. Thus,

Dm ¼ Oð ffiffiffiffiffiffi
pm

p
log pmÞ

as m ! þy.

Based on probability arguments, Crámer conjectured in 1937 that Dm ¼ Oððlog pmÞ2Þ.
In 1943, Selberg proved the following.

Theorem 3.2. Let FðxÞ be a positive and increasing function such that
FðxÞ
x

is decreasing

for x > 0. Assume that
FðxÞ
x

! 0 and
FðxÞ
log x ! y as x ! y. Then assuming the Riemann

hypothesis is true, we have for almost all x > 0

pðxþFðxÞÞ � pðxÞ@ FðxÞ
log x

This implies that for almost all x > 0, there is a prime between ½x� kðxÞ log2 x; x�,
where kðxÞ is a function tending arbitrarily slowly to infinity.

For our purposes, it su‰ces to show that, given e > 0, then almost always
Dm a e

ffiffiffiffiffiffi
pm

p
. Let BeðxÞ denote the set of primes pm a x such that the interval

ðpm; pm þ e
ffiffiffiffiffiffi
pm

p Þ contains no primes and let beðxÞ ¼ jBeðxÞj. Consider the following
function
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SðxÞ ¼
P

pmþ1ax

Dm

Obviously,

SðxÞ ¼
P

pmþ1ax

ðpmþ1 � pmÞ ¼ pnþ1 � 2 < Ax log x;

where pnþ1 is the largest prime less than or equal to x and A is some positive con-
stant. On the other hand,

SðxÞb
P

x=2apm<pmþ1ax
pm ABeðxÞ

Dm b e
P

x=2apm<pmþ1ax
pm ABeðxÞ

ffiffiffiffiffiffi
pm

p

> e beðxÞ � be
x

2

� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
x

2
log

x

2

r
> e beðxÞ � be

x

2

� �� �
C 0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x log x
p

;

where C and C 0 are some positive constants. From the previous two relations, we
obtain that for each positive x

beðxÞ � be
x

2

� �
aAe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x log x

p
;

where Ae is some positive constant. By iteration, this implies

beðxÞaA 0
e

ffiffiffi
x

p
log3=2 x:ð5Þ

Hence, for each positive x

beðxÞ
pðxÞ aDe

log5=2 xffiffiffi
x

p ;ð6Þ

where De is a positive constant.
This inequality states that Dm a e

ffiffiffiffiffiffi
pm

p
for almost all m.

Using more complicated arguments, Crámer proved the following stronger result
in [17].

Theorem 3.3 (Crámer [17]). Let hðxÞ be the number of primes pn a x such that

pnþ1 � pn > pk
n , where k A 0; 1

2

� �
is a constant. Then

hðxÞ ¼ Oðx1�ð3=2ÞkþeÞ;

for each e > 0.

Hence, b1ðxÞ ¼ Oðx1=4þeÞ for each e > 0 which is better than the bound (5).
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In [36], Peck shows that for each e > 0,

P
pnax;Dn>n1=2

Dn ¼ Oðx25=36þeÞ

This implies an even better bound on b1ðxÞ:

b1ðxÞ ¼ Oðx7=36þe log xÞ

for each e > 0.

To our knowledge, Baker, Harman and Pintz [3] obtained the best unconditional re-
sult on the maximum value of Dm. In [3], they proved that

Dm a p0:525
mð7Þ

if pm is large enough. The hope is (cf. Ribenboim [38]) to prove unconditionally that

Dm ¼ Oðp1=2þe
m Þ for each e > 0.

4 New expanders from old

Constructing explicit families of expanders turns out to be a very di‰cult problem.
The problem is, given a degree kb 3, construct an infinite family of ðjVðXnÞj; k; lÞ-
graphs Xn, where l < k. Using standard probabilistic arguments, one can prove the
existence of infinite families of k-regular expanders. This is now a folklore result for
kb 3 (see the monograph [28] for more details). The first explicit construction of an
infinite family of expanders was given by Margulis in [30]. For an account of known
expander constructions, see [23].

