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The Generalized Dedekind Determinant

M. Ram Murty and Kaneenika Sinha

Abstract. The aim of this note is to calculate the determinants of certain
matrices which arise in three different settings, namely from characters on finite
abelian groups, zeta functions on lattices and Fourier coefficients of normalized
Hecke eigenforms. Seemingly disparate, these results arise from a common
framework suggested by elementary linear algebra.

1. Introduction

The purpose of this note is three-fold. We prove three seemingly disparate
results about matrices which arise in three different settings, namely from charac-
ters on finite abelian groups, zeta functions on lattices and Fourier coefficients of
normalized Hecke eigenforms. In this section, we state these theorems. In Section
2, we state a lemma from elementary linear algebra, which lies at the heart of our
three theorems. A detailed discussion and proofs of the theorems appear in Sections
3, 4 and 5.

In what follows below, for any n × n matrix A and for 1 ≤ i, j ≤ n, Ai,j or
(A)i,j will denote the (i, j)-th entry of A. A diagonal matrix with diagonal entries
y1, y2, . . . yn will be denoted as diag (y1, y2, . . . yn).

Theorem 1.1. Let G = {x1, x2, . . . xn} be a finite abelian group and let f :
G → C be a complex-valued function on G. Let F be an n× n matrix defined by

Fi,j = f(x−1
i xj).

For a character χ on G, (that is, a homomorphism of G into the multiplicative
group of the field C of complex numbers), we define

Sχ :=
∑
s∈G

f(s)χ(s).

The eigenvalues of F are Sχ as χ ranges over the irreducible characters of G. Thus,
the determinant of F is equal to

∏
χ Sχ, where the product runs over all characters

of G. Moreover, if Sχ �= 0 for every character χ of G, then F is invertible and

F−1
i,j =

1

n

∑
χ

χ(xix
−1
j )

Sχ
.
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The next theorem indicates similarities between characters of finite abelian
groups and Möbius functions on lattices (see Section 4 for detailed notation).

Theorem 1.2. Let (L,�) be a lattice on a set {1, 2, . . . n} of integers. Let
f : N −→ C be a complex valued function on the elements of L. We define n × n
matrices C and D by

Ci,j = f(i ∧ j),

Di,j = f(i ∨ j).

Then,

(1.1) detC =
∏
i≤n

⎛⎝∑
j � i

μ(j, i)f(j)

⎞⎠
and

(1.2) detD =
∏
i≤n

⎛⎝∑
i� j

μ(i, j)f(j)

⎞⎠ ,

where μ(x, y) denotes the Möbius function on (L,�). Moreover, if g(i) =
∑

j � i μ(j, i)f(j)

and h(i) =
∑

i� j μ(i, j)f(j) are non-zero for each 1 ≤ i ≤ n, then C and D are
invertible,

(1.3) (C−1)i,j =
∑

i∨j � l

μ(i, l)μ(j, l)

g(l)
.

and

(1.4) (D−1)i,j =
∑

l� i∧j

μ(l, i)μ(l, j)

h(l)
.

Finally, the following theorem gives an interesting interpretation of recursive
relations between Hecke operators acting on spaces of modular cusp forms.

Theorem 1.3. Let f be a normalized eigenform of weight k with respect to
Γ0(N), for a positive integer N and a positive, even integer k. Let f(z) have the
Fourier expansion given by

f(z) =
∞∑
n=1

af (n)n
k−1
2 e(nz),

where e(z) = e2πiz and af (1) = 1. Let A be an n×n matrix given by Ai,j = af (ij).
Then, the determinant of A is equal to μ(1)μ(2) . . . μ(n), where μ(i) denotes the
Möbius function on positive integers. Thus, A is non-invertible for any n > 3.

Special cases of Theorem 1.2 have been found by various authors since 1875,
beginning with H.J.S. Smith [S] (see also the nice survey article [H]). The classical
Smith determinant is

det[(i, j)]n×n = φ(1)φ(2) . . . φ(n),

where (i, j) denotes the greatest common divisor of i and j. In 1977, Redheffer
[R] discovered an interesting matrix related to the Riemann hypothesis. For each
natural number n, define the matrix Rn such that (Rn)i,j = 1 if i|j or j = 1. Then,

(1.5) det(Rn) = M(n),
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where

M(n) =
∑
j≤n

μ(j).

