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1. Introduction

In the seminal article [8], Ramanujan unfolded the theory of Ramanujan sums and 
Ramanujan expansions. He defined:

Definition 1. For positive integers r, n,

cr(n) :=
∑

a∈(Z/rZ)∗
ζanr ,

where ζr denotes a primitive r-th root of unity.

Since then, these sums are attributed to Ramanujan and called Ramanujan sums. It 
is not hard to write cr(n) in terms of the Möbius function μ (see [6]). One has

cr(n) =
∑

d|n,d|r
μ(r/d)d. (1)

One also has the following explicit formula due to Hölder [4]:

cr(n) = ϕ(r)
ϕ(r/d)μ(r/d), (2)

where d = gcd(n, r) and ϕ(·) denotes the Euler’s totient function.
Ramanujan studied these sums in the context of point-wise convergent series expan-

sion of the form 
∑

r arcr(n) for various arithmetical functions. Such expansions are now 
known as Ramanujan expansions. More precisely:

Definition 2. We say an arithmetical function f admits a Ramanujan expansion if for 
each n, f(n) can be written as a convergent series of the form

f(n) =
∑
r≥1

f̂(r)cr(n)

for appropriate complex numbers f̂(r). The number f̂(r) is said to be the r-th Ramanujan 
coefficient of f with respect to this expansion.

Ramanujan himself observed [8] that such an expansion is not necessarily unique. He 
remarked that the assertion

∑
r≥1

cr(n)
r

= 0

is equivalent to the prime number theorem. This equation can be viewed as a Ramanujan 
expansion of the zero function.
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The vast archive on the theory of Ramanujan sums and Ramanujan expansions sym-
bolize its great developments, in many directions with many different aspects, over the 
past 100 years or so. For instance, shortly after Ramanujan’s death, Hardy [3] proved 
that

φ(n)
n

Λ(n) =
∞∑
r=1

μ(r)
φ(r)cr(n),

where Λ is the von Mangoldt function. The series on the right hand side is conditionally 
convergent and so is difficult to use. In [1], the authors showed that if we ignore conver-
gence questions, Hardy’s formula can be used to derive the Hardy–Littlewood conjecture 
about prime tuples. More precisely, one can derive the heuristic result that

∑
n≤N

Λ(n)Λ(n + h) ∼ N
∞∑
r=1

μ2(r)
φ(r) cr(h),

a conjecture formulated by Hardy and Littlewood using the more difficult circle method 
of Ramanujan. This led the authors of [2] to study convolution sums of the kind ∑

n≤N f(n)g(n + h) for two arithmetical functions f and g with absolutely convergent 
Ramanujan expansions. They derived asymptotic formulas for such sums, which are anal-
ogous to Parseval’s formula in the case of Fourier series expansions. However, the study 
of the error term for such formulas was not carried out there. It was then addressed in 
[7] by Murty and Saha. Under certain extended hypotheses they provide explicit error 
terms for such formulas.

The works [2] and [7] had some severe restrictions on the growth of the Ramanujan 
coefficients. The goal of this paper is to relax these conditions. To be precise, in [2] the 
authors had the following condition on the Ramanujan coefficients of f and g:

∑
r,s

∣∣f̂(r)ĝ(s)
∣∣(rs)1/2d(r)d(s) < ∞,

which was then extended as

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣ � 1

r1+δ
for δ > 1/2,

in [7]. The condition ‘δ > 1/2’, a priori seems to be ad hoc, as a similar condition for δ > 0
would be sufficient to ensure the absolute convergence of the Ramanujan expansion. But 
if one wants to extend the hypothesis of [2], in the form that they have in [7], then 
‘δ > 1/2’ is somewhat an optimal choice.

More recently, Saha [9] has considered the single sum 
∑

n≤N f(n) for an arithmetical 
function f with absolutely convergent Ramanujan expansion, in the context of deriving 
an asymptotic formula with explicit error term for such a sum. The author obtains his 
result under the above condition with δ > 0. He also exhibits that even with the stronger 
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condition that δ > 1/2, one may end up getting a weaker result if the concerned sum is 
not handled carefully enough. This is exactly the phenomenon that we address here.

