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Transcendental values of certain Eichler integrals

Sanoli Gun, M. Ram Murty and Purusottam Rath

Abstract

We study the transcendence of certain Eichler integrals associated to Eisenstein series and more
generally to modular forms using functional identities due to Ramanujan, Grosswald, Weil et al.
The special values of such integrals at algebraic points in the upper half-plane are linked to
Riemann zeta values at odd positive integers.

1. Introduction

One of the most remarkable formulas suggested by Ramanujan is the following identity [28,
vol II, p. 171, Corollary iv; also 4, p. 276] involving the odd values of the Riemann zeta function:
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∞∑
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e2αn − 1

}
= (−β)−k
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2
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∞∑
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}

− 22k
k+1∑
j=0

(−1)j B2jB2k+2−2j

(2j)!(2k + 2 − 2j)!
αk+1−jβj , (1)

where α, β > 0 with αβ = π2, k is any non-zero integer and Bj is the jth Bernoulli number.
For a fascinating account of the history of this formula, we refer the reader to [3]. Apart

from its intrinsic beauty, several interesting corollaries can be derived from this formula (1) of
Ramanujan. Here are some.

First, if we put α = β = π and k is even, then we deduce
k+1∑
j=0

(−1)j B2jB2k+2−2j

(2j)!(2k + 2 − 2j)!
= 0. (2)

Second, if we put α = β = π and k is odd, then we deduce

ζ(2k + 1) + 2
∞∑

n=1

1
n2k+1(e2πn − 1)

= π2k+122k
k+1∑
j=0

(−1)j+1 B2jB2k+2−2j

(2j)!(2k + 2 − 2j)!
, (3)

a formula apparently due to Lerch [23] and published in an obscure journal (see also [3]). Since
the left-hand side of this equation is non-zero (both the terms being positive), the right-hand
side is a non-zero rational multiple of π2k+1. Consequently, at least one of

ζ(4k + 3),
∞∑

n=1

1
n4k+3(e2πn − 1)

is transcendental for every integer k � 0. For example, we have the elegant formula

ζ(3) + 2
∞∑

n=1

1
n3(e2πn − 1)

=
7π3

180
.
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Using the theory of the Epstein zeta function, Terras [35] found the related formula

ζ(3) =
2π3

45
− 4

∞∑
n=1

e−2πnσ−3(n)
(

2π2n2 + πn +
1
2

)
,

where
σt(n) =

∑
d|n

dt.

These formulas suggest that there is some interest in studying (Lambert type) series of the form
∞∑

n=1

1
nk(e2πnz − 1)

.

By developing the denominator into a power series and after a suitable rearrangement, we are
led to define, following Grosswald [16],

Fk(z) =
∞∑

n=1

σ−k(n) e2πinz.

We may also write

Fk(z) =
∞∑

m,n=1

n−k e2πimnz =
∞∑

n=1

1
nk

(
e2πinz

1 − e2πinz

)
= −ζ(k) −

∞∑
n=1

1
nk(e2πinz − 1)

.

For odd negative values of k � −3, Fk(z) is essentially the Eisenstein series E1−k(z) (minus the
constant term) of weight 1 − k for the full modular group. For odd positive values of k, one can
view Fk(z) as an Eichler integral (in the sense of Goldstein [12] and Razar [32]). Indeed, since

σ−k(n) = n−kσk(n),

we may rewrite Fk(z) as
∞∑

n=1

σk(n)
nk

e2πinz,

and it is now clear that Fk(z) can be obtained by successive integration of the classical
Eisenstein series minus its constant term. More precisely, for even k > 2, let Ek be defined as

Ek(z) = γk +
∞∑

n=1

σk−1(n) e2πinz, γk =
−Bk

2k
.

Then, for any odd k > 1, we have

Fk(z) =
(2πi)k

(k − 1)!

