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Transcendental values of the incomplete gamma function
and related questions

M. Ram Murty and Ekata Saha

Abstract. For s, x > 0, the lower incomplete gamma function is defined to
be the integral γ(s, x) :=

∫ x

0
tse−t dt

t
, which can be continued analytically

to an open subset of C2. Here in this article, we study the transcendence
of special values of the lower incomplete gamma function, by means of
transcendence of certain infinite series. These series are variants of series
which are of great interest in number theory. However, these series are
also of independent interest and can be studied in the context of the
theory of E-functions.
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1. Introduction. The study of transcendence of infinite series owes its origin
to classical mathematics and has been an active area of research for quite
some time now. Among the various kinds of infinite series that have been
considered and studied in the past, a few specific types of series led us to the
series that we consider in this article.

A question of S. Chowla, asked in 1969, and a negative answer to that
due to Baker et al. [2], raised the question of the arithmetical nature of the
sum

∑
n≥1

f(n)
n where f is a non-zero rational valued prime periodic arith-

metical function. The study of the arithmetical nature of such sums was then
accomplished by Adhikari et al. [1] in 2001. In 2007, Murty and Saradha [11]
employing a different method showed that, when the sum converges, it is in
fact transcendental.
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Further in [1,11] the authors investigated the sums of the form
∑

n≥0
A(n)
B(n) ,

where A(X) and B(X) are non-zero polynomials over Q with B(X) having
only simple roots in Q\N. Here and from now onwards N denotes the set of all
non-negative rational integers. Similar series, where B(X) may have multiple
roots, were considered by Pilehrood and Pilehrood [9].

In addition, in [1], and later in [21], the series of the form
∑

n≥0
A(n)
B(n)z

n

where A(X), B(X) are non-zero polynomials over Q with B(X) having simple
rational roots not in N, and z is algebraic, was examined. Assuming the conver-
gence of such series, its arithmetical nature was established. However, in both
the articles, the authors had some restriction, either with respect to the roots
of B(X) or with respect to z. The paper [21] also contains results about the
transcendental nature of sums of the form

∑
n≥0

A(n)f(n)
B(n) for algebraic valued

periodic function f , with some restrictions on the roots of B(X).
In this article we consider variants of such sums and derive analogous re-

sults. Let A(X), B(X) be non-zero polynomials over Q with B(X) having no
roots in N. For a complex variable z, we consider the power series

∑

n≥0

A(n)
B(n)

zn

n!
. (1)

Note that such a power series converges for all z ∈ C. Here we encounter
possibilities of studying such series and some of its variants in the context of
E-functions (see Section 3 for definition). The arithmetic nature of such sums
are then established by the aid of Shidlovskii’s theorems [17].

The sums that we consider in this article are also variants of several other
functions such as Kummer’s function, Bessel functions of the first kind, and
many other E-functions, which have been studied by the likes of Siegel [19],
Shidlovskii [17], Oleinikov [15], Belogrivov [6,7], Mahler [10]. Many of these
results use the works of Shidlovskii about E-functions.

There is a rich theory of E-functions, which has been developed classically in
the hands of Siegel, Shidlovskii, Nesterenko etc. and more recently by Beukers.
We do not discuss this here as we are interested to derive transcendental results
about certain infinite series, putting them in to the context of E-functions.

We show that under certain hypotheses the, sum in (1) is transcendental
for non-zero algebraic values of z. To be precise, we prove:

Theorem 1. Let A(X), B(X) be non-zero polynomials over Q such that B(X)
does not divide A(X) and B(X) has rational roots, not belonging to N, with
the differences of the roots not in Z. Define,

F (z) :=
∑

n≥0

A(n)
B(n)

zn

n!
.

Then F (β) is transcendental, for any non-zero algebraic number β.
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As a corollary we establish transcendence of special values of the lower
incomplete gamma function. To do so, we need to consider the analytic con-
tinuation of γ(s, x). For the sake of completeness and future reference, we
include a section on the incomplete gamma function (see Section 2).