Hence, for our purpose we enforce the weakened (essentially a minimal) hypothesis 
‘δ > 0’ (compared to both [2] and [7]), and still obtain a better error term. In the 
following section we state our results and compare them with their predecessors.

2. Statements of the theorems

In this article we prove the following theorems.

Theorem 1. Suppose that f and g are two arithmetical functions with absolutely conver-
gent Ramanujan expansions:

f(n) =
∑
r

f̂(r)cr(n), g(n) =
∑
s

ĝ(s)cs(n),

respectively. Further suppose that

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣ � 1

r1+δ

for some δ > 0. Then for a positive integer N , we have,

∑
n≤N

f(n)g(n) =

⎧⎪⎪⎨
⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)ϕ(r) + O(N1−δ(logN)4−2δ) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)ϕ(r) + O(log3 N) if δ = 1,
N

∑
r≥1 f̂(r)ĝ(r)ϕ(r) + O(1) if δ > 1.

Remark 1. The exponent of N in the error term in the above theorem is consistent with 
the error term which has been obtained in [9] for sums of the form 

∑
n≤N f(n), which 

was not the case for the results in [7].

Theorem 2. Let f and g be two arithmetical functions with the same hypotheses as in 
Theorem 1 and h be a positive integer. Then we have

∑
n≤N

f(n)g(n + h) =

⎧⎪⎪⎨
⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + O(N1−δ(logN)4−2δ) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)cr(h) + O(log3 N) if δ = 1,
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + O(1) if δ > 1.

Theorem 1 and Theorem 2 are substantially improved versions, in terms of both 
hypotheses and the conclusion, of the following two theorems respectively.
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Theorem 3. (See Murty–Saha [7].) Let f and g be two arithmetical functions as in The-
orem 1, with the last assumption being replaced by the condition that

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣ � 1

r1+δ

for some δ > 1/2. Then one has,
∑
n≤N

f(n)g(n) = N
∑
r

f̂(r)ĝ(r)ϕ(r) + O
(
N

2
1+2δ (logN)

5+2δ
1+2δ

)
.

Theorem 4. (See Murty–Saha [7].) Let f and g be two arithmetical functions with the 
same hypotheses as in Theorem 3 and h be a positive integer. Then,

∑
n≤N

f(n)g(n + h) = N
∑
r

f̂(r)ĝ(r)cr(h) + O
(
N

2
1+2δ (logN)

5+2δ
1+2δ

)
.

By virtue of Theorem 2, we can now naturally extend and improve the corollaries that 
were obtained in [7]. We quote:

Corollary 1. For s, t > 0, let δ := min{s, t}. Then for any positive integer h we have

∑
n≤N

σs(n)
ns

σt(n+h)
(n + h)t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N ζ(s+1)ζ(t+1)

ζ(s+t+2) σ−(s+t+1)(h) +O(N1−δ(logN)4−2δ) if δ < 1,

N ζ(s+1)ζ(t+1)
ζ(s+t+2) σ−(s+t+1)(h) + O(log3 N) if δ= 1,

N ζ(s+1)ζ(t+1)
ζ(s+t+2) σ−(s+t+1)(h) + O(1) if δ > 1,

where σs(n) :=
∑

d|n d
s and the big-oh constant depends on δ, hence on s and t.

This result has been stated in [5] only in the asymptotic form.