Friedman [20] proved that for any integer kb 3 and any e > 0, the probability that
a random k-regular graph G satisfies lðGÞa 2

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
þ e tends to 1 as the number of

vertices of G tends to infinity. This proves a 20 years conjecture of Alon [1]. Note that
Friedman’s result is probabilistic, namely he proves that roughly speaking, almost all
k-regular graphs are almost Ramanujan without explicitly constructing such graphs.

Our idea to construct expanders is to slightly modify known explicit expanders by
adding or removing perfect matchings to or from their edge set. This idea appears in
the works of Mohar [32] and it was pursued in a slightly di¤erent direction by Bol-
lobás and Chung in [7]. In the next section, we describe their approach.

In the previous section, we proved that, given e > 0, then for almost all primes pm,
we have Dm a e

ffiffiffiffiffiffi
pm

p
. This will imply the main result of our paper.

Theorem 1.1 will follow from the following result.

Theorem 4.1. Let d > kb 2 be two integers. Let X be a k-regular graph on n vertices

(assume n even) and P1; . . . ;Pd�k be a family of perfect matchings on VðXÞ such

that EðXÞX ð
Td�k

i¼1 EðPiÞÞ ¼ j. If X is an ðn; k; lÞ-graph, then X W ð
Sd�k

i¼1 PiÞ is an

ðn; d; d � k þ lÞ-graph.
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Proof. The result follows by applying Lemma 2.6 to X and P1 and to X W ð
S i

j¼1 PjÞ
and Piþ1 for 1a ia d � k � 1. r

We present now the proof of Theorem 1.1.

Proof of Theorem 1.1. Let db 3 be an integer such that d � 1 is not a prime. Let
mb 1 be the integer such that pm < d � 1 < pmþ1. The results of Lubotzky, Phillips
and Sarnak [29] provide us with an infinite family of graphs ðXpm;nÞ such that Xpm;n is

a ðjVðXpm;nÞj; pm þ 1; 2
ffiffiffiffiffiffi
pm

p Þ-graph for each n. Each Xpm;n has nðn2 � 1Þ or
nðn2�1Þ

2
vertices, depending on whether or not n is a square in Fpm . Since n is always odd in
the construction from [29], we find that each Xpm;n has an even number of vertices.

By adding any d � pm � 1 perfect matchings to each Xpm;n, we obtain a new family
of (multi)graphs ðX 0

nÞ. If we require that the (multi)graphs X 0
n have no repeated edges,

then when adding perfect matchings, we need to make sure the edge set of the perfect
matching to be added and the edge set of our current graph are disjoint. This can be
done easily by applying Lemma 2.8 and its corollaries as well as the results from the
end of Section 2.

By Theorem 4.1, it follows that X 0
n is a ðjVðXpm;nÞj; d; d � pm � 1 þ 2

ffiffiffiffiffiffi
pm

p Þ-graph.
Since d < pmþ1, we deduce that X 0

n is a ðjVðXpm;nÞj; d;Dm � 2 þ 2
ffiffiffiffiffiffi
pm

p Þ-graph. Using
the results in the previous section (inequality (6)), this proves the theorem. r

If X is a k-regular Ramanujan graph, then lðX Þa 2
ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
and by Lemma 2.6, we

obtain lðX WPÞa 2
ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
þ 1. This observation was used by De la Harpe and

Musitelli in [22] where they construct an infinite family of 7-regular graphs with
spectral graph 7 � l2 b 6 � 2

ffiffiffi
5

p
¼ 1:52. This falls short of the desired spectral gap

for 7-regular Ramanujan graphs which is 7 � 2
ffiffiffi
6

p
¼ 2:10.