Corollary 1. For a non-zero algebraic number β, the special value of the lower
incomplete gamma function γ(s, β) is transcendental for all s ∈ Q\{0,−1,
−2, . . .}.
Remark 1. The interest in special values of the incomplete gamma function has
also emerged in the recent theory of harmonic weak Maass forms, introduced by
Bruinier and Funke [4] (also see [16] for an elaborate exposition). There, these
special values appear in the Fourier expansion of the non-holomorphic part
of such Maass forms. The nature of the Fourier coefficients of harmonic weak
Maass forms is not completely understood. In certain cases, the arithmetic
nature of the Fourier coefficients of the holomorphic part was highlighted in
the article [5]. Our work may have application in such studies.

For every harmonic weak Maass form f of weight 2 − k, with 1 < k ∈ 1
2Z,

on Γ1(N) := {(a b
c d

) ∈ SL2(Z)|a ≡ d ≡ 1 mod N, c ≡ 0 mod N}, where N is a
positive integer, f has a Fourier expansion of the form

f(z) =
∑

n�−∞
c+
f (n)qn +

∑

n<0

c−
f (n)Γ(k − 1, 4π|n|y)qn,

where q = e2πiz for z = x + iy with x, y ∈ R and y > 0 (see [16, Lemma 7.2]).
See Sect. 2 for the definition of Γ(s, x). One refers

f+(z) :=
∑

n�−∞
c+
f (n)qn

to be the holomorphic part of f and

f−(z) :=
∑

n<0

c−
f (n)Γ(k − 1, 4π|n|y)qn

to be the non-holomorphic part of f .
As a consequence of Corollary 1, when k > 1 is an integer, we have that

for all z = x + iy such that πy ∈ Q, Γ(k − 1, 4π|n|y) is transcendental.

Note that in Theorem 1, all roots of B(X) were taken to be simple. In
the next theorem, we address the case of B(X) having multiple roots. But we
restrict ourselves to the case that B(X) has no roots in Z.

Theorem 2. Let A(X), B(X) be non-zero polynomials over Q with B(X) not
dividing A(X) and having rational roots, not belonging to Z, such that the
differences of the roots are not in Z\{0}. Then for

F (z) :=
∑

n≥0

A(n)
B(n)

zn

n!
,

F (β) is transcendental, whenever β is a non-zero algebraic number.

Our next two theorems deal with the multiple series analogues of the pre-
ceding theorems.



M. R. Murty and E. Saha Arch. Math.

Theorem 3. Let r ≥ 2 and Ai(X), Bi(X) be non-zero polynomials over Q such
that Bi(X) does not divide Ai(X) for all 1 ≤ i ≤ r. Let

S := {α ∈ Q : Bi(α) = 0 for some 1 ≤ i ≤ r}.

Suppose that for each 1 ≤ i ≤ r, Bi(X) has simple rational roots which are
not in N and the differences of elements of S are not in Z. Define,

G(z1, . . . , zr) :=
∑

n1,...,nr≥0

A1(n1) · · · Ar(nr)
B1(n1) · · · Br(nr)

zn1
1 · · · znr

r

n1! · · · nr!
.

Then for β1, . . . , βr ∈ Q, linearly independent over Q, G(β1, . . . , βr) is tran-
scendental.

We prove the multiple root analogue of Theorem 3 for a different class of
functions.

Theorem 4. Let r ≥ 2 and Ai(X), B(X) be non-zero polynomials over Q such
that B(X) does not divide Ai(X) for all 1 ≤ i ≤ r. Suppose that B(X) has
rational roots which are not in Z and their differences are not in Z\{0}. Define,

H(z) :=
∑

n1,...,nr≥0

A1(n1) · · · Ar(nr)
B(n1) · · · B(nr)

zn1+···+nr

n1! · · · nr!
.

Then for β ∈ Q\{0}, H(β) is transcendental.

For an algebraic valued arithmetical periodic function f , we further consider
another natural variant of the series in Theorem 1. In our following theorem
we prove:

Theorem 5. Let f : N → Q be a non-zero periodic function and A(X), B(X)
be non-zero polynomials over Q such that B(X) does not divide A(X). Define,

Ff (z) :=
∑

n≥0

A(n)f(n)
B(n)

zn

n!
.