Corollary 2. Let

φs(n) := ns
∏
p|n

(1 − p−s),

where the product is over prime divisors of n. Then for s, t > 0 and a positive integer h, 
we have

∑
n≤N

φs(n)
ns

φt(n + h)
(n + h)t =

⎧⎪⎪⎨
⎪⎪⎩
NΔ(h) + O(N1−δ(logN)4−2δ) if δ < 1,
NΔ(h) + O(log3 N) if δ = 1,
NΔ(h) + O(1) if δ > 1,

where Δ(h) =
∏

p|h

[(
1 − 1

ps+1

)(
1 − 1

pt+1

)
+ p−1

ps+t+2

]∏
p�h

[(
1 − 1

ps+1

)(
1 − 1

ps+1

)
−

1
ps+t+2

]
, δ = min{s, t} and the big-oh constant depends on δ, hence on s and t.
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3. Preliminaries

Some arguments for our proofs are provided by [7], which we discuss in the following 
section. In addition to that we need some well-known results which we record below.

Proposition 1. For any real number x ≥ 1,

∑
k≤x

ϕ(k) = 3
π2x

2 + O(x log x).

Definition 3. The Mertens function M(·) is defined for all positive integers n as

M(n) :=
∑
k≤n

μ(k)

where μ(·) is the Möbius function. The above definition can be extended to any real 
number x ≥ 1 by defining

M(x) :=
∑
k≤x

μ(k).

Essentially from the error term in the prime number theorem one gets

Proposition 2. For any real number x ≥ 1,

M(x) =
∑
k≤x

μ(k) = O
(
xe−c

√
log x

)
,

where c is some positive constant.

Let dk(n) be the number of ways of writing n as a product of k numbers. We generally 
write d(n) to denote d2(n). Note that

d4(n) =
∑
a,b

ab=n

d(a)d(b).

The functions d2(·), d4(·) appear in our proofs. Hence, we record the following general 
result about the average order of the arithmetical function dk(·), which can be obtained 
by partial summation.

Proposition 3. For any real number x ≥ 1,

∑
n≤x

dk(n) = x(log x)k−1

(k − 1)! + O
(
x(log x)k−2) .
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4. Proofs of the theorems

Fine-tuning arguments of [7] does not lead us to the desired results. However, to 
some extent, our proofs follow the arguments presented in [7] verbatim, but then major 
steps towards our desired results are taken by more detailed treatments for certain parts 
of the concerned sum. The proofs have two aspects of improvement. The improvement 
towards the error term is obtained by a finer analysis of a particular sum and then there 
is an elegant treatment of another sum which enables us to work with the weakened 
hypotheses. We elaborate below. To keep our exposition self-contained we recall relevant 
parts of the proof of Theorem 3 and Theorem 4 from [7].

4.1. Setting up the proofs

Here we explain the principle which is in the proof of Theorem 3 and Theorem 4, and 
also highlight the improvement towards the error term.

Let U be a parameter tending to infinity which is to be chosen later. We write,
∑
n≤N

f(n)g(n) =
∑
n≤N

∑
r,s

f̂(r)ĝ(s)cr(n)cs(n)

= A + B, where

A :=
∑
n≤N

∑
r,s

rs≤U

f̂(r)ĝ(s)cr(n)cs(n) and B :=
∑
n≤N

∑
r,s

rs>U

f̂(r)ĝ(s)cr(n)cs(n).

To treat the sum A, we use the following lemma from [2].

Lemma 1. Let h be a non-negative integer. Then

∑
n≤N

cr(n)cs(n + h) = δr,sNcr(h) + O(rs log rs),

where δ·,· denotes the Kronecker delta function.

Interchanging summations and applying Lemma 1 (for h = 0), one gets upon sepa-
rating r = s and r �= s,

A = N
∑
r2≤U

f̂(r)ĝ(r)ϕ(r) + O(U logU)

= C + D + O(U logU), where

C = N
∑

f̂(r)ĝ(r)ϕ(r) and D = −N
∑

f̂(r)ĝ(r)ϕ(r).

r r2>U
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Clearly, C is the main term as per the theorem. Using the hypotheses and knowledge 
about the average order of the ϕ function (see Proposition 1), D is easily estimated 
(by partial summation) to be O

(
N
Uδ

)
. Then one estimates the sum B to obtain the 

result. However, we do not go into the analysis of B which was done in [7], as a major 
improvement that we obtain here in this article is due to an independent treatment of 
the sum B.