∫z

i∞
[Ek+1(τ) − γk+1](τ − z)k−1 dτ,

which is an Eichler integral of the first kind. Much research has been done on the transcendental
values of the Eisenstein series [26, 27], but very little is known about the transcendence of
Eichler integrals. These integrals are intricately linked to zeta values, instances of which can
be traced to Beukers’s proof [6] of irrationality of ζ(3).

As discussed in the next section, a recent result in [25] implies that, for a given k � 4, there
exist algebraic numbers α in the upper half-plane H depending on k such that the numbers

F2k+1(α) − α2kF2k+1(−1/α)

are non-zero algebraic multiples of ζ(2k + 1). This motivates the investigation of the values of
the function F2k+1(z) − z2kF2k+1(−1/z) at algebraic points in the upper half-plane. We have
the following result.
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Theorem 1.1. Let k be a non-negative integer and set δ = 0, 1, 2, 3 accordingly as the
gcd(k, 6) equals 1, 2, 3 or 6, respectively. With at most 2k + 2 + δ exceptions, the number

F2k+1(α) − α2kF2k+1(−1/α)

is transcendental for every algebraic α ∈ H. In particular, there are at most 2k + 2 + δ algebraic
numbers α ∈ H such that F2k+1(α) and F2k+1(−1/α) are both algebraic.

The results in [25] show that the numbers i, ρ and −ρ2 are examples of such exceptional
algebraic numbers. Here ρ = e2πi/3 is the cube root of unity in the upper half-plane. However,
F2k+1(α) − α2kF2k+1(−1/α) is zero at each of these points. It is highly improbable that any
other exceptional algebraic number exists. Indeed, if such an α exists, then one can show
that ζ(2k + 1) is an algebraic linear combination of 1 and π2k+1, which is unlikely. In this
context, there is a weaker conjecture due to Kohnen [21], which predicts that the quotient
ζ(2k + 1)/π2k+1 is transcendental for all odd integers k � 1. The irrationality of these quotients
and, more generally, the irrationality of ζ(2k + 1)/π2k+1 for all k � 1 will also follow from a
conjecture of Chowla and Milnor (see [19]).

Indeed, Kohnen [21] has made general conjectures regarding special values of L-series
attached to modular forms of weight 2k for the full modular group. These conjectures imply the
transcendence of ζ(2k + 1)/π2k+1 for all odd integers k � 1. To be precise, Kohnen defines two
vector spaces as follows. Let K be a number field and let M2k(K) be the space of modular forms
of weight 2k whose Fourier coefficients lie in K. Let M±

2k(K) be the space of modular forms f
satisfying L(j + 1, f)/πj+1 ∈ K for all 0 � j � 2k − 2, (−1)j = ±1. Here, L(s, f) is the L-series
attached to f . The spaces S2k(K) and S±

2k(K) are analogously defined for cusp forms. Kohnen’s
conjecture is that, for any algebraic number field K, we have M+

2k(K) ∩ M2k(K) = {0} and
S−

2k(K) ∩ S2k(K) = {0}. This along with a result of Manin [24] implies that, for any normalized
Hecke eigen cuspform f , L(j + 1, f)/πj+1 is either zero or transcendental for all 0 � j � 2k − 2.
Applying Kohnen’s conjecture to the classical Eisenstein series, we have the transcendence of
ζ(2k + 1)/π2k+1 for all odd integers k � 1.

The structure of our paper is as follows. In the next section, we introduce a generalization
of Ramanujan’s identity by Grosswald and discuss the recent work of Murty, Smyth and
Wang [25], which motivates our Theorems 1.1 and 2.1. Section 3 gives the proof of
Theorem 1.1 mentioned in the introduction. In the next section, we introduce a rather
sweeping generalization of Ramanujan’s identity by Grosswald. Part of our goal also is to
bring out some of the positive features of Grosswald’s generalization. For instance, in the
final section we use this in a different context to locate the zeros of certain cusp forms.
The generalization of Grosswald has been rediscovered in the modular context by a variety
of authors, the most notable being Weil [36]. These modular analogues of Ramanujan’s
identity are investigated in Section 5. The difference of corresponding Eichler integrals in
the modular setting is related to an algebraic linear combination of special values of the
form L(j, f)/πj . Here L(s, f) is the L-function of the associated modular form f and j
varies over certain integers in the critical strip. In the special case of weight 2 modular
forms, this difference is an algebraic multiple of L(1, f)/π. In the penultimate section,
we restrict our attention to this special case relating it to the works of Bertrand and
Chudnovsky.