Further, assume that B(X) has rational roots, not belonging to N and with the
differences of the roots not in Z. Then Ff (β) is transcendental, whenever β is
a non-zero algebraic number.

Remark 2. Such a theorem a priori does not fit into the framework of
Shidlovskii’s theorem. But, we will derive a suitable expression for the above
sum so that one can apply Shidlovskii’s result.

Remark 3. An analogue of Theorem 3, upon introducing algebraic valued
periodic arithmetical functions, will also hold true. For brevity we do not
include the exact statement.

2. The incomplete gamma function. We recall, for s, x > 0, the lower incom-
plete gamma function is defined as

γ(s, x) :=

x∫

0

tse−t dt

t
.
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Further, the upper incomplete gamma function is defined by

Γ(s, x) :=

∞∫

x

tse−t dt

t
.

Note that, for s, x > 0, we thus have, Γ(s) = γ(s, x) + Γ(s, x).
Integrating by parts we obtain the recurrence relation, γ(s, x) = 1

s (xse−x +
γ(s + 1, x)). For n ≥ 1, from the recurrence relation, we get,

γ(s, x) =
n∑

k=0

xs+ke−x

s(s + 1) · · · (s + k)
+

1
s · · · (s + n)

γ(s + n + 1, x).

Note that et > tn−1

(n−1)! . So,

1
s · · · (s + n)

γ(s + n + 1, x) <
(n − 1)!

s · · · (s + n)

x∫

0

ts+1dt <
xs+2

s + n
.

Thus for fixed x, 1
s···(s+n)γ(s + n + 1, x) → 0 as n → ∞. Hence we get,

γ(s, x) =
∑

k≥0

xs+ke−x

s(s + 1) · · · (s + k)
= xse−xΓ(s)

∑

k≥0

xk

Γ(s + k + 1)
. (2)

Let us define

γ∗(s, z) := e−z
∑

k≥0

zk

Γ(s + k + 1)
.

Note that as a power series in z, the above series converges for all z ∈ C. Hence
as a function of z, γ∗(s, z) is an entire function. Further for fixed z,

∣
∣
∣
∣

zk

Γ(s + k + 1)

∣
∣
∣
∣ =

|z|k
|(s + k) · · · (s + 1)||Γ(s + 1)| ≤ |z|k

k!|Γ(s + 1)| .

Now 1
Γ(s) is an entire function, hence on a compact subset of C, it is bounded.

Thus on every compact subset of C, the series is uniformly convergent, for a
fixed z. Since 1

Γ(s) is an entire function and the series converges uniformly on
compact subsets of C, we get that for a fixed z, γ∗(s, z) is an entire function
as a function of s. In this context we recall a theorem of Hartogs by which we
get γ∗(s, z) is holomorphic on C2.

Theorem 6. (Hartogs) (See [13, p. 43]) Let f be a complex valued function
defined on an open set Ω ⊂ Cn. For a = (a1, . . . , an) ∈ Cn and 1 ≤ i ≤ n, let us
define Ωi,a := {z ∈ C : (a1, . . . , ai−1, z, ai+1, . . . , an) ∈ Ω} and fi,a : Ωi,a → C

by fi,a(z) = f(a1, . . . , ai−1, z, ai+1, . . . , an). Now suppose, for any a ∈ Cn and
1 ≤ i ≤ n, fi,a is holomorphic on Ωi,a. Then f is holomorphic on Ω.

Now using (2), we can define,

γ(s, z) := zsΓ(s)γ∗(s, z),

for z ∈ C such that −π < arg(z) < π and s ∈ C\{0,−1,−2, . . .}. Hence on
the open set U := {(z1, z2) ∈ C2 : z1 	= 0,−1,−2, . . . and −π < arg(z2) < π},
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γ(s, z) is well-defined and holomorphic. Further, Γ(s, z) can also be defined on
U as a holomorphic function, by setting, Γ(s, z) = Γ(s) − γ(s, z).

We now derive another series expansion of γ(s, z) which will be used to
prove Corollary 1. We again assume that s, x > 0. Now,

γ(s, x) =

x∫

0

ts−1e−tdt =

x∫

0

∑

k≥0

(−1)k ts+k−1

k!
dt = xs

∑

k≥0

(−1)k xk

k!(s + k)
.

