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1. Introduction23

Suppose k is an even integer and let Mk denote the space of weight k holomorphic24

modular forms on SL2(Z). It is well known that the algebra of modular forms on25

SL2(Z) is generated by Eisenstein series of the form26

Ek(τ) = 1 − 2k

Bk

∞∑
n=1

σk−1(n)qn,27

where σk−1(n) :=
∑

d|n dk−1 and t
et−1 =

∑∞
k=0 Bk

tk

k! and q = e2πiz. The first28

non-trivial cusp form is29

∆(z) = q

∞∏
n=1

(1 − qn)24.30

With this notation, ∆ ∈ M12 and Ek ∈ Mk whenever k ≥ 4 is even.31

The modular function32

j(z) =
E12(z)
∆(z)

+
432000

691
= q−1 + 744 +

∞∑
n=1

c(n)qn
33

1
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is a fundamental object in number theory. Petersson [7], and later Rademacher [8]1

independently, used the circle method to prove the asymptotic formula2

c(n) ∼ e4π
√

n

√
2n3/4

, (1.1)3

as n → ∞.4

Petersson and Rademacher were inspired by the seminal work of Hardy and5

Ramanujan [4] which introduced the circle method in order to prove the asymptotic6

formula for the partition function7

p(n) ∼ eπ
√

2n
3

4
√

3n
, (1.2)8

as n → ∞, where p(n) is determined by9

∞∑
n=0

p(n)qn =
∞∏

n=1

(1 − qn)−1.10

In a recent article [2] we gave a new proof of (1.2) without using the circle method.11

Our derivation of (1.2) used an algebraic formula of Bruinier and Ono [1].12

The purpose of the present article is to give a new proof of (1.1) without using13

the circle method. We use Laplace’s method of steepest descent and the Hardy–14

Ramanujan asymptotic. In fact, our method yields much more general conclusions.15

Let M !
k denote the space of weight k weakly holomorphic modular forms on16

SL2(Z). That is, meromorphic modular forms whose only poles (if any) are at i∞.17

If f ∈ M !
k has ordi∞ f = −m < 0, then18

f =
�k/12�+m∑

j=0

bjEk+12(m−j)∆j−m, (1.3)19

for some bj ∈ C where b0 �= 0. We have the following theorem which immediately20

implies (1.1).21

Theorem 1. Suppose k ∈ 2Z and f ∈ M !
k has ordi∞ f = −m < 0 and f =22 ∑∞

n=−m λf (n)qn. Then23

λf (n) ∼ ik
λf (−m)√

2n

( n

m

) k
2− 1

4
e4π

√
nm.24

Our proof of Theorem 1 has two main steps. The first — which may be of25

independent interest — uses Laplace’s method to prove the following.26

Theorem 2. Suppose

f(z) =
∞∑

n=0

λf (n)qn,

g(z) =
∞∑

n=0

λg(n)qn,
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where1

λf (n) ∼ cfnαeA
√

n,

λg(n) ∼ cgn
βeB

√
n,

(1.4)2

with α, β, A, B, cf , cg ∈ R and A, B, cf , cg > 0. Then for fg(z) =
∑∞

n=0 λfg(n)qn
3

we have4

λfg(n) ∼ cfcg2
√

2π
A2α+1B2β+1

(A2 + B2)
5
4+α+β

nα+β+ 3
4 e

√
A2+B2√n.5

Here is the strategy to prove Theorem 1. Set6

∞∑
n=0

p(j)(n)qn =
∞∏

n=0

(1 − qn)−j .7

By Theorem 2 and (1.2), an easy induction shows that p(j)(n) ∼ cjn
αj eAj

√
n where

cj =
1√
2

(
j

24

) j+1
4

,

αj = − j

4
− 3

4
,

Aj = π

√
2j

3
.