2. Ramanujan’s formula revisited

Motivated perhaps by Ramanujan’s identity, Grosswald, in a series of papers [14–17],
investigated various convergent series representations for ζ(2k + 1). In fact, in [14], he derived
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the following generalization of (1): for any z lying in the upper half-plane H,

F2k+1(z) − z2kF2k+1(−1/z) =
1
2
ζ(2k + 1)(z2k − 1)

+
(2πi)2k+1

2z

k+1∑
j=0

z2k+2−2j B2jB2k+2−2j

(2j)!(2k + 2 − 2j)!
. (4)

Putting z = iβ/π, with β > 0, gives Ramanujan’s formula (1). As noted in later sections, this
formula is a special case of a general formalism. For the purpose of our present discussion, it
is convenient to introduce the Ramanujan polynomial, which appears on the right-hand side
of the above formula:

R2k+1(z) =
k+1∑
j=0

z2k+2−2j B2jB2k+2−2j

(2j)!(2k + 2 − 2j)!
.

It is clear from Grosswald’s formula that zeros of this polynomial lying in the upper half-
plane that are not 2kth roots of unity, if any, will give rise to explicit formulas for ζ(2k + 1) in
terms of special values of the Eichler integrals F2k+1(z).

In a recent paper, Murty, Smyth and Wang [25] have shown that, for k � 4, this is indeed
the case. More precisely, they showed that, for k � 4, all the zeros of R2k+1(z) are simple and
lie on the unit circle apart from four real roots. Moreover, the only possible roots of unity
which are zeros of R2k+1(z) are ±i (which happens if and only if k is even) and ±ρ,±ρ2 with
ρ = e2πi/3 (which happens if and only if 3 divides k). As a consequence, they deduce that, for
k � 4, there is an algebraic α with |α| = 1 which is not a 2kth root of unity so that

ζ(2k + 1) =
2

α2k − 1
[F2k+1(α) − α2kF2k+1(−1/α)];

that is, ζ(2k + 1) can be written as an algebraic linear combination of two Eichler integrals.
Thus, it is of interest to consider the function

G2k+1(z) :=
1

z2k − 1
(F2k+1(z) − z2kF2k+1(−1/z)),

and study its special values.
For instance, any zero z ∈ H of G2k+1(z) with z2k �= 1 is expected to be transcendental and

not lying in the field Q̄(π). Indeed, if z0 is a zero, then the Ramanujan–Grosswald formula
implies that ζ(2k + 1) ∈ Q̄(z0, π).

We now have the following theorem.

Theorem 2.1. The set

{G2k+1(z) : z ∈ H ∩ Q̄, z2k �= 1}
contains at most one algebraic number.

Proof. Indeed, suppose that there are distinct algebraic numbers α1, α2 lying in the
upper half-plane such that G2k+1(α1) and G2k+1(α2) are both algebraic and distinct. By the
Ramanujan–Grosswald formula (4) we have, for i = 1, 2, that

G2k+1(αi) = 1
2ζ(2k + 1) + R∗

2k+1(αi)π2k+1,

where 2z(z2k − 1)R∗
2k+1(z) = (2i)2k+1R2k+1(z). By subtracting these two relations, we obtain

π2k+1(R∗
2k+1(α1) − R∗

2k+1(α2)) = G2k+1(α1) − G2k+1(α2) ∈ Q̄.
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Since G2k+1(α1) �= G2k+1(α2), the right-hand side is non-zero and, consequently, the left-hand
side also is. This implies that π2k+1 is algebraic, which is a contradiction.

