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Let B be a subset of the set of all isomorphism classes of finite groups. We 
consider the number Fg(x) of positive integers n < x such that all groups of order n 
lie in B. When ir consists of the isomorphism classes of all finite groups of any of 
the following types, we obtain an asymptotic formula for Fn(x): cyclic groups, 
abelian groups, nilpotent groups, supersolvable groups, and solvable groups. In the 
course of the arguments, we also obtain, for almost all n, a lower bound for the 
number of groups of a given order n. 

1. INTRODUCTION 

Let ,‘? be the set of all isomorphism classes of finite groups and d a 
certain subset. If T(x) (resp. G(x)) denotes the number of groups HE d 
(resp. HE 3) whose orders are ,oC, we define the density of 6, denoted 
6(fF), as 

J@-) = j\; W)/G(x), (1.1) 

provided this limit exists. Then (1.1) represents, in a natural way, the 
probability that a randomly selected finite group lies in 6. For example, if 5 
consists of all isomorphism classes of finite abelian groups, then we shall see 
in a simple way that s(a) = 0. If d consists of isomorphism classes of 
groups of squarefree order, then Mays [8] showed that s(K) = 0. The 
calculation of 6 requires good upper and lower bounds for T(x) and G(x) 
and this makes computations in a given specific case difficult. It seems 
reasonable to conjecture that if d consists of all isomorphism classes of 
finite simple groups then s(a) = 0. 
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If we confine our attention to the distribution of orders of groups in F, we 
are led to consider the number F,(x) of n < x such that all groups of order n 
lie in F. If we set g(n) to be the number of non-isomorphic groups of order II 
and for fixed positive integer k, 

F = Kk = (H: card(H) = n and g(n) = k} 

then F&x)/k is just the number of n < x such that g(n) = k. For k = 1, 
Erdiis [3] showed that 

F&x) = (1 + o( 1)) xeeY/log, x, 

where y is Euler’s constant and we write log, x = log x, log, x = 
log(log,-, x). If k is any positive integer, we shall show below that for 
E-=gk, 

F,(x) < x/log, x. 

Hence 6(gk) = 0. 
Let d be any one of the following subsets of Y: the isomorphism classes 

of all finite cyclic groups (C), abelian groups (A), nilpotent groups (N), 
supersolvable groups (SS), and solvable groups (S). Then, we shall derive an 
asymptotic formula for F,(x). In case that K is C, the result was obtained 
by Erdos. If d is A or N, this result was also obtained by Mays 191, who 
used a general result of Scourfield. One can derive this result in a simple way 
without recourse to any general result. In the case K is SS or S, Mays [9] 
obtained upper and lower bounds for F&x). By using a lemma of Erdos on 
primitive sequences, we are able to give an asymptotic formula in these cases 
also. 

Unless otherwise specified, all groups in this paper are assumed to be 
finite. Also, we shall refer to a group and its isomorphism class 
interchangeably. 

2. SCARCITY OF ABELIAN GROUPS 

If ~2 is the set of all isomorphism classes of abelian groups then we shall 
show 6(d) = 0. This is easily deduced from the following. 

THEOREM 2.1. For each fixed E > 0, 

g(n) > (1 - E) 1% 4 

with the possible exception of at most o(x) of the n < x. 

(2-l) 
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Remark. It is highly unlikely that (2.2) reflects the true order of g(n). It 
is expected that log g(n) 6 (log ?z)~, but this has not been proved. (See also 
the concluding remarks.) 

Our proof of the theorem will require the following lemmas, which seem to 
be of some independent interest. 

LEMMA 2.3. Let r(n) denote the number of prime pairs (p, q) such that 
pq 1 n and q = 1 (modp). Then g(n) > r(n). 

Proof For any pair (p, q) enumerated by r(n), we can form the group 

Wpq) 0 C(4P9), where C(a) is the cyclic group of order a and 
H(pq) = (x,y: xp =yq = 1, x-‘yx =y”) with sp = 1 (mod q), s # 1, is a non- 
abelian group of order pg. As it is clear that these groups are non-isomorphic 
for distinct pairs (p, q), the lemma is proved. 

LEMMA 2.4, Let f(x) be any function satisfying 1 <f(x) < x, f increasing 
and unbounded as x+ 00. Define v,(n) to be the number of distinct prime 
factors of n that are less than t and let E > 0. Then, with the possible 
exception of x/(6’ log,f (x)) of the n < x, we have 

(1 -e)log,f(x)< v,Jn)< (1 + &)bhf(x). 