It is well-known that M(n) = O(n1/2+ε) for any ε > 0 if and only if the Riemann
hypothesis is true (see for example, [T]). Wilf [W2] generalized this result to any
poset. In Section 6, we provide an alternate proof of Wilf’s result, essentially
following an elegant proof of Redheffer’s theorem given in [B]. In Section 7, we also
provide a link between Theorem 1.2 and chromatic polynomials.

2. A lemma from elementary linear algebra

In this section, we state a lemma, which helps us to develop a general setting
from which Theorems 1.1, 1.2 and 1.3 arise as special cases. The advantage of this
lemma is that it makes the calculation of inverses of the matrices in Theorems 1.1
and 1.2 amenable.

Lemma 2.1. Let A and B be square matrices of order n, such that the determi-
nant of AB is equal to 1. Let S = {y1, y2, . . . yn} be a set of n complex numbers.
Consider the matrix

D = A diag(y1, y2, . . . yn)B.

Then, the determinant of D is
n∏

k=1

yk.

Therefore, if yk �= 0 for every 1 ≤ k ≤ n, then

D
−1 = B−1 diag

(
1

y1
,
1

y2
, . . .

1

yn

)
A−1.

In particular, if A is a unitary matrix, A∗ denotes its conjugate transpose and
D = A diag(y1, y2, . . . yn)A

∗, with each yk �= 0, then

D−1 = A diag

(
1

y1
,
1

y2
, · · · 1

yn

)
A∗.

3. The Dedekind determinant and proof of Theorem 1.1

Let G = {x1, x2, . . . xn} be a finite abelian group of order n. A character χ of
G is a homomorphism of G into the multiplicative group of the field C of complex
numbers. That is, χ : G −→ C∗ satisfies

χ(ab) = χ(a)χ(b), a, b ∈ G.

It is well known that a finite abelian group of order n has exactly n distinct char-
acters. Dedekind, in an unpublished work before 1896, made the following obser-
vation:

Let f : G −→ C be a complex valued function on G and let A be the n × n
matrix whose (i, j)-th entry, as i and j vary between 1 and n, is given by

Ai,j = f(x−1
i xj).

Let

Sχ =
∑
s∈G

f(s)χ(s).
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The determinant of A is given by ∏
χ

Sχ,

where the product runs over all characters on G. To see this, let vχ denote the
vector {χ(x1), χ(x2), . . . χ(xn)} for a given character χ of G. Observe that for each
1 ≤ i ≤ n, the i-th element of Avχ is given by

n∑
j=1

f(x−1
i xj)χ(xj) = χ(xi)

n∑
j=1

f(x−1
i xj)χ(x

−1
i xj)

= χ(xi)Sχ,

since x−1
i xj runs over all elements of G as j varies from 1 to n. Thus, Avχ = Sχvχ.

Since the distinct characters on G supply n linearly independent eigenvectors vχ of
A, the determinant of A is the product of the corresponding eigenvalues of A,∏

χ

Sχ.

A is known as the Dedekind matrix and the determinant of A is called the Dedekind
determinant. Thus A is invertible if and only if Sχ �= 0 for every character χ of G.
The method of calculating the Dedekind determinant has many applications. For
example, it can be used to determine the eigenvalues of the adjacency matrix of a
Cayley graph, as shown in Section 2 of [M2]. It is also essential in the study of the
regulator of cyclotomic extensions (see [W]).

In [DGV], the authors have applied this idea to calculate the determinant of
the n× n matrix whose (i, j)-th element is given by

e

(
−si−1j

n

)
,

where e(x) = e2πix.
Given an integer q ≥ 2, let Zq denote the group of residue classes (mod q)

and let G(q) denote the multiplicative group of residue classes which are relatively
coprime to q. Let

G(q) = {x1, x2, . . . xφ(q)},
where φ(q) denotes the Euler-φ function. Given a function F : Zq −→ C with
support in G(q), the Fourier transform of F is defined by

F̂ (n) = q−
1
2

∑
m∈G(q)

F (m)e

(
−nm

q

)
.

