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We obtain a new proof of an asymptotic formula for the coefficients of the j-invariant
of elliptic curves. Our proof does not use the circle method. We use Laplace’s method
of steepest descent and the Hardy-Ramanujan asymptotic formula for the partition
function. (The latter asymptotic formula can be derived without the circle method.)
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1. Introduction

Suppose k is an even integer and let M} denote the space of weight k holomorphic
modular forms on SLy(Z). It is well known that the algebra of modular forms on
SLo(Z) is generated by Eisenstein series of the form

where oj,_1(n) = de dF—1 = > Bk% and ¢ = e2™*. The first

non-trivial cusp form is
o0
~oTlu-
With this notation, A € My5 and Ey € M), whenever k > 4 is even.

The modular function

L\ Eua(2) | 432000 -
jz) = A) + o1 =q +744+ch

n=1
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is a fundamental object in number theory. Petersson [7], and later Rademacher [8]
independently, used the circle method to prove the asymptotic formula

6477\/5

c(n) ~ W,

(1.1)

as n — oo.

Petersson and Rademacher were inspired by the seminal work of Hardy and
Ramanujan [4] which introduced the circle method in order to prove the asymptotic
formula for the partition function

T4/ 2

(n) ~ S
P 4\/§na

as n — oo, where p(n) is determined by

(1.2)

> gt =] -q¢)"

n=0 n=1
In a recent article [2] we gave a new proof of (1.2) without using the circle method.
Our derivation of (1.2) used an algebraic formula of Bruinier and Ono [1].

The purpose of the present article is to give a new proof of (1.1) without using
the circle method. We use Laplace’s method of steepest descent and the Hardy-—
Ramanujan asymptotic. In fact, our method yields much more general conclusions.

Let M,L denote the space of weight k& weakly holomorphic modular forms on
SLo(Z). That is, meromorphic modular forms whose only poles (if any) are at ioc.
If f € M} has ord;se f = —m < 0, then

Lk/12] +m
f= Z bj Epy12(m—j AT, (1.3)
j=0
for some b; € C where by # 0. We have the following theorem which immediately
implies (1.1).

Theorem 1. Suppose k € 27 and f € M,'C has ordjee f = —m < 0 and f =
S Af(n)g™. Then

n=-—m

wAp(=m) yn\5—1
~ ik f 4m/nm
Af(n) ~i = o (—m> e .

Our proof of Theorem 1 has two main steps. The first — which may be of
independent interest — uses Laplace’s method to prove the following.

Theorem 2. Suppose

F(2) =) A(n)g™,
n=0

9(2) = Y Ag(n)a",
n=0
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where
Ar(n) ~ cfn"‘eA\/ﬁ7
Ag(n) ~ cgnPeBVn

with o, B, A, B, ¢f, ¢g € R and A, B, ¢y, ¢g > 0. Then for fg(z) =307 o Apg(n)g"
we have

(1.4)

A2a+1 B2B+1

o8+ VAT
(A2 +Bz)§+a+ﬁ ’

Afg(n) ~ creqg2V2m

Here is the strategy to prove Theorem 1. Set

o0

> oVt =T[a-ag" .
n=0

n=0
By Theorem 2 and (1.2), an easy induction shows that pi/)(n) ~ ¢;n% eV where
i1

1 7\ *

¢ =—|= )
/2 \ 21

j 3

47

2j
A=)
J T 3

Thus for any fixed integer m > 0, the coefficients of

2

qufm _ H (1 _ qn)f24m _ Zp(24m) (n)qn
n=1 =0
satisfy the asymptotic formula
1 /m\6m+i
24m) (p) ~ — <—> etmvnm, 1.5
P )~ —— (= (15)

In light of (1.3), we prove the following.

Theorem 3. Suppose k > 4 is even and
f(z)=>_ As(n)g™,
n=0

where A¢(n) > 0 for all n and
CfeA\/ﬁ

nOL

Af(n) : (1.6)

with real numbers ¢y, A, a > 0. Then for fEx(z) =Y oo ArE.(n)g" we have

creAVT (4 k
Amy (n) ~ L Q—).

a—% A

n 2
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4 M. Dewar & M. Ram Murty

The proof of Theorem 1 follows easily from Theorems 2 and 3.