Presumably, for reasons alluded to above, there are no algebraic numbers in the set. For
otherwise, ζ(2k + 1) would be an algebraic linear combination of 1 and π2k+1, a highly unlikely
possibility.

The study of formula (4) leads to some new expressions for ζ(2k + 1). We already highlighted
Lerch’s formula (3), which gives a formula for ζ(4k + 3). If ρ = e2πi/3, then −1/ρ = ρ + 1,
so that F2k+1(−1/ρ) = F2k+1(ρ + 1) = F2k+1(ρ). This observation leads to the following
seemingly new formula for ζ(2k + 1) for (k, 3) = 1, namely,

ζ(2k + 1) + 2F2k+1(ρ) =
(2πi)2k+1

ρ(1 − ρ2k)
R2k+1(ρ). (5)

In other words, if 3 does not divide k, then

ζ(2k + 1) + 2
∞∑

m=1

1
m2k+1((−1)m eπm

√
3 − 1)

∈ π2k+1Q̄∗.

This can be regarded as the counterpart of Lerch’s formula (3). If k is even, then both sides
of Grosswald’s formula (4) vanish for z = i by the results of [25]. However, we can factor out
the root and take limits. Indeed, if 2 | k, then the results of [25] show that both the numerator
and denominator of G2k+1(z) vanish at z = i. Using L’Hôpital’s rule, we obtain

ζ(2k + 1) + 2
∞∑

n=1

1
n2k+1(e2πn − 1)

+
4π

k

∞∑
n=1

e2πn

n2k(e2πn − 1)2
∈ π2k+1Q̄∗.

If 3 | k, by the results of [25] both sides of Grosswald’s formula (4) vanish for z = ρ and,
following the above described recipe, then we get

kρ2ζ(2k + 1) + (ρ − 1)F ′
2k+1(ρ) + 2kρ2F2k+1(ρ) ∈ π2k+1Q̄∗.

3. Proof of Theorem 1.1

We begin by considering algebraic numbers α ∈ H that are not 2kth roots of unity. By
Theorem 2.1, for all such α, the function

F2k+1(z) − z2kF2k+1(−1/z)

can take at most one algebraic value, say A. Thus, all such α are necessarily roots of the
following polynomial:

1
2
ζ(2k + 1)(z2k − 1)z +

(2πi)2k+1

2

k+1∑
j=0

z2k+2−2j B2jB2k+2−2j

(2j)!(2k + 2 − 2j)!
= Az.

Thus, there are at most 2k + 2 algebraic numbers in the upper half-plane that are not 2kth
roots of unity and for which F2k+1(α) − z2kF2k+1(−1/α) is algebraic.

Now we consider algebraic numbers α ∈ H that are 2kth roots of unity. For such an α,
formula (4) implies that

F2k+1(α) − α2kF2k+1(−1/α) =
(2πi)2k+1

2α
R2k+1(α).

If, for such an α, F2k+1(α) − z2kF2k+1(−1/α) is algebraic, then transcendence of π
implies that R2k+1(α)= 0. Then, by the theorem of [25] cited earlier, this cannot happen
if gcd(k, 6)= 1. If gcd(k, 6) is equal to 2 or 3, then α = i and α = e2πi/3,−e−2πi/3 are the only
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possible values in each of the respective cases. In both of these cases, we have

F2k+1(α) − α2kF2k+1(−1/α) = 0.

Finally, if (k, 6) = 6, then all three values are zeros of the function in question. This completes
the proof. �

The above proof as well as the remark following the proof of Theorem 2.1 suggests the
following conjecture.

Conjecture. Any zero of the function

F2k+1(z) − z2kF2k+1(−1/z)

in the upper half-plane other than i, e2πi/3 and −e−2πi/3 is transcendental.