When h is a positive integer, the sum 
∑

n≤N f(n)g(n + h) is also written as A + B, 
but here we have

A :=
∑
n≤N

∑
r,s

rs≤U

f̂(r)ĝ(s)cr(n)cs(n + h) and B :=
∑
n≤N

∑
r,s

rs>U

f̂(r)ĝ(s)cr(n)cs(n + h).

In this case, it turns out that, A = C +D+O(U logU), where C = N
∑

r f̂(r)ĝ(r)cr(h), 
the main term and D = −N

∑
r2>U f̂(r)ĝ(r)cr(h). To estimate D one needs to know 

about 
∑

r≤x cr(h), which is written as follows:

∑
r≤x

cr(h) =
∑
r≤x

∑
d|r,d|h

μ(r/d)d =
∑
k,d

dk≤x,d|h

dμ(k) =
∑
d|h

d
∑

k≤x/d

μ(k).

The innermost sum is M(x/d), where M(·) denotes the Mertens function. Using estimates 
on Mertens function (see Proposition 2), it is then obtained that D = O

(
Nε(h)
U1/2+δ

)
, 

for some function ε(·) of h which is bounded above by ec
√

log hd(h) for some positive 
constant c.

However, one can do better with respect to the term O(U logU) above. Note that for 
the sum A, one actually has

A = C + D + O

⎛
⎜⎝ ∑

r,s
rs≤U

1
(rs)1+δ

rs log rs

⎞
⎟⎠ .

The big-oh term can trivially be estimated to be O(U logU). We note that if δ > 1, the 
sum 

∑
r,s

1
(rs)δ log rs is convergent. Hence the sum in that case is O(1). For 0 < δ ≤ 1, 

we can write

∑
r,s

rs≤U

1
(rs)δ log rs =

∑
t≤U

d(t) log t
tδ

≤ logU
∑
t≤U

d(t)
tδ

.

Now from Proposition 3 (for k = 2) we know that

∑
d(t) = U logU + O(U).
t≤U
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Hence one can use partial summation to estimate the above sums. However, estimating ∑
t≤U

d(t) log t
tδ

is more complicated than estimating 
∑

t≤U
d(t)
tδ

. Since we are only inter-
ested about the order of these sums, we will work with 

∑
t≤U

d(t)
tδ

, as in both the cases 
the resulting order is the same.

Using partial summation one gets

∑
t≤U

d(t)
t

= O(log2 U) and
∑
t≤U

d(t)
tδ

= O(U1−δ logU),

for δ < 1. This clearly improves the exponent of U and yields,

A =

⎧⎪⎪⎨
⎪⎪⎩
C + D + O(U1−δ log2 U) if δ < 1,
C + D + O(log3 U) if δ = 1,
C + D + O(1) if δ > 1.

In the following two subsections we explain our approach of handling the sum B for 
h = 0 and h �= 0.

4.2. Proof of Theorem 1

Recall that by adapting the proof of Theorem 3 one can write 
∑

n≤N f(n)g(n) =
A + B, where

A :=
∑
n≤N

∑
r,s

rs≤U

f̂(r)ĝ(s)cr(n)cs(n) and B :=
∑
n≤N

∑
r,s

rs>U

f̂(r)ĝ(s)cr(n)cs(n).

In the previous subsection we obtained

A =

⎧⎪⎪⎨
⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)ϕ(r) + O

(
N
Uδ

)
+ O(U1−δ log2 U) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)ϕ(r) + O
(
N
U

)
+ O(log3 U) if δ = 1,

N
∑

r≥1 f̂(r)ĝ(r)ϕ(r) + O
(

N
Uδ

)
+ O(1) if δ > 1.