Proof of Theorem 1. Let A, , . as-m(n) denote the nth coefficient of
Ei12(m—j) A7~ For fixed m and j, we obviously have

AEk+l2(m—j)A‘j7m (TL) ~ AEk+12(m—_j)A‘j7"1 (n +] — m) = )\Ek+12(m_j)qm—jAj7m (n)

Hence by (1.3), Theorem 3 and (1.5), we have

|k/12]4+m
Ap(n) = Z DjAB, s 120m—py i (1)
j=0
m—1 ik n %7% -
~ bj— ( ) 647\”\/71(7717]) + O(nkfl)
— 2n \m —7
7=0
~ bO Zk (2) g_i e47r‘/nm,
V2n \m
since the e*™V™" term dominates all of the other exponentials. Finally, observe that
bo = Ap(—m). 0

2. Proof of Theorem 2

The key to proving Theorem 2 is that Agg(n) = >, Ar(j)Ag(n — j) is approxi-
mated by

erey 3 5% n— §)PAVIVEVITT — pe By @ (%) VF(E)

j j
where
F(z) := AVz + BV1—12:(0,1) — R,
G(x) :=2*(1 —2)? : (0,1) — Rso.
Set
A2
Ci= .
A% + B?

The function F(x) is increasing on (0, ¢), has a maximum of VA2 4+ B2 at x = ¢,
and is decreasing on (¢, 1).

Proof of Theorem 2. Let 0 < € < 1 be given. By continuity, there exists § > 0
such that if |z — ¢| < 26, then
(1 -€¢)G(c) < G(x) < (14 €)G(c). (2.1)
We may assume that both § < ¢ and § < 1 — ¢. By (1.4), for large enough n,
(1= e)en®e™™ <Ap(n) < (14 €)emnetV™,

(2.2)
(1 = €)egn®eBVm <Xy(n) < (14 €)enPeBV.
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Decompose
[(c—0)n]—1 [(c+d)n]
Mg(m) = > MDA =)+ Y A()Ae(n )
j=0 J=[(c=0)n]
=: SO(n) =: Sl(n)
Y MDA ().
j=(et+o)n]+1
= SQ(TL)
By (1.4),

[(c=&)n]—1 »
So(n) = O | plotiol 3" V(%) | = O(nlal+IBlH1evViF (=)
7=0

_ 0(na+ﬁ+3/46‘/ﬁF(C)).
1 Similarly,
5 Sy(n) = O(n\a|+\ﬁ|+1€\/ﬁF(C+5)) — O(na+ﬁ+3/4ex/ﬁF(0)).

It remains to consider S;(n). For large enough n, the inequalities (2.2) apply to
every summand in S;(n):

L(c+0)n] . _
(1 —€)2cpegnth Z G <%> eVRF (%)
j=[(c=d)n]
L(c+0)n] . v
< Si(n) < (1 +€)*cpen®t? Z G (l) eV (%),
j=[(c=d)n]
By (2.1), we have

[(c+d)n] L
(1 —€)3cpeyGle)ynotPHt Z eVIF(E) -
j=[(c=d)n]
L(c+0)n]
< Si(n) < (1 +€)’cpe,G(c)n> A+ eVE(R) . l (2.3)
j=T{c—o)n] "
3 We now consider
R [(c+8)n] o
4 Si(n) == Z VP (%) . ”
j=[(c=d)n]
5 and compare it to the integral

c+o
6 I(n) :z/ eV @) g
c—0
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6 M. Dewar €& M. Ram Murty

Lemma 4. Let Si(n) and I(n) be as above. Then

eVnF(c) eVnF(c)
I(n) — < Si(n) < I(n)+ .
n n
Proof. First observe that
Kesnl 4
I(n) < eVPF@) dg =: Inver(n).
[(c=8)n] _ 1

Recall that right-end-point Riemann sums overestimate integrals of increasing func-
tions and left-end-point Riemann sums overestimate integrals of decreasing func-
tions. Thus we obtain an upper bound for I,yver(n) by constructing a Riemann sum
(of rectangles of width 1/n) with right end-points for the interval to the left of ¢
and with left end-points for the interval to the right of c¢. In particular

VAF ()

I(n) < Iover(n) < Si(n) + —,

where the @ term must be added to cover the gap between the right-end-point
rectangles and the left-end-point rectangles.
Similarly, we observe that

L(ctd)n]

e\/ﬁF(m)dx = Iunder(n)'

[(c=d)n]

I(n) >

An underestimate for I nqe; is obtained by constructing a Riemann sum with left
end-points for the interval to the left of ¢ and right end-points to the right of ¢. In
particular,

oVAF(0)