By removing perfect matchings from Ramanujan graphs, we can also obtain new
families of graphs with small non-trivial eigenvalues. This result follows similarly to
the proof of Theorem 4.1 by applying Lemma 2.7 instead of Lemma 2.6.

5 Diameter and perfect matchings

A very important problem in graph theory with connections to network optimization
is constructing k-regular graphs on n vertices with small diameter. It is well known
that any connected k-regular graph on n vertices has diameter at least logk�1 n. The
random k-regular graph has diameter logk�1 nþ oðlogk�1 nÞ (as n tends to infinity)
which is very close to the optimum value (see [7, 8]).

When searching for explicit k-regular graphs with small diameter, we consider first
the k-regular graphs X with small lðXÞ. This is because of the results connecting the
diameter and the eigenvalues of a k-regular graph (see [10]). The best possible upper
bound on the diameter of a k-regular graph that these theorems can provide, is
2 logk�1 nþ Oð1Þ.

Bollobás and Chung [7] proved that the diameter of a k-regular expander on
n vertices plus a random perfect matching is almost surely less than logk�1 nþ
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logk�1 logðnÞ þ Oð1Þ as n goes to infinity. More precisely, they proved the following
theorem.

Theorem 5.1 (Bollobás, Chung). Let H be a graph with maximum degree k with the

property that for each x A VðHÞ, the i-th neighborhood NiðxÞ ¼ fy : dHðx; yÞ ¼ ig of

x satisfies the following

jNiðxÞjb c1kðk � 1Þ i�2ð8Þ

for ia 1
2 þ e

� �
logk�1 n, where c1 and e are some fixed positive numbers. Let G be a

graph obtained by adding a random perfect matching to H. Then with probability tend-

ing to 1 as n goes to infinity, the diameter diamðGÞ of G satisfies

logk n� ca diamðGÞa logk nþ logk logk nþ cð9Þ

where c is a constant depending on c1 and e.

It is also proved in [7] that ðN; k; lÞ-graphs with l bounded away from k, satisfy
property (8). This shows that we can achieve the best possible asymptotic diameter
by a very small random perturbation of an explicit expander graph. The Ramanujan
graphs have diameter less than 2 logk�1 nþOð1Þ. The previous theorem implies that
the k-regular Ramanujan graphs plus a random perfect matching have diameter
logk�1 nþ oðlogk�1 nÞ almost surely as n ! þy.

6 Concluding remarks

In this paper, we showed how to construct almost Ramanujan graphs by adding
perfect matchings to good expanders.

There are many other interesting questions regarding the connection between per-
fect matchings and expanders. Alon [2] asked whether it is true or not that ðN; k; lÞ-
graphs with N even, l ¼ Oð

ffiffiffi
k

p
Þ and k large, are the disjoint union of k perfect

matchings. By the results in Section 2, one can only show that ðN; k; lÞ-graphs with
N even contain k�l

2 disjoint perfect matchings.
Alon [2] also asked whether it is true or not that ðN; k; lÞ-graphs with N and k both

even, l ¼ Oð
ffiffiffi
k

p
Þ and k large, are the disjoint union of k

2 Hamiltonian cycles. Krive-
levich and Sudakov [26] (see also [25]) found su‰cient conditions in terms of l that
imply the existence of a Hamiltonian cycle in an ðN; k; lÞ-graph. To answer Alon’s
questions, new ideas seem to be needed.

Friedman [20] showed that for each e > 0 almost all k-regular graphs have non-
trivial eigenvalues at most 2

ffiffiffiffiffiffiffiffiffiffiffi
k � 1

p
þ e. Computations results of Noviko¤ [35] show

that for n large, about 52% of all k-regular graphs are actually Ramanujan. By add-
ing a random perfect matching to a cycle of even length, we have computed that
about 70% of the 3-regular graphs obtained are Ramanujan.
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Brought to you by | Swets
Authenticated | 192.87.50.3

Download Date | 8/8/13 11:04 PM