Now here is the other major step towards improving the results of [7]. The essence of 
the proof lies in a careful analysis of the term B. Using (1) and the hypotheses about 
f̂(r), ĝ(r), we write

B =
∑
n≤N

∑
r,s

rs>U

f̂(r)ĝ(s)cr(n)cs(n)

�
∑
r,s

rs>U

1
(rs)1+δ

∣∣∣∣∣∣∣∣
∑
r′|r

r′μ(r/r′)
∑
s′|s

s′μ(s/s′)
∑

m≤N/r′
′ ′

1

∣∣∣∣∣∣∣∣

r m≡0 mod s
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≤
∑
r,s

rs>U

1
(rs)1+δ

∑
r′|r

r′
∑
s′|s

s′
∑

m≤N/r′

m≡0 mod (s′/(r′,s′))

1

≤
∑
r,s

rs>U

1
(rs)1+δ

∑
r′|r

r′
∑
s′|s

s′
N(r′, s′)

r′s′
.

Notice that

∑
r′|r

∑
s′|s

(r′, s′) ≤
∑
l|r,l|s

ld(r/l)d(s/l).

This is because if (r′, s′) = l, then one can write r′ = lr′′ and s′ = ls′′. Now since r′|r
and s′|s, we get r′′|r/l and s′′|s/l. Hence the number of choices of r′′ and s′′ are at most 
d(r/l), d(s/l) respectively. Thus we get, upon writing r = lr0, s = ls0 in the sum and 
interchanging summations,

B � N
∑
l≥1

1
l1+2δ

∑
r0,s0

r0s0>U/l2

d(r0)d(s0)
(r0s0)1+δ

.

Now we break the outermost sum into two parts, one for l2 > U and another for 
l2 ≤ U . If l2 > U , the condition r0s0 > U/l2 is vacuously true and then in that case the 
innermost sum is a convergent series for δ > 0. So we deduce that

B � N
∑

l≤
√
U

1
l1+2δ

∑
r0,s0

r0s0>U/l2

d(r0)d(s0)
(r0s0)1+δ

+ N
∑

l>
√
U

1
l1+2δ .

Note that the second sum is O( N
Uδ ) and also that the innermost sum in the first sum is 

nothing but

∑
t>U/l2

d4(t)
t1+δ

,

which by partial summation (and Proposition 3) turns out to be O
(

log3(U/l2)
(U/l2)δ

)
. Putting 

these informations together one gets

B � N
∑
√

1
l1+2δ

log3(U/l2)
(U/l2)δ + N

U δ
� N log4 U

U δ
.

l≤ U
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Hence we obtain that

∑
n≤N

f(n)g(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)ϕ(r) + O

(
N log4 U

Uδ

)
+ O(U1−δ log2 U) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)ϕ(r) + O
(

N log4 U
U

)
+ O(log3 U) if δ = 1,

N
∑

r≥1 f̂(r)ĝ(r)ϕ(r) + O
(

N log4 U
Uδ

)
+ O(1) if δ > 1.

To optimize the error terms, we choose

U =

⎧⎪⎪⎨
⎪⎪⎩
N log2 N if δ < 1,
N logN if δ = 1,
N1/δ(logN)4/δ if δ > 1.

These choices yield,

∑
n≤N

f(n)g(n) =

⎧⎪⎪⎨
⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)ϕ(r) + O(N1−δ(logN)4−2δ) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)ϕ(r) + O(log3 N) if δ = 1,
N

∑
r≥1 f̂(r)ĝ(r)ϕ(r) + O(1) if δ > 1.

This concludes the proof of Theorem 1.

4.3. Proof of Theorem 2

We have already mentioned that we are only left to do a careful analysis of a particular 
sum, namely B. However in this case there are certain other difficulties, which we get 
around by further subdividing the sum B into parts concerning ‘higher’ and ‘lower’ 
values of s. One also needs Ingham’s result [5] on the binary additive divisor problem. 
We elaborate below.

Keeping the earlier principle in mind, we write

∑
n≤N

f(n)g(n + h) = A + B, where

A :=
∑
n≤N

∑
r,s

rs≤U

f̂(r)ĝ(s)cr(n)cs(n + h) and B :=
∑
n≤N

∑
r,s

rs>U

f̂(r)ĝ(s)cr(n)cs(n + h).