We end the section with some explicit examples. In the case of k = 1, we have

F3(z) − z2F3(−1/z) =
1
2
ζ(3)(z2 − 1) +

(2πi)3

2z
R3(z),

where

R3(z) = −z4

6!
+ z2 1

144
− 1

6!
.

There are no roots of this polynomial lying in the upper half-plane. More generally, it has been
shown in [25] that R2k+1(z) has four distinct real zeros for all k � 1.

To cite another example, in the case of k = 3, the corresponding Ramanujan polynomial is
given by

R7(z) =
−3z8 + 10z6 + 7z4 + 10z2 − 3

10!
.

This has exactly two zeros on the upper half-plane, namely, ρ and −ρ̄. For k � 4, as shown by
Murty, Smyth and Wang [25], ζ(2k + 1) is expressible as an algebraic multiple of the difference
of two Eichler integrals. Further numerical data can be found in their paper.

4. Grosswald’s lemma

The derivation of Grosswald, extending Ramanujan’s formula, is a special case of a galaxy
of identities arising from Dirichlet series satisfying functional equations. Bochner [7] seems to
have been the first to state such identities, although his paper indicates that he was unaware of
Ramanujan’s formula. Later, Chandrasekharan and Narasimhan [8] extended these thoughts
further, still unaware of the earlier work by Ramanujan. Finally, it has been again rediscovered
as late as 1976, by Weil [36] in the modular setting. This version has been discussed by various
authors, notably Goldstein [12] and Razar [32]. Investigation of a similar nature has also been
carried out by Apostol [1].

The most comprehensive generalization occurs in a paper of Grosswald [17], who indicated
a general method that includes the result generally attributed to Weil [36]. This appears as
‘Main Lemma’ in p. 116 of Grosswald’s paper. The extreme generality of the result makes
it appear unwieldy and conceals some of the more elegant results that can be derived from
it. This partly explains how it has been rediscovered in the modular context by a variety of
authors, the most notable being Weil [36].

One of our purposes is to bring out some of the positive features of Grosswald’s lemma
to the foreground. For instance, equation (4), which includes Ramanujan’s formula (1), is a
consequence of this general formula.
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Following [17], for s ∈ C with real part σ, let

Δ(s) =
M∏

ν=1

Γ(ανs + βν), αν > 0, βν ∈ C.

Suppose a Dirichlet series

φ(s) =
∞∑

n=1

a(n) e−λns

is convergent for σ � σ0 > 0 with very mild growth conditions (see [17, p. 115]) and define,
for s ∈ C,

Φ(s) = φ(s)Δ(s)P (s),

where P (s) is a rational function. Suppose that

Φ(s) = (−1)δΦ(r − s)

with δ = 0 or δ = 1 and real r. For z ∈ H, let

F (z) =
1

2πi

∫
(σ2)

Φ(s)(z/i)−s ds,

where σ2 = σ0 + ε for ε sufficiently small and
∫
(σ)

= limT→∞
∫σ+iT

σ−iT
. Also define, for u ∈ C and

σ1 = r − σ2 (with suitable σ0),

S(u) =
∑

σ1�σ�σ2

Res{Φ(s)us}.

Then Grosswald [17, p. 116] proved that, for z ∈ H,

F (−1/z) − (−1)δ(z/i)rF (z) = S(z/i),

which, in particular, shows that

2iF ′(i) + rF (i) = −
∑

σ1�σ�σ2

Res{sΦ(s)} if δ = 0, (6)

2F (i) =
∑

σ1�σ�σ2

Res{Φ(s)} if δ = 1. (7)

If we apply this lemma to the series φ(s) = ζ(s)ζ(s + 2k + 1), which satisfies the functional
equation

Φ(s) = (−1)kΦ(−2k − s),

with

Φ(s) = (2π)−sΓ(s)φ(s),

we deduce Ramanujan’s formula, or more precisely (4) of which Ramanujan’s formula is a
special case.