Thus for any fixed integer m > 0, the coefficients of8

qm∆−m =
∞∏

n=1

(1 − qn)−24m =
∞∑

n=0

p(24m)(n)qn
9

satisfy the asymptotic formula10

p(24m)(n) ∼ 1√
2n

(m

n

)6m+ 1
4

e4π
√

nm. (1.5)11

In light of (1.3), we prove the following.12

Theorem 3. Suppose k ≥ 4 is even and13

f(z) =
∞∑

n=0

λf (n)qn,14

where λf (n) ≥ 0 for all n and15

λf (n) ∼ cfeA
√

n

nα
, (1.6)16

with real numbers cf , A, α > 0. Then for fEk(z) =
∑∞

n=0 λfEk
(n)qn we have17

λfEk
(n) ∼ cfeA

√
n

nα− k
2

(
4πi

A

)k

.18
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The proof of Theorem 1 follows easily from Theorems 2 and 3.1

Proof of Theorem 1. Let λEk+12(m−j)∆j−m(n) denote the nth coefficient of2

Ek+12(m−j)∆j−m. For fixed m and j, we obviously have3

λEk+12(m−j)∆j−m(n) ∼ λEk+12(m−j)∆j−m(n + j − m) = λEk+12(m−j)qm−j∆j−m(n).4

Hence by (1.3), Theorem 3 and (1.5), we have

λf (n) =
�k/12�+m∑

j=0

bjλEk+12(m−j)∆j−m(n)

∼
m−1∑
j=0

bj
ik√
2n

(
n

m − j

) k
2− 1

4

e4π
√

n(m−j) + O(nk−1)

∼ b0
ik√
2n

( n

m

) k
2− 1

4
e4π

√
nm,

since the e4π
√

nm term dominates all of the other exponentials. Finally, observe that5

b0 = λf (−m).6

2. Proof of Theorem 27

The key to proving Theorem 2 is that λfg(n) =
∑

j λf (j)λg(n − j) is approxi-8

mated by9

cfcg

∑
j

jα(n − j)βeA
√

j+B
√

n−j = cfcgn
α+β

∑
j

G

(
j

n

)
e
√

nF( j
n),10

where

F (x) := A
√

x + B
√

1 − x : (0, 1) → R>0,

G(x) := xα(1 − x)β : (0, 1) → R>0.

Set11

c :=
A2

A2 + B2
.12

The function F (x) is increasing on (0, c), has a maximum of
√

A2 + B2 at x = c,13

and is decreasing on (c, 1).14

Proof of Theorem 2. Let 0 < ε < 1 be given. By continuity, there exists δ > 015

such that if |x − c| < 2δ, then16

(1 − ε)G(c) < G(x) < (1 + ε)G(c). (2.1)17

We may assume that both δ < c and δ < 1 − c. By (1.4), for large enough n,18

(1 − ε)cfnαeA
√

n <λf (n) < (1 + ε)cfnαeA
√

n,

(1 − ε)cgn
βeB

√
n <λg(n) < (1 + ε)cgn

βeB
√

n.
(2.2)19
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Decompose

λfg(n) =
�(c−δ)n�−1∑

j=0

λf (j)λg(n − j)︸ ︷︷ ︸
=: S0(n)

+
�(c+δ)n�∑

j=�(c−δ)n�
λf (j)λg(n − j)

︸ ︷︷ ︸
=: S1(n)

+
n∑

j=�(c+δ)n�+1

λf (j)λg(n − j)

︸ ︷︷ ︸
=: S2(n)

.

By (1.4),

S0(n) = O

n|α|+|β|
�(c−δ)n�−1∑

j=0

e
√

nF( j
n )

 = O(n|α|+|β|+1e
√

nF (c−δ))

= o(nα+β+3/4e
√

nF (c)).

Similarly,1

S2(n) = O(n|α|+|β|+1e
√

nF (c+δ)) = o(nα+β+3/4e
√

nF (c)).2

It remains to consider S1(n). For large enough n, the inequalities (2.2) apply to
every summand in S1(n):

(1 − ε)2cfcgn
α+β

�(c+δ)n�∑
j=�(c−δ)n�

G

(
j

n

)
e
√

nF( j
n )

< S1(n) < (1 + ε)2cfcgn
α+β

�(c+δ)n�∑
j=�(c−δ)n�

G

(
j

n

)
e
√

nF( j
n ).