As per our derivations above, we have

A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + O

(
Nε(h)
U1/2+δ

)
+ O(U1−δ log2 U) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)cr(h) + O
(

Nε(h)
U3/2

)
+ O(log3 U) if δ = 1,

N
∑

f̂(r)ĝ(r)cr(h) + O
(

Nε(h)
1/2+δ

)
+ O(1) if δ > 1.
r≥1 U
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Now for the sum B, we have

B =
∑
n≤N

∑
r,s

rs>U

f̂(r)ĝ(s)cr(n)cs(n + h)

�
∑
r,s

rs>U

1
(rs)1+δ

∣∣∣∣∣∣∣∣
∑
r′|r

r′μ(r/r′)
∑
s′|s

s′μ(s/s′)
∑

m≤N/r′

r′m≡−h mod s′

1

∣∣∣∣∣∣∣∣
.

Let (r′, s′) = l. Hence if we write r′ = lr′′ and s′ = ls′′ we get (r′′, s′′) = 1, i.e., r′′ is 
invertible mod s′′. Also note that l|h. Thus

B �
∑
r,s

rs>U

1
(rs)1+δ

∑
r′|r

r′
∑
s′|s

s′
∑

m≤N/lr′′

r′′m≡(−h/l) mod s′′

1

=
∑
l|h

∑
r,s

rs>U
l|r,l|s

1
(rs)1+δ

∑
r′′|r/l

lr′′
∑

s′′|s/l
ls′′

∑
m≤N/lr′′

r′′m≡(−h/l) mod s′′

1.

Writing r = lr0 and s = ls0, we get

B �
∑
l|h

1
l2δ

∑
r0,s0

r0s0>U/l2

1
(r0s0)1+δ

∑
r′′|r0

r′′
∑
s′′|s0

s′′
∑

m≤N/lr′′

r′′m≡(−h/l) mod s′′

1

= E + F,

where

E :=
∑
l|h

1
l2δ

∑
r0,s0

r0s0>U/l2

1
(r0s0)1+δ

∑
r′′|r0

r′′
∑
s′′|s0

s′′≤N/lr′′

s′′
∑

m≤N/lr′′

r′′m≡(−h/l) mod s′′

1

and

F :=
∑
l|h

1
l2δ

∑
r0,s0

r0s0>U/l2

1
(r0s0)1+δ

∑
r′′|r0

r′′
∑
s′′|s0

s′′>N/lr′′

s′′
∑

m≤N/lr′′

r′′m≡(−h/l) mod s′′

1.

Note that

∑
m≤N/lr′′

′′ ′′

1 ≤ N

lr′′s′′
+ 1.
r m≡(−h/l) mod s
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Hence if s′′ ≤ N/lr′′, we get

∑
m≤N/lr′′

r′′m≡(−h/l) mod s′′

1 � N

lr′′s′′
.

This yields

E � N
∑
l|h

1
l1+2δ

∑
r0,s0

r0s0>U/l2

d(r0)d(s0)
(r0s0)1+δ

.

Now the right hand side of the above expression is bounded by

N
∑
l≥1

1
l1+2δ

∑
r0,s0

r0s0>U/l2

d(r0)d(s0)
(r0s0)1+δ

,

which is O
(

N log4 U
Uδ

)
as we have seen in the proof of Theorem 1. Thus we finally have

E = O

(
N log4 U

U δ

)
.

To treat the sum F , write r0 = r′′nr and s0 = s′′ns. We then deduce

F ≤
∑
l|h

1
l2δ

∑
r0,s0

1
(r0s0)1+δ

∑
r′′|r0

r′′
∑
s′′|s0

s′′>N/lr′′

s′′
∑

m≤N/lr′′

r′′m≡(−h/l) mod s′′

1

≤
∑
l|h

1
l2δ

∑
r′′

1
(r′′)δ

(∑
nr

1
n1+δ
r

) ∑
s′′>N/lr′′

1
(s′′)δ

(∑
ns

1
n1+δ
s

) ∑
m≤N/lr′′

r′′m≡(−h/l) mod s′′

1.