5. The modular case

As noted earlier, the modular analogue of Ramanujan’s formula had been worked out by many
authors, the most notable being Weil [36]. Razar [32] and Weil [36] derive the following result
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(see [32, Theorem 2]). Let

f(z) =
∞∑

n=0

a(n) e2πinz/λ,

g(z) =
∞∑

n=0

b(n) e2πinz/λ,

f∗(z) =
a(0)zk−1

(k − 1)!
+
(

2πi

λ

)−(k−1) ∞∑
n=1

a(n)
nk−1

e2πinz/λ,

g∗(z) =
b(0)zk−1

(k − 1)!
+
(

2πi

λ

)−(k−1) ∞∑
n=1

b(n)
nk−1

e2πinz/λ.

The functions f∗, g∗ are examples of standard Eichler integrals of the second kind. Let

L(s, f) =
∞∑

n=1

a(n)
ns

be the associated L-function for f . If k is a positive integer and γ a complex number such that

f(z) = γz−kg(−1/z),

then the result of Razar–Weil states that

f∗(z) − γzk−2g∗(−1/z) =
k−2∑
j=0

L(k − 1 − j, f)
j!

(
2πi

λ

)−(k−1−j)

zj . (8)

In most applications, λ and γ would be algebraic numbers and we shall assume this
henceforth. The numbers L(n, f)/πn are the natural generalizations of periods of modular forms
as introduced by Kohnen in relation to his conjecture. Here we have the following theorem.

Theorem 5.1. Let f, g be as above with γ and λ algebraic numbers. Suppose that at least
one of L(n, f)/πn for 1 � n � k − 1 is transcendental. Then, there are at most k − 2 algebraic
values of z in the upper half-plane such that

f∗(z) − γzk−2g∗(−1/z)

is algebraic.

Proof. Let α1, . . . , αk−1 be distinct algebraic numbers in H such that

βi := f∗(αi) − γαk−2
i g∗(−1/αi)

is algebraic for 1 � i � k − 1.
From (8), we deduce

(L(k − 1, f)λk−1/(2πi)k−1, . . . , L(1, f)λ/[(k − 2)!(2πi)])V = (β1, . . . , βk−1),

where V is the Vandermonde matrix⎛
⎜⎜⎜⎝

1 1 · · · 1
α1 α2 · · · αk−1

...
...

...
...

αk−2
1 αk−2

2 · · · αk−2
k−1

⎞
⎟⎟⎟⎠ .

This matrix is invertible since α1, · · · , αk−1 are all distinct and, thus, we deduce that all of the
numbers L(n, f)λn/πn are algebraic, which is a contradiction to our hypothesis.
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We end the section with the following remarks.

Remark 5.1. Let f be a normalized Hecke eigenform of weight k and level N . Works of
Eichler, Shimura and Manin [24] imply that there are two ‘periods’, ω+ and ω−, such that
L(n, f)/πn belongs to ω+Q̄ or ω−Q̄ according as n is even or odd for 1 � n � k − 1. It is
perhaps true that the numbers π, ω+, ω− are algebraically independent.

Remark 5.2. As suggested by Goldstein [12] and Razar [32], formulas of the type (8) are
special cases of a more general phenomenon. For Γ equal to SL2(Z) or more generally Γ0(N),
Γ acts on the space of polynomials p(z) in C[z] of degree at most k as follows:

p −→ p|σ, σ ∈ Γ

p|σ(z) = p(σz)(cz + d)k
.

Then, for f ∈ Mk+2(Γ), we can consider the generalized Eichler integral

F (z, p) =
∫z

z0

f(τ)p(τ) dτ, z0 ∈ H.

Special cases of such a formalism are the following:

F0(z) =
1
k!

∫z

z0

f(τ)(τ − z)k dτ,

G0(z) =
a(0)zk+1

(k + 1)!
+
(

2πi

λ

)−(k+1) ∞∑
n=1

a(n)
nk+1

e2πinz/λ.