I(n) > Iunder(n) > §1 (n) — - ,

term compensates for the overlap between the left-end-point
rectangles and the right-end-point rectangles. The lemma follows immediately. O

VAF(c)
where the —“—

Laplace’s method (see, for example, [3, Chap. 19.3]) implies that

2
~ =" /nF(c)
o)~ e €

That is, for large enough n we have

27 — nF(c 27 — nF(c
(I—e)y/ |F”(c)|n VadeVnF(©) < [(n) < (1 +€)y/ |F”(c)|n VadeVnF(e) — (2.4)




20 Reading

December 12, 2012 15:7 WSPC/S1793-0421 203-IJNT 1250153

10

11
12
13

14

An Asymptotic Formula for the Coefficients of j(z) 7

Combining this with (2.3) and Lemma 4 gives

eVRF(c) }

Si(n) < (1 + €)3cpe,G(c)n P+t {I(n) +

o7 e\/ﬁF(c)
3 atB+1 —1/4_/AF(c)
< (1 +e€)’cresGe)n {(14—6)” ‘F//(C)‘n e + -
= (1+¢€)crc c n Te +o(n ie
1+ e)tere,G |F?/7(rc)| ot B+2 V/iF(c) a+B+E V/AF ()

and similarly

2

Yo notB+ieVnF(e) 4 O(na+ﬁ+%e\/ﬁF(c))_
&

Si(n) > (1 —€)*creyG(c)

We conclude that

/ 27 3 nF(c
S(n) ~ Sl (n) ~ Cfch(C) ‘F,/(C)| na+ﬁ+4e\/_F( )'

Finally, it is elementary that F(c) = VA? + B2, that |F"(c)| = M, and

20 20 4A2B2
that G(C) = W.

3. Proof of Theorem 3
It is convenient to set g = i*(E — 1) = Y07 | A\,(n)q" so that A\y(n) > 0. We will

n=1

show that for fg=>""°  Afg(n)¢" we have

creAVT 4\ F
M) ~ L () (3.1)

ne 2

Once (3.1) is established, it is easy to see that fE = f 4 i*fg and so

Ape () ~ Ap(n) + i A pg(n)
n n k
cretvn +Z,k,cfe‘4f <47r)

~Y % _—
n« ne¢ 2 A

etV (dri\*
no—% A ’

as desired. We now prove (3.1).
Once again, the key observation is that Asq(n) =3, Ar(n — j)Ag(j) is approxi-
mated by
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where
F(z) :=+v1—2:(0,1) = Ry,
1
= 1 R<o.
G(.’E) (1 — x)a (07 ) — R>0
Elementary calculus (Taylor’s theorem) gives that for 0 <z < § < 1,
x 52 x
l-=———— - < Fl2)<1- = 2
5 SogE < P <15 (3.2)

1< <1 —_.
< G(z) < —|—oz(1_§)a+1

Since e4V™® is an increasing function of , (3.2) implies
_x_ 8%
eAx/ﬁ{l 2 8(175)3/2} < pAVIF (x) < eA\/ﬁ{l—%}

for all 0 <z <0 < 1. In particular, for integers 0 < j < on, take x = j/n above to
deduce

_Aj __Avwme? . Aj
eA\/_ 2 8(1-6)37 < eAVn=j < eA\/ﬁ7 2\/%_ (3.4)

We will establish (3.1) in two steps. We first show that

. Arg(n)
lim sup g <1 (3.5)
n—oo 47]’ k eA\/ﬁ
cf I na—k/Q
Let € > 0 be given. By continuity, we can fix 0 < § < 1 such that for 0 <z < we
have

G(x) < (1+e). (3.6)

By assumption, A;(n) = O(eAV™) and \y(n) = O(n*~1). Hence As(n — j)\,(j) =
O(eAvn=7jk=1) and so

& . . n—n —ov/n, k eA\/ﬁ
ST sl = A0) = 0T = Ok = o (W ~
j=Lon]+1
Thus, it suffices to consider

Lon]

Ss(n) =D Ar(n = )Ae(4).

=0
By (1.6), for large enough n, Af(n) < (1 + €)cpe V™ /n®. Thus for large enough n
and j < dn,

eA n—j

Af(n—j) <1+ e)cfm.