By (2.1), we have

(1 − ε)3cfcgG(c)nα+β+1

�(c+δ)n�∑
j=�(c−δ)n�

e
√

nF( j
n) · 1

n

< S1(n) < (1 + ε)3cfcgG(c)nα+β+1

�(c+δ)n�∑
j=�(c−δ)n�

e
√

nF( j
n) · 1

n
. (2.3)

We now consider3

Ŝ1(n) :=
�(c+δ)n�∑

j=�(c−δ)n�
e
√

nF( j
n) · 1

n
4

and compare it to the integral5

I(n) :=
∫ c+δ

c−δ

e
√

nF (x)dx.6
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Lemma 4. Let Ŝ1(n) and I(n) be as above. Then1

I(n) − e
√

nF (c)

n
≤ Ŝ1(n) ≤ I(n) +

e
√

nF (c)

n
.2

Proof. First observe that3

I(n) ≤
∫ �(c+δ)n�

n + 1
n

�(c−δ)n�
n − 1

n

e
√

nF (x)dx =: Iover(n).4

Recall that right-end-point Riemann sums overestimate integrals of increasing func-5

tions and left-end-point Riemann sums overestimate integrals of decreasing func-6

tions. Thus we obtain an upper bound for Iover(n) by constructing a Riemann sum7

(of rectangles of width 1/n) with right end-points for the interval to the left of c8

and with left end-points for the interval to the right of c. In particular9

I(n) ≤ Iover(n) ≤ Ŝ1(n) +
e
√

nF (c)

n
,10

where the e
√

nF (c)

n term must be added to cover the gap between the right-end-point11

rectangles and the left-end-point rectangles.12

Similarly, we observe that13

I(n) ≥
∫ �(c+δ)n�

n

�(c−δ)n�
n

e
√

nF (x)dx =: Iunder(n).14

An underestimate for Iunder is obtained by constructing a Riemann sum with left15

end-points for the interval to the left of c and right end-points to the right of c. In16

particular,17

I(n) ≥ Iunder(n) ≥ Ŝ1(n) − e
√

nF (c)

n
,18

where the − e
√

nF (c)

n term compensates for the overlap between the left-end-point19

rectangles and the right-end-point rectangles. The lemma follows immediately.20

Laplace’s method (see, for example, [3, Chap. 19.3]) implies that21

I(n) ∼
√

2π√
n|F ′′(c)| · e

√
nF (c).22

That is, for large enough n we have23

(1 − ε)

√
2π

|F ′′(c)|n
−1/4e

√
nF (c) < I(n) < (1 + ε)

√
2π

|F ′′(c)|n
−1/4e

√
nF (c). (2.4)24
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Combining this with (2.3) and Lemma 4 gives

S1(n) < (1 + ε)3cfcgG(c)nα+β+1

{
I(n) +

e
√

nF (c)

n

}

< (1 + ε)3cfcgG(c)nα+β+1

{
(1 + ε)

√
2π

|F ′′(c)|n
−1/4e

√
nF (c) +

e
√

nF (c)

n

}

= (1 + ε)4cfcgG(c)

√
2π

|F ′′(c)|n
α+β+ 3

4 e
√

nF (c) + o(nα+β+ 3
4 e

√
nF (c))

and similarly1

S1(n) > (1 − ε)4cfcgG(c)

√
2π

|F ′′(c)|n
α+β+ 3

4 e
√

nF (c) + o(nα+β+ 3
4 e

√
nF (c)).2

We conclude that3

S(n) ∼ S1(n) ∼ cfcgG(c)

√
2π

|F ′′(c)|n
α+β+ 3

4 e
√

nF (c).4

Finally, it is elementary that F (c) =
√

A2 + B2, that |F ′′(c)| = (A2+B2)5/2

4A2B2 , and5

that G(c) = A2αB2β

(A2+B2)α+β .6

3. Proof of Theorem 37

It is convenient to set g = ik(Ek − 1) =
∑∞

n=1 λg(n)qn so that λg(n) ≥ 0. We will8

show that for fg =
∑∞

n=0 λfg(n)qn we have9

λfg(n) ∼ cfeA
√

n

nα− k
2

(
4π

A

)k

. (3.1)10

Once (3.1) is established, it is easy to see that fEk = f + ikfg and so

λfEk
(n) ∼ λf (n) + ikλfg(n)

∼ cfeA
√

n

nα
+ ik

cfeA
√

n

nα−k
2

(
4π

A

)k

∼ cfeA
√

n

nα− k
2

(
4πi

A

)k

,

as desired. We now prove (3.1).11

Once again, the key observation is that λfg(n) =
∑

j λf (n− j)λg(j) is approxi-12

mated by13

cf

nα

∑
j

G

(
j

n

)
eA

√
nF( j

n)λg(j),14
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where

F (x) :=
√

1 − x : (0, 1) → R>0,

G(x) :=
1

(1 − x)α : (0, 1) → R>0.