In order to determine whether it is possible to recover F from the values of F̂
restricted to G(q), one has to check if the φ(q) × φ(q) matrix Fq, whose (i, j)-th
entry is

q−
1
2 e

(
−x−1

i xj

q

)
is invertible. Fq is a special case of the Dedekind matrix F where

f(x) = q−
1
2 e

(
−x

q

)
.
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If Fq is invertible, the authors of [DGV] have explicitly constructed the inverse.
However, by applying Lemma 2.1, we are able to generalise their result to an arbi-
trary complex-valued function defined on any finite abelian group.

Let χk, 1 ≤ k ≤ n denote the characters of a finite abelian group G of order n.
For a complex-valued function f on G, let

Sk :=
∑
s∈G

f(s)χk(s).

Observe that for any g ∈ G,

(3.1) f(g) =
1

n

n∑
k=1

Skχk(g
−1).

We define a matrix

Ai,j =
χj(xi)√

n
, 1 ≤ i, j ≤ n.

Then, by equation (3.1),

(A diag(S1, S2, . . . Sn)A
∗)i,j =

1

n

n∑
k=1

χk(xi)Skχk(x
−1
j )

=
1

n

n∑
k=1

Skχk(xix
−1
j )

= f(x−1
i xj) = Fi,j .

We can now apply Lemma 2.1 to obtain Theorem 1.1.
In 1896, Dedekind wrote to Frobenius, suggesting the problem of calculating

the determinant of matrices analogous to F for non-abelian groups. This is now rec-
ognized as the starting point of representation theory of finite groups, as remarked
in [CC].

4. A combinatorial analog of the Dedekind determinant
and proof of Theorem 1.2

In this section, we will develop formulae, similar to the ones in the previous
section, in a combinatorial context.

Let (L,�) be a lattice on a set {1, 2, · · ·n} of integers. For x, y in L, let x ∧ y
denote their greatest lower bound and let x∨y denote their least upper bound. An
interval of L, [x, y] is a set of the form {z ∈ L : x� z� y}. Let I(L) be the set of
intervals on L. We define the zeta function on I(L) by

ζ([x, y]) = ζ(x, y) =

{
1 if x� y,

0 otherwise.

We also define the Möbius function μ on I(L) by the recursion∑
x� z� y

μ(x, z) =

{
1 if x = y,

0 otherwise.

It can be easily checked that

(4.1)
∑

x� z� y

μ(x, z)ζ(z, y) =

{
1 if x = y,

0 otherwise.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

158 M. RAM MURTY AND KANEENIKA SINHA

Now, let f : N −→ C be a complex valued function on the elements of L. We define
n× n matrices C and D as follows :

For 1 ≤ i, j ≤ n,

Ci,j = f(i ∧ j),

Di,j = f(i ∨ j).

In 1968, Wilf [W1] showed that

(4.2) det C =
∏
i≤n

⎛⎝∑
j � i

μ(j, i)f(j)

⎞⎠
and

(4.3) det D =
∏
i≤n

⎛⎝∑
i� j

μ(i, j)f(j)

⎞⎠ .

Notice that the factors in the above product play a role analogous to character sums
Sχ in the Dedekind determinant. We will carry this analogy further and construct
the inverse of C and D. Given a function f on L, we define a function g : L −→ C

such that

f(x) =
∑
y� x

g(y).

Thus,

g(x) =
∑
y�x

μ(y, x)f(y).

Also, define a function h : L −→ C such that

f(x) =
∑
x� y

h(y).

Then,

h(x) =
∑
x� y

μ(x, y)f(y).

We recall that

i ∨ j� l ⇐⇒ i� l and j� l

and

t� i ∧ k ⇐⇒ t� i and t� k.