20 Reading

December 12, 2012 15:7 WSPC/S1793-0421 203-IJNT 1250153

10

11

12

13

An Asymptotic Formula for the Coefficients of j(z) 9

Thus by (3.4) and (3.6), this implies that for large n

Lon]

Ss(n) < (1 + )L ZG()&JWAQU)

Ay Lon] s
< (1+e)%c ¢ 7

By the non-negativity of all of the terms,
A\/_ 0

Z)\ )e 2\/_

=(1 +e)2cf62—afg (47;4—1\%) . (3.7)

Since g = i*E), — i*, the modularity of Ej, implies

() (5 ()

Since lim,, .~ E% (“T*/m) =1, for large enough n we have

Ai dry/m\ "
A 1 v
() <000 (557
Combining this with (3.7) shows that for large enough n,
AVr g\ P
1 3,,.¢ " [T
Ss(n) < (1+¢) R <A>

Since € > 0 was arbitrary, (3.5) follows immediately.
It remains to show that

Ss(n) < (1+€)?c

A
lim inf ! 9,5") > 1. (3.8)
n—eo 47 eV
cr Z no—k/2
Let € > 0 be given and set § = n~'/3. By the non-negativity of the terms,

Lon]

Apg(n) = D7 Ap(n = j)Ag(5) = Ss(n).

3=0
y (1.6), for large enough n,

Lon]

Ss(n) > (1— E)Z—J; pRE (%) eI, (5).
j=0
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By (3.3) and (3.4), for large enough n,

Ayms? eA\/ﬁ Lon] a4y

Ss(n) > (1 —e€)e s0-9%2cy Z e 2V (7).

j=0
In a moment we will prove the following.
Lemma 5. For 6 = n~ /3, we have
ey _ A
Ag(j)e 2m
lim =20 S}
n—oo s N Al
> Ag(jle v
j=0
Since obviously
o Aj
n > Ag(je B
Lon] __Aj Ai j=lon)+1 .
ZAQ(])B Qﬁ_g 471_\/5 - S Aj y
j=0 > Ag(d)e v
§j=0

for large enough n Lemma 5 implies

_ _Avne? eAvn Ai
1—¢)2e 81-03/2 )
Sa(n) > (1 e)%e it

(3.9)

nOé

Since g = "By — ik, the modularity of Fj implies

() - (55 ()

Since lim,,—.oo E}, (MT\/m) =1, for large enough n we have

Ai 4 g
R B A
4dm\/n A
Combining this with (3.9) shows that for large enough n,

Ayms? Ar k AV
3 53/
smw>u—oe8u“2W<E> ek

Since limy, oo g7z = lity o0 =277z = 0, the inequality (3.8) follows

immediately. It remains to prove the lemma.
Proof of Lemma 5. We first claim that for all integers 7 > 1 and allreal 0 < 3 < 1,
k

k
or—1(j) <4 < (B) P,



20 Reading

December 12, 2012 15:7 WSPC/S1793-0421 203-IJNT 1250153

An Asymptotic Formula for the Coefficients of j(z) 11

1 On the one hand, if j < k/3, then j* < (k/B)* < (k/B)¥e?7. On the other hand, if
2 j > k/3, then
k k ‘ ﬂ k eﬁj
< (2] P Z) o< =—.
a P e @) <
4 Since the function e#%/z* is non-decreasing for = > k/f3, we know
s B5) k "
s 2222 - ()
J k k

6 This proves the claim.
Hence, for all 0 < B < 1,

> Al > Al
EIJ Ag(j)e 2vm EIJ or-1(j)e 27
Jj=[on|+1 Jj=[on|+1
0< o0 N Al = O Al
A e 2vn e 2vn
> g\J
Jj=0 Jj=1
SERCRENY

IN

]

DY
(E)k j=|0n]+1
ﬂ ioj e_QAjn
j=1

If 5 — % < 0, then the geometric series converge to give

= _ A
Z )\g(])e e A

j=|on]+1 E\" [1—e ovm Pz Lon]+1)
= o= (5) - (B—22)
> Ag()e 2 e Ll
=0

7 Choose 8 = %L;/Q Now

Z )‘g(j)e_%

8 j=on]+1 < % ' 1_6_% n’t/? 2
=\7) \T =) \=za1)°

= A
Z)‘g(j)e v
j=0

i+
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12 M. Dewar & M. Ram Murty
Substitute 6 = n~/3 to get

Z /\_CJ(.Y')B_"’ATJ.H

k A
j=|on 2k 1—e 2V 3k/2 e
: L(;H—l < <—> ( - 1 1)>< A’:L/G : )e e
S A (j)e A) G- =00 ) afa
j=0
2k \ ¥
=) 1041
= (%) o
as n — oo. This proves the lemma. O
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