Elementary calculus (Taylor’s theorem) gives that for 0 ≤ x ≤ δ < 1,

1 − x

2
− δ2

8(1 − δ)3/2
≤ F (x) ≤ 1 − x

2
, (3.2)

1 ≤ G(x) ≤ 1 + α
δ

(1 − δ)α+1
. (3.3)

Since eA
√

nx is an increasing function of x, (3.2) implies1

e
A
√

n


1− x

2 − δ2

8(1−δ)3/2

ff
≤ eA

√
nF (x) ≤ eA

√
n{1− x

2 }2

for all 0 ≤ x ≤ δ < 1. In particular, for integers 0 ≤ j ≤ δn, take x = j/n above to3

deduce4

e
A
√

n− Aj
2
√

n
− A

√
nδ2

8(1−δ)3/2 ≤ eA
√

n−j ≤ e
A
√

n− Aj
2
√

n . (3.4)5

We will establish (3.1) in two steps. We first show that6

lim sup
n→∞

λfg(n)

cf

(
4π

A

)k
eA

√
n

nα−k/2

≤ 1. (3.5)7

Let ε > 0 be given. By continuity, we can fix 0 < δ < 1 such that for 0 ≤ x ≤ δ we8

have9

G(x) ≤ (1 + ε). (3.6)10

By assumption, λf (n) = O(eA
√

n) and λg(n) = O(nk−1). Hence λf (n − j)λg(j) =11

O(eA
√

n−jjk−1) and so12

n∑
j=�δn�+1

λf (n − j)λg(j) = O(eA
√

n−nδnk) = O(eA
√

1−δ
√

nnk) = o

(
eA

√
n

nα−k/2

)
.13

Thus, it suffices to consider14

Sδ(n) :=
�δn�∑
j=0

λf (n − j)λg(j).15

By (1.6), for large enough n, λf (n) < (1 + ε)cfeA
√

n/nα. Thus for large enough n16

and j ≤ δn,17

λf (n − j) < (1 + ε)cf
eA

√
n−j

(n − j)α
.18
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Thus by (3.4) and (3.6), this implies that for large n

Sδ(n) < (1 + ε)
cf

nα

�δn�∑
j=0

G

(
j

n

)
eA

√
n−jλg(j)

< (1 + ε)2cf
eA

√
n

nα

�δn�∑
j=0

λg(j)e
− Aj

2
√

n .

By the non-negativity of all of the terms,

Sδ(n) < (1 + ε)2cf
eA

√
n

nα

∞∑
j=0

λg(j)e
− Aj

2
√

n

= (1 + ε)2cf
eA

√
n

nα
g

(
Ai

4π
√

n

)
. (3.7)

Since g = ikEk − ik, the modularity of Ek implies1

g

(
Ai

4π
√

n

)
=
(

4π
√

n

A

)k

Ek

(
4π

√
ni

A

)
− ik.2

Since limn→∞ Ek

(
4π

√
ni

A

)
= 1, for large enough n we have3

g

(
Ai

4π
√

n

)
< (1 + ε)

(
4π

√
n

A

)k

.4

Combining this with (3.7) shows that for large enough n,5

Sδ(n) < (1 + ε)3cf
eA

√
n

nα−k/2

(
4π

A

)k

.6

Since ε > 0 was arbitrary, (3.5) follows immediately.7

It remains to show that8

lim inf
n→∞

λfg(n)

cf

(
4π

A

)k
eA

√
n

nα−k/2

≥ 1. (3.8)9

Let ε > 0 be given and set δ = n−1/3. By the non-negativity of the terms,10

λfg(n) ≥
�δn�∑
j=0

λf (n − j)λg(j) = Sδ(n).11

By (1.6), for large enough n,12

Sδ(n) > (1 − ε)
cf

nα

�δn�∑
j=0

G

(
j

n

)
eA

√
n−jλg(j).13
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By (3.3) and (3.4), for large enough n,1

Sδ(n) > (1 − ε)e
− A

√
nδ2

8(1−δ)3/2 cf
eA

√
n

nα

�δn�∑
j=0

e
− Aj

2
√

n λg(j).2

In a moment we will prove the following.3

Lemma 5. For δ = n−1/3, we have

lim
n→∞

∞∑
j=�δn�+1

λg(j)e
− Aj

2
√

n

∞∑
j=0

λg(j)e
− Aj

2
√

n

= 0.