Proof We shall follow the method of Turin [ 131. Using well-known 
estimates, and writing f for f (x) we have 

2 vAn> = x % [ 1 = x log, f (x) + O(x) 
n<x P<f 

and 

where square brackets denote the greatest integer function, p, q denote primes 
and the sum C’ is over p, q <fi p + q. Hence we find 

1 (ukn) - h,f (x))’ @ x h,f (xi 
n<x 

Thus the number of n <x for which 

I vXn> - hf (xl > & log2S(x) 

is <x/(E’ log,f(x)), as desired. 
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LEMMA 2.5. Let p < (log, x)” for some fixed 0 < a < 1. Then, the 
number of n < x, n = O(p) and having no prime divisor rl(modp) is 
O(x/(log,x)A) for anv A > 0. Here, the implied constant depends on!v on A. 

This is essentially what Erdos proves in [ 3. p. 77 ] 
We can now prove our theorem. 

Proof of Theorem 2.1. We shall show that 

r(n) > (1 - E) log, n (2.2) 

with at most <x/log, x exceptional n <x. This will, by Lemma 2.3, give the 
desired result. 

Fix 0 < a ( 1, and for each x, consider the primes p < (log, x)’ -‘. By 
Lemma 2.5, we see that for each of these primes, the number of integers 
n < x, n = O(p) and which have no prime factor = 1 (modp) is 
o(x/(log, x)‘). Hence, with the exception of o(x/(log, x)‘)(log, x)‘-* = 
o(x/log, x) values of n < x, qS(n) is divisible by each of the prime divisors p 
of n, p < (log, x)‘-“. Here, 4(n) denotes Euler’s totient function. Taking f (x) 
to be (log, x)‘-’ in Lemma 2.4, we conclude that 

r(n) > vkn) > (1 - E) log, x 

with at most O(x/log, x) exceptional n < x. This proves the theorem. 

COROLLARY. a(~&')= 0. 

ProoJ Let A(x) denote the number of abelian groups of orders <x. By a 
result of Erdos and Szekeres (61, we have A(x) < x, so that by an easy 
calculation 

A(x)/G(x) < I/log, x = o( 1) 

as desired. 

3. SOME ASMPTOTIC FORMULAE 

We begin with the following theorems. 

THEOREM 3.1. Asx-tco, 

F,(x) - FA(x) - F,(x) - xc-Y/log, x. 

ProoJ For F,(x), the result was proved by Erdos ]3 J, since a classical 
result of Burnside implies that a necessary and sufficient condition for an tr 
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to be included is that (n, $(n)) = 1. As C G A G N, it is enough now to prove 
that F,(x) is asymptotically majorized by xe-Y’log, x. Our argument closely 
follows that of Erdos. Fix E > 0, and let y = (log, x)‘-“. We split the set S(x) 
of the n < x under consideration into two classes S,(x) and S,(x) depending 
on the size of their least prime divisor p. Specifically, n E S,(x) if p < y and 
n E S,(x) if p > y. An upper bound for the cardinality of S,(x) is the number 
of n < x having no prime divisor less than y. By the sieve of Eratosthenes 
and Merten’s theorem, this number is equal to 

x n 1-i +O(2y)=(1 +o(l))xeeY/(l -s)log3x. 
PO c ) 

Now consider those n in S,(x). If all groups of order n are nilpotent, and m 
is the squarefree core of n, it is clear that (m, 4(m)) = 1. Hence, an upper 
bound for the number of such n is the number of n ,< x which are divisible 
by p and have no prime factor =l (modp). By Lemma 2.5, this is 
o(x/(log, x)‘) . (y) = o(x/log, x). Now we let E tend to 0 to complete the 
proof. 

THEOREM 3.2. There is a constant c, > 6/n* such that 

F,,(x) - Cl x. 

Our proof will depend on the following arithmetical lemmas. 

LEMMA 3.3. Write n =py’p;’ a.. p;s with p, < p2 < p3 . . . . All groups of 
order n are supersolvable ifs for p, q, r distinct prime divisors of n, 

(1) pdj(qf-l),t<ay,d<aPimpliespdI(q-1); 

(2) p’ 1 (q - 1) implies a4 <p; 

(3) p<q<r,pl(q-l),pqI(r-l)impliesa,<p. 

See Hughes [7]. 

Remark. The analogues of this condition for abelian groups and 
nilpotent groups were found by Dickson and Bachman (see [I]), respec- 
tively, and for solvable groups it was discovered by Thompson [ 121. 

The next lemma is a special case of a well-known result of Erdos (41 
which gives a criterion for a sequence of integers to have a density. A 
sequence of integers is called primitive if no element divides any other. 