We define a matrix Z by

Zi,j = ζ(j, i).

Equation (4.1) tells us that

Z−1
i,j = μ(j, i).

Since

f(i ∧ j) =
∑
k � i
k � j

g(k) =

n∑
k=1

ζ(k, i)g(k)ζ(k, j),

we have

C = Z diag(g(1), g(2), . . . g(n))ZT .
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Thus, since Z is a unimodular matrix, by Lemma 2.1, the determinant of C is equal
to

∏n
k=1 g(k). Furthermore, if g(k) �= 0 for every 1 ≤ k ≤ n, C is invertible and

C−1 = (ZT )−1 diag

(
1

g(1)
,

1

g(2)
, . . .

1

g(n)

)
Z−1.

That is,

C−1
i,j =

n∑
k=1

μ(i, k)μ(j, k)

g(k)
.

This proves equation (1.3). Similarly,

f(i ∨ j) =
n∑

k=1

ζ(i, k)h(k)ζ(j, k).

Thus,
D = ZT diag (h(1), h(2), . . . h(n))Z.

Just as above, this proves equation (1.4) and gives us Theorem 1.2.
We conclude this section with two applications of Theorem 1.2. The following

special case of equation 1.3 appears as Problem 32 in Chapter 8 of [PS].
Let L be a lattice on {1, 2, . . . n} with the natural ordering, that is,

i� j if i ≤ j.

With this ordering, i ∧ j is the minimum of i and j, and i ∨ j is the maximum of
i and j. Let a1, a2, . . . an be a set of n complex numbers. For each 1 ≤ i ≤ n, we
define

f(i) = a1 + a2 + · · ·+ ai.

Clearly, for each i lying between 1 and n,∑
1≤j≤i

μ(j, i)f(j) = ai.

Thus, with C defined as before, applying equation (1)(proved by Wilf in [W1]), we
get that

det C = a1a2 . . . an.

In particular, in the special case ai = 1 for all i, we see that the matrix whose
(i, j)-th entry is min(i, j), has determinant 1.

Moreover, if each ai is non-zero, then C is invertible and by Theorem 1.2, for
every 1 ≤ i, j ≤ n, the (i, j)-th entry of C−1 is given by∑

i,j≤l≤n

μ(i, l)μ(j, l)

al
.

There are not many summands in this expression since μ(i, l) = 0 unless l = i or
l = i+1. Indeed, it is easy to see that the sum is zero if |i− j| ≥ 2. Otherwise, the
sum equals ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

an
if i = j = n,

− 1

ai+1
if i− j = −1, 1 ≤ i ≤ n− 1,

1

ai
+

1

ai+1
if 1 ≤ i = j ≤ n− 1,

− 1

ai
if i− j = 1, 1 ≤ i ≤ n.
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That is, the inverse matrix is a tri-diagonal matrix.
If we consider the cognate matrix D whose (i, j)-th entry is max(i, j), then we

need to calculate the function h given by

h(x) =
∑
x≤y

μ(x, y)f(y).

In our special situation f(y) = y and so h(x) = f(x)− f(x+ 1) = −1 if x < n and
n if x = n. This leads to the determinant of D being (−1)n−1n.

Now, we will look at another special case of equation (1), which appears as
Problem 33 in Chapter 8 of [PS].

If L is the lattice on {1, 2, . . . n} ordered by divisibility, then

i ∧ j = (i, j),

the greatest common divisor of i and j. Also,

i ∨ j = [i, j],

the least common multiple of i and j. Define f(n) = n for all n ∈ N. Then g(n) =
φ(n) since ∑

d|n
φ(d) = n.

From Theorem 1.2, we deduce that the determinant of C in this case is

φ(1)φ(2) . . . φ(n)

and C−1
i,j is given by ∑

l≤n, [i,j]|l

1

φ(l)
μ

(
l

i

)
μ

(
l

j

)
.

The Smith determinant suggests we look at the determinant of the matrix T
whose (i, j)-th entry is given by the least common multiple of i, j, denoted [i, j].
This can be deduced from our formalism above. However, there is a simpler way
to evaluate it. Let g(d) be such that∑

d|n
g(d) =

1

n
.