The sums involving nr and ns are convergent, and so this simplifies to

F �
∑
l|h

1
l2δ

∑
r′′

1
(r′′)δ

∑
s′′>N/lr′′

1
(s′′)δ

∑
m≤N/lr′′

r′′m≡(−h/l) mod s′′

1

≤
∑
l|h

1
l2δ

∑
r′′

1
(r′′)δ

(
lr′′

N

)δ ∑
s′′

∑
m≤N/lr′′

r′′m≡(−h/l) mod s′′

1

= 1
N δ

∑
l|h

1
lδ

∑
r′′

∑
s′′

∑
m≤N/lr′′

r′′m≡(−h/l) mod s′′

1.
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Now the sum
∑
r′′

∑
s′′

∑
m≤N/lr′′

r′′m≡(−h/l) mod s′′

1 =
∑

n≤N/l

d(n)d(n + h/l).

From the solution to the binary additive divisor problem due to Ingham [5] we know 
that

∑
n≤N/l

d(n)d(n + h/l) ∼ 6
π2σ−1(h/l)

N

l
log2(N/l).

Thus, F � N1−δ log2 N
∑

l|h
σ−1(h/l)

l1+δ . Note that σ−1(n) = O(logn). Hence

∑
l|h

σ−1(h/l)
l1+δ

= O(log h).

Hence we obtain

F �h N1−δ log2 N,

where the implied constant depends on h. Putting all these together and then for the 
same choice of U as in the proof of Theorem 1 we get

∑
n≤N

f(n)g(n + h) =

⎧⎪⎪⎨
⎪⎪⎩
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + O(N1−δ(logN)4−2δ) if δ < 1,

N
∑

r≥1 f̂(r)ĝ(r)cr(h) + O(log3 N) if δ = 1,
N

∑
r≥1 f̂(r)ĝ(r)cr(h) + O(1) if δ > 1.

This concludes the proof of Theorem 2.

5. Concluding remarks

Thus, our work (and in particular Corollary 1) gives an alternate and complete deriva-
tion (with an explicit error term) of one of Ingham’s result [5], which was treated only 
for s, t > 1/2 in [7]. It appears that the analysis of the error term in Ingham’s work was 
never done before. The derivation of the main term in his theorem using the theory of 
Ramanujan sums was first initiated by the authors of [2]. An error term was then ob-
tained in [7] as a further consequence of this theory, and for which we obtained a major 
improvement here.

The condition in our main theorems, namely

∣∣f̂(r)
∣∣, ∣∣ĝ(r)∣∣ � 1
r1+δ
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for δ > 0 can be relaxed even further. This has recently been investigated in [10]. There 
is considerable importance in this because, as indicated in [2], Ramanujan expansions 
can be used to formulate the Hardy–Littlewood conjecture on twin primes.

Indeed, it may be possible to explore this further along the following lines. Let us 
recall the Ramanujan expansion for the von Mangoldt function Λ(n) due to Hardy.

ϕ(n)
n

Λ(n) =
∑
r≥1

μ(r)
ϕ(r)cr(n).

For a positive real number s, we may define Λs(n) by the following convergent sum.

ϕ(n)
n

Λs(n) :=
∑
r≥1

μ(r)
ϕ(r)rs cr(n).

Since

1
φ(r) � log log r

r
,

the above sum converges absolutely for s > 0. Then our work can be applied to derive 
an asymptotic formula for

∑
n≤N

ϕ(n)
n

Λs(n)ϕ(n + h)
n + h

Λs(n + h)

for any s > 0. The Hardy–Littlewood conjecture on prime 2-tuples is of course the case 
when s = 0 as mentioned in the introduction and we hope our work will converge in that 
direction.
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