We have already encountered examples of both types before. These are referred to as
the standard Eichler integrals of the first and the second kind, respectively. The Eichler
integrals were introduced by Eichler for the purpose of constructing what is now known as
Eichler–Shimura cohomology [10, 34].

Let F be either of the above special type of Eichler integrals. For any element σ ∈ Γ, it
satisfies the following transformation law:

F (σz)(cz + d)k = F (z) + pσ(z) σ =
(∗ ∗

c d

)
.

Here, as before, pσ(z) is a polynomial of degree at most k and is referred to as the period of F
with respect to σ.

Goldstein and Razar [13] proved the following transformation law for an arbitrary generalized
Eichler integral F (z, p). Let σ ∈ Γ and p0

σ be the period polynomial for the standard Eichler
integral F0(z). Further, let

p0
σ(z) =

k∑
j=0

αjz
j and p(z) =

k∑
j=0

βjz
j .

Then

F (σz, p) = F (z, p|σ) − k!
k∑

j=0

(−1)j+1

(
k

j

)−1

αjβk−j .

In this set-up, Razar [32, Theorem 3] has a generalized version of the identity given by (8) for
an arbitrary σ ∈ Γ. Thus, we can have an appropriate generalization of Theorem 5.1 regarding
algebraic values of

f∗(z) − (f |σ)∗(z),
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for z in the upper half-plane, provided that we make some mild assumptions about the
transcendence of at least one of the coefficients of the period polynomial.

6. The case k = 2

In the case k = 2, the right-hand side of (8) has only one term and we need only to consider
the number L(1, f)/π. More explicitly, denoting by WN the Atkin–Lehner involution, we have
f(WNz) = ±Nz2f(z). If we set

F (z) =
∞∑

n=1

a(n) e2πinz/
√

N ,

then it is easily seen that
F (−1/z) = ±z2F (z).

A quick calculation shows that

F ∗(z) ± F ∗(−1/z) =
√

NL(1, f)/2πi. (9)

First, we have the following theorem of Bertrand [5].

Proposition 6.1. Let f(z) be a normalized Hecke eigenform of weight 2 on Γ0(N). Let τ
be a rational number or an element of the upper half-plane such that the modular invariant
j(τ) is algebraic. Then, any determination of the integral

2πi

∫τ

i∞
f(z) dz

is either zero or transcendental.

If

f(z) =
∞∑

n=1

a(n) e2πinz

is a normalized Hecke cuspidal eigenform of weight 2 on Γ0(N), then Bertrand’s theorem
implies that the (conditionally convergent) sum∑

n=1

a(n)
n

is either zero or transcendental.
If L(1, f) �= 0, in the context of identity (8), then we are interested in the nature of L(1, f)/π.
In the important case when f has integer coefficients, by the works of Eichler and Shimura, f

corresponds to an elliptic curve E defined over rationals. A classical result of Schneider implies
that any non-zero period of such an elliptic curve is transcendental. In the special case when
E has complex multiplication, by the works of Chudnovsky, π and any non-zero period of E
are algebraically independent. Consequently, if L(1, f) �= 0, then L(1, f)/π is transcendental.

7. Grosswald’s lemma and zeros of modular forms

In this section, we use Grosswald’s lemma to locate zeros of modular forms. For a modular
form f of weight 2k for SL2(Z), it is easy to see that f has a zero at i if k is odd. Locating
zeros of modular forms of higher level is not so straightforward.
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Let f ∈ Sk(Γ1(N)) be a cusp form of weight k for Γ1(N) and WN be the idempotent operator
from Sk(Γ1(N)) to Sk(Γ1(N)), defined by

(WNf)(z) = ikN−k/2z−kf(−1/Nz).

Let

S±
k (Γ1(N)) = {f ∈ Sk(Γ1(N)) | WNf = ±f}

be the eigenspaces of WN . Then the completed L-function

Φ(s) = Ns/2(2π)−sΓ(s)L(s, f)

has an analytic continuation to the entire complex plane and satisfies the functional equation

Φ(s) = ±Φ(k − s).