Since obviously4

�δn�∑
j=0

λg(j)e
− Aj

2
√

n = g

(
Ai

4π
√

n

)1 −

∞∑
j=�δn�+1

λg(j)e
− Aj

2
√

n

∞∑
j=0

λg(j)e
− Aj

2
√

n

 ,5

for large enough n Lemma 5 implies6

Sδ(n) > (1 − ε)2e
− A

√
nδ2

8(1−δ)3/2 cf
eA

√
n

nα
g

(
Ai

4π
√

n

)
. (3.9)7

Since g = ikEk − ik, the modularity of Ek implies8

g

(
Ai

4π
√

n

)
=
(

4π
√

n

A

)k

Ek

(
4π

√
ni

A

)
− ik.9

Since limn→∞ Ek

(
4π

√
ni

A

)
= 1, for large enough n we have10

g

(
Ai

4π
√

n

)
> (1 − ε)

(
4π

√
n

A

)k

.11

Combining this with (3.9) shows that for large enough n,12

Sδ(n) > (1 − ε)3e
− A

√
nδ2

8(1−δ)3/2 cf

(
4π

A

)k
eA

√
n

nα−k/2
.13

Since limn→∞
√

nδ2

(1−δ)3/2 = limn→∞ n−1/6

(1−n−1/3)3/2 = 0, the inequality (3.8) follows14

immediately. It remains to prove the lemma.15

Proof of Lemma 5. We first claim that for all integers j ≥ 1 and all real 0 < β < 1,16

σk−1(j) ≤ jk ≤
(

k

β

)k

eβj.17
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On the one hand, if j ≤ k/β, then jk ≤ (k/β)k ≤ (k/β)keβj. On the other hand, if1

j > k/β, then2

jk ≤
(

k

β

)k

eβj ⇔
(

β

k

)k

≤ eβj

jk
.3

Since the function eβx/xk is non-decreasing for x ≥ k/β, we know4

eβj

jk
≥ eβ( k

β )(
k
β

)k
=
(

β

k

)k

ek >

(
β

k

)k

.5

This proves the claim.6

Hence, for all 0 < β < 1,

0 <

∞∑
j=�δn�+1

λg(j)e
− Aj

2
√

n

∞∑
j=0

λg(j)e
− Aj

2
√

n

≤

∞∑
j=�δn�+1

σk−1(j)e
− Aj

2
√

n

∞∑
j=1

e
− Aj

2
√

n

≤
(

k

β

)k

∞∑
j=�δn�+1

e
(β− A

2
√

n
)j

∞∑
j=1

e
− Aj

2
√

n

.

If β − A
2
√

n
< 0, then the geometric series converge to give

∞∑
j=�δn�+1

λg(j)e−
Aj

2
√

n

∞∑
j=0

λg(j)e
− Aj

2
√

n

≤
(

k

β

)k
(

1 − e
− A

2
√

n

e
− A

2
√

n

)(
e
(β− A

2
√

n
)(�δn�+1)

1 − e
(β− A

2
√

n
)

)

≤
(

k

β

)k
(

1 − e
− A

2
√

n

e
− A

2
√

n

)(
e
(β− A

2
√

n
)δn

1 − e
(β− A

2
√

n
)

)
.

Choose β = A
2n3/2 . Now7

∞∑
j=�δn�+1

λg(j)e
− Aj

2
√

n

∞∑
j=0

λg(j)e
− Aj

2
√

n

≤
(

2k

A

)k
(

1 − e
− A

2
√

n

1 − e
− A

2
√

n
(1− 1

n )

)(
n3k/2

e
Aδ

√
n

2 (1− 1
n )

)
e

A
2
√

n .8
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Substitute δ = n−1/3 to get
∞∑

j=�δn�+1

λg(j)e
− Aj

2
√

n

∞∑
j=0

λg(j)e
− Aj

2
√

n

≤
(

2k

A

)k
(

1 − e
− A

2
√

n

1 − e
− A

2
√

n
(1− 1

n )

)(
n3k/2

e
An1/6

2 (1− 1
n )

)
e
− A

2
√

n

→
(

2k

A

)k

· 1 · 0 · 1,

as n → ∞. This proves the lemma.1
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