By Möbius inversion, we have

g(n) =
∑
d|n

μ(d)d/n =
1

n

∏
p|n

(1− p).

Thus,
1

(i, j)
=

∑
d|(i,j)

g(d)

so that

[i, j] =
ij

(i, j)
=

∑
d|i,d|j

ig(d)j,

which we can view from the perspective of Lemma 4 and deduce

T = A diag(g(1), . . . , g(n))B,
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where A is the matrix whose d, i-th entry is i if d|i and zero otherwise, and B is
simply the transpose of A. As A has determinant n!, and so does B, we see that

detT = n!2g(1) · · · g(n).

This does not fit directly into the format of our Lemma 4 as A and B do not satisfy
det(AB) = 1, but it is clear that the arrangement does.

5. A modular analogue of the Dedekind determinant

Let f be a normalized eigenform of weight k with respect to Γ0(N). Let f(z)
have the Fourier expansion given by

f(z) =

∞∑
n=1

af (n)n
k−1
2 e(nz),

where e(z) = e2πiz and af (1) = 1. The Fourier coefficients of such an eigenform
satisfy a recursive relation given by

(5.1) af (m)af(n) =
∑

d|(m,n)

af

(mn

d2

)
.

By Möbius inversion (see Lemma 2.1 of [M1]), one gets

af (mn) =
∑

d|(m,n)

μ(d)af

(m
d

)
af

(n
d

)
.

We now define, for n ≥ 1, a matrix U given by

U =

{
af

(
j
i

)
, if i|j,

0 otherwise.

Let A be the matrix given by

Ai,j = af (ij), 1 ≤ i, j ≤ n.

Then, by equation (5.1),

A = U diag(μ(1), μ(2), . . . μ(n))UT ,

where U is a matrix with determinant 1. Once again, as an immediate application
of Lemma 2.1, we derive Theorem 1.3. This tells us that A has determinant 0 for
any n > 3 and for a normalised Hecke eigenform of any weight and level.

6. The Redheffer matrix revisited

Following [B], we prove Redheffer’s theorem and adapt our proof to prove Wilf’s
theorem which generalized Redheffer’s result to the context of partially ordered sets.
We prove the following:

Theorem 6.1. Let Rn be the n×n matrix whose (i, j)-th entry is 1 if i|j or if
j = 1. Then,

detRn =
∑
j≤n

μ(j).
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Proof. Let S be the n×n matrix whose (i, j)-th entry is 1 if i|j and zero otherwise.
Let T be the n× n matrix whose (i, j)-th entry is M(n/i) if j = 1 , 1 if i = j ≥ 2
and 0 otherwise. We claim that Rn = ST . Indeed, the (i, j)-th entry of the product
is

n∑
k=1

SikTkj =
∑
i|k

Tkj .

For j = 1, this sum is ∑
i|k

M(n/k) =
∑
t≤n/i

M(n/it) = 1,

by an elementary result in number theory. Indeed, we have∑
d|n

μ(d) = 0

unless n = 1 in which case it is equal to 1. Thus,

1 =
∑
j≤n

∑
de=j

μ(d) =
∑
e≤n

∑
d≤n/e

μ(d) =
∑
e≤n

M(n/e).

For j ≥ 2, the sum is 1 if i|j and zero otherwise. This completes the proof. �

This argument generalizes to posets and one can construct an analog of the
Redheffer matrix as follows:

Theorem 6.2. Let {x1, x2, . . . xn} be a finite partially ordered set with order
denoted by � such that x1 is the minimal element of this poset. Let Rn be the n×n
matrix whose (i, j)-th entry is ζ(xi, xj) if i ≤ j or if j = 1. If i > j, the (i, j)-th
entry of Rn is 0. Then,

detRn =
∑
m≤n

x1 � xm

μ(x1, xm).

Remark 6.3. The above theorem was proved by Wilf in [W1]. However, we
provide a simpler proof by generalising ideas from the proof of Theorem 6.1 to
posets.