The sign in the above equation is 1 if f is in S+
k (Γ1(N)) and −1 if f is in S−

k (Γ1(N)). We refer
to [9, p. 204] for further details. We have the following theorem.

Theorem 7.1. (1) If f ∈ S−
k (Γ1(N)), then f has a zero at i/

√
N .

(2) If f ∈ S+
k (Γ1(N)), then f ′ − (ik

√
N/2)f has a zero at i/

√
N . In particular, if f has a

zero at i/
√

N, then it is a zero of order at least 2.

As an example, the new form for Γ0(4)

f(z) := η12(2z) = q − 12q3 + 54q5 − 88q7 − 99q9 + . . .

does not vanish at i/2 and hence is necessarily in the +1 eigenspace.
In this context, we refer to the papers [2, 11, 18, 22, 29–31, 33], where zeros of modular

forms have been studied. We note that the first part of the theorem can also be deduced from
the action of the Atkin–Lehner operator on f . We, however, derive it as an application of
Grosswald’s lemma.

Proof. Let f ∈ S−
k (Γ1(N)) and also let

f(z) =
∑
n�1

a(n)qn, q = exp(2πiz), z ∈ H

be the Fourier expansion of f at infinity. The Dirichlet series

φ(s) =
∑
n�1

a(n) e−λns, λn = log
(

2nπ√
N

)

is absolutely convergent for �(s) = σ > k/2 + 1. Let us set Δ(s) = Γ(s) and P (s) ≡ 1 in the
set-up considered by Grosswald (see Section 4). Since Φ(s) = −Φ(k − s), we have δ = 1 and
r = k in this context. Since the associated Φ(s) has an analytic continuation to the entire
complex plane, we have ∑

σ1�σ�σ2

Res{Φ(s)} = 0.
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Here σ2 = k/2 + 1 + ε and σ1 = k/2 − 1 − ε. Thus, by (7) in Section 4, we have F (i) = 0.
However

F (i) =
1

2πi

∫
(k/2+1+ε)

Φ(s) ds

=
1

2πi

∑
n�1

a(n)
∫
(k/2+1+ε)

Γ(s)

(√
N

2nπ

)s

ds

=
1

2πi

∑
n�1

a(n) e−2πn/
√

N

=
1

2πi
f(i/

√
N).

This proves part (1) of the theorem. To prove (2), we proceed similarly. As before, let

f(z) =
∑
n�1

a(n)qn

be the Fourier expansion of f at infinity, and set Δ(s) = Γ(s) and P (s) ≡ 1. Since Φ(s) = Φ
(k − s), we have δ = 0 and r = k in this context. Just as before, the Dirichlet series

φ(s) =
∑
n�1

a(n) e−λns

is absolutely convergent for �(s) = σ > k/2 + 1. Since Φ(s) has an analytic continuation to the
entire complex plane, we have ∑

σ1�σ�σ2

Res{sΦ(s)} = 0.

Thus, by (6) in Section 4, we have 2iF ′(i) + kF (i) = 0. But

F ′(i) =
1
2π

∫
(k/2+1+ε)

sΦ(s) ds

=
1
2π

∑
n�1

a(n)
∫
(k/2+1+ε)

(√
N

2nπ

)s

sΓ(s) ds

=
1
2π

∑
n�1

a(n)
∫
(k/2+1+ε)

Γ(s + 1)

(√
N

2nπ

)s

ds

=
1√
N

∑
n�1

na(n) e−2πn/
√

N

=
1

2πi
√

N
f ′(i/

√
N).

Also we have shown that F (i) = (1/2πi)f(i/
√

N) in the proof of part (1) of the theorem.
Substituting these, we have part (2).

Remark. Note that i/
√

N is a CM point (that is, an algebraic number lying in the upper
half plane which generates an imaginary quadratic field). If f is a non-zero modular form
of weight k and level N with algebraic Fourier coefficients, any zero of f is either CM or
transcendental (see [20]).
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