LEMMA 3.4. Let m, ( m, ( . . . be any primitive sequence of integers and 
let b, <b, < ‘.’ be the sequence composed of those integers which are 
divisible by at least one m,. If the number of m, < x is O(x/log x) then the 
sequence of b’s has a density. 
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Proof of Theorem 3.2. If we show that the sequence of integers n such 
that all groups of order n are supersolvable, has a density c,, it will follow 
that c, > 6/7r* as it is easily seen from Lemma 3.3 that the groups of 
squarefree order are supersolvable. Actually, we will show that the 
complementary sequence has a density. To do this, we begin by extracting a 
maximal primitive subsequence, say m, < mz < . . . of the complementary 
sequence. Clearly, the sequence b, < b, < . .. composed of integers divisible 
by an mi is precisely the complementary sequence. For by maximality, every 
element of the complement is divisible by an m, and Lemma 3.3 shows that 
any multiple of an m, must be in the complement as m, itself is. Let h(x) be 
the number of m, <x. If we can show h(x) = O(x/log x), then Lemma 3.4 
will give the desired result. 

Suppose m is one of the m, and q is the largest prime divisor of m. Then, 
all groups of order m/q are supersolvable. Indeed, if this were not the case, 
m/q would be in the complementary sequence. Then for some j, we would 
have mj 1 m/q and so also mj 1 m. which is a contradiction. 

We claim that this implies: 

eitherq*(morq/(p-l)(p*-l).~~(p’-1)forsomep”Im. (:*) 

Suppose q*;(m. By the above remark, m/q satisfies conditions (l), (2), (3) of 
Lemma 3.3, but m fails to do so. But aq = 1 implies that it satisfies both (2) 
and (3), and the only way (1) can fail to hold is if q ( (p” - 1) for some 
s < azp. This proves (*). 

Denote by j(x) the number of integers m < x having property (*), where q 
is the largest prime divisor of m. Then h(x) <j(x). Writej(x) =ji(x) +j,(x). 
where j,(x) is the number of integers m <x satisfying (*) and having 
q > (log x)*. 

We can estimate j,(x) directly as follows: 

<xlogx ‘;‘ q~*<x/logx. 
4>(kwX)2 

To estimate j,(x), we use a method of Rankin [ Ill. A prime in the 
summation indicates that the range is only over those n all of whose prime 
factors are Q = (log x)‘. Then, 

=x 1’2 rl (1 + A) 
PGY 



DENSITY OF GROUPS 35 

c 1 
<exp tlogx+ Y PTY p ‘12 - 1 1 
6 exp(+ log x + 2y”*/log y) < x1”+ ‘, 

where 6 = (log log x)- ‘. In the penultimate step, we used the prime number 
theorem. Hence h(x) <j(x) =j,(x) +j,(x) < (x/log x). 

Our final result in this section concerns solvable groups. 

THEOREM 3.5. There is a constant c2 such that F,(x) - c2x. 

Pro@ Thompson [ 121 has shown the deep result that every minimal 
simple group is isomorphic to one of the following: 

(a) LP), P any prime, 

(b) L2(3p), p any prime. 

(c) L,(p), p any prime >3, such that p2 + 1~ 0 (mod 5), 

(d) Sz(29, p any odd prime, 

(e> b(3) 

(see [ 121 for notation). Let Z be the ascending sequence of orders of the 
above types of groups. Then, all groups of order m are solvable if and only if 
no s E Z divides m. Necessity is trivial to see and conversely, if G is a group 
of order m where no s ~5 Z divides m, then G is not simple, say H a G. By 
induction, H and G/H are solvable so it follows that G is solvable. 

The number of s < x, s E Z is obviously O(x/logx) as each order 
corresponds to a prime and each prime gives rise to at most four orders. But 
now, the method of the previous theorem and Lemma 3.4 complete the proof. 

The value of c2 above is, in fact, quite close to 1, though it is clear that it 
must be less than 1. The above reasoning shows that 

c2a rl (I-$), SEZ’ 
where Z’ is a maximal primitive subsequence of Z. 

4. CONCLUSION 

If K consists of all isomorphism classes of finite simple groups, we have 
already conjectured that a(&?) = 0. Erdos [5] has shown that the number of 
n Q x such that there is a non-abelian simple group of order n is o(x/log x). 
(See also Dornhoff [2].) Hence, if we let s(n) be the number of simple 
groups of order n, and conjecture s(n) = O(log n), then it follows that 
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S(F) = 0. But Neuman [lo] has pointed out that even a much weaker form 
of such a conjecture already implies that log g(n) = O(log n)‘. Of course. the 
recent (presumed) classification of finite simple groups settles all these 
conjectures. In fact, it implies that s(n) = 0( 1). 
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