Proof. Let S be the n× n matrix whose (i, j)-th entry is ζ(xi, xj) if i ≤ j and 0 if
i > j. Let T be the n× n matrix whose (i, j)-th entry is∑

m≤n
xi �xm

μ(xi, xm)

if j = 1 , 1 if i = j ≥ 2 and 0 otherwise.

If j = 1, the (i, j)-th entry of the product ST is seen to be∑
k≤n

xi � xk

∑
m≤n

xk � xm

μ(xk, xm).

On interchange of summation, this equals

∑
m≤n

xi �xm

⎛⎜⎜⎝ ∑
k≤n

xi � xk � xm

μ(xk, xm)

⎞⎟⎟⎠ .
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Since the inner sum equals 1 if i = m and 0 otherwise, we see that the (i, 1)-th
entry of the product ST equals the (i, 1)-th entry of Rn. It is trivial to check that
the other entries of the matrices Rn and ST match. We have

detRn = detT =
∑
m≤n

x1 �xm

μ(x1, xm),

since the determinant of S is 1. �

7. Link with chromatic polynomials

If M is a planar map with r(M) regions, we can colour this map using λ colours
in λr(M) ways. Among these colourings, only a subset are proper colourings. Any
colouring can be reduced to a proper colouring of a unique submap (simply by
“erasing” the common boundary between two regions receiving the same colouring).
Thus, if PM (λ) is the number of proper colourings of M using λ-colours, we get

λr(M) =
∑
B⊆M

PB(λ),

where B runs over all submaps of M. If we think of the collection of such submaps
B’s as a partially ordered set with respect to set inclusion, Möbius inversion gives
us

PM (λ) =
∑
B⊆M

μ(B,M)λr(B).

If we apply Theorem 1.2 to calculate the determinant of the matrix C with f(x) =
λr(x) associated to the poset of submaps of a planar map M, we find that the
determinant vanishes if there is no proper colouring of M using λ colours.

8. Concluding remarks

There have been several papers addressing the problem of determining the
eigenvalues of the Redheffer matrix, notably due to Vaughan ([V1], [V2]) and oth-
ers. Vaughan [V1] computed the characteristic polynomial of Rn and showed that
Rn has exactly n − [log2 n] − 1 of its eigenvalues equal to unity. Rn also has two
“dominant” eigenvalues which are approximately equal to ±

√
n. The size of the

remaining [log2 n] − 1 eigenvalues, known as the non-trivial eigenvalues, has been
further investigated by Vaughan [V2] as well as Barrett and Jarvis [BJ]. Our ap-
proach through linear algebra to the determinant of Rn and related determinants
shows that there is an underlying linear algebra theme to all of them and perhaps,
viewing classical open questions such as the Riemann hypothesis from this perspec-
tive will shed more light on it. Also, viewing the four color problem in this context
may open up a more conceptual approach to its solution.
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Birkhäuser, Basel, 1977, pp. 213–216. Internat. Ser. Numer. Math., Vol. 36. MR0468170
(57 #8008)

[S] H. J. S. Smith, On the Value of a Certain Arithmetical Determinant, Proc. London Math.
Soc. S1-7, no. 1, 208, DOI 10.1112/plms/s1-7.1.208. MR1575630

[T] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, at the Clarendon
Press, 1951. MR0046485 (13,741c)

[V1] R. C. Vaughan, On the eigenvalues of Redheffer’s matrix. I, Number theory with an
emphasis on the Markoff spectrum (Provo, UT, 1991), Lecture Notes in Pure and Appl.
Math., vol. 147, Dekker, New York, 1993, pp. 283–296. MR1219342 (94b:11086)

[V2] R. C. Vaughan, On the eigenvalues of Redheffer’s matrix. II, J. Austral. Math. Soc. Ser.
A 60 (1996), no. 2, 260–273. MR1375591 (96m:11073)

[W] L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics,
vol. 83, Springer-Verlag, New York, 1982. MR718674 (85g:11001)
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