Equivalently, using (2) we get,

γ∗(s, x) =
1

Γ(s)

∑

k≥0

(−1)k xk

k!(s + k)
.

This series again converges for all values of x ∈ C. For s in a compact subset
of C, the series is uniformly convergent as a function of s also. Hence for
(s, z) ∈ U we can write,

γ(s, z) = zs
∑

k≥0

(−1)k zk

k!(s + k)
. (3)

3. Preliminaries. In 1929, Siegel [19] introduced a generalization of the expo-
nential function and called it an E-function. More precisely, we have:

Definition 1. A function f(z) =
∑

n≥0 cn
zn

n! is said to be an E-function if

(1) There exists a number field K such that cn ∈ K for all n ∈ N,
(2) For any ε > 0, |cn| = O(nεn) as n → ∞, where for an algebraic number

α ∈ K, |α| is called the absolute height of α and is defined to be the
maximum of the modulus of conjugates of α in K,

(3) For any ε > 0, there exists a sequence {qn}n≥1 of positive rational integers
such that qnck are algebraic integers for k = 0, 1, . . . , n; n ≥ 1 and that
qn = O(nεn) as n → ∞.

In the above context, it is also important to fix an embedding of K into C.
Note that, from condition (2) in the above definition, we get that E-functions
are entire functions. Let us denote the space of all E-functions by E. Then
it can be seen that E is a Q-algebra which is closed under differentiation,
anti-differentiation, and the change of variable z to αz for any α ∈ Q. For an
elaborate account on E-functions we refer the reader to [14,18,20].

As far as the recent literature is concerned, it has now become customary
to use the following definition to define an E-function. We refer the reader to
[3].

Definition 2. An entire function f(z) given by a power series f(z) =
∑

n≥0 cn
zn

n!

is called an E-function if
(1) cn ∈ Q for all n ∈ N,
(2) f satisfies a linear differential equation Ly = 0 with coefficients in Q[z],
(3) h(c0, c1, . . . , ck) = O(k) for all k, where h(c0, c1, . . . , ck) denotes the max-

imum of the logarithms of the absolute heights of c0, c1, . . . , ck.
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Note that the condition (2) in the definition due to Siegel translates to
the condition that h(c0, c1, . . . , ck) = o(k log k). Here in this article, we will
consider three types of E-functions. For λ 	= −1,−2, . . ., let us define,

ϕλ(z) :=
∑

n≥0

zn

(λ + 1) · · · (λ + n)
.

Note that, ϕ0(z) = ez. For λ ∈ Q it can be shown that ϕλ(z) is an E-function.
For a power series f(z) =

∑
n≥0 anzn, we denote its anti-derivative

∑
n≥0 an

zn+1

n+1 by
∫ z

f(t)dt. It can be verified that,

ϕλ(z) = λz−λez

∫ z

tλ−1e−tdt. (4)

Our next set of E-functions are defined as follows:

ωλ(z) :=
∑

n≥0

zn

n!(λ + n)
; for λ 	= 0,−1,−2, . . . (5)

It is then easy to note that, ωλ(z) = z−λ
∫ z

tλ−1etdt. Hence we obtain,

ωλ(z) =
1
λ

ezϕλ(−z). (6)

For these E-functions Shidlovskii proved:

Theorem 7. (See [18, p. 193] or [17]) Suppose that λ0 ∈ N;λ1, . . . , λn(n ≥ 0) ∈
Q such that λi − λj /∈ Z, 1 ≤ i < j ≤ n;α1, . . . , αm(m ≥ 1) ∈ Q which are
linearly independent over Q; and ξ1, . . . , ξm ∈ Q are distinct and non-zero.
Then the (n + 1)m numbers ϕλ0(αi) and ϕλj

(ξi), 1 ≤ i ≤ m, 1 ≤ j ≤ n, are
algebraically independent.

Now we consider another set of E-functions for λk ∈ Q, λk 	= 0,−1,−2, . . ..
For k = 0, set ψ0(z) = ez and for k ≥ 1 we define,

ψλk
(z) :=

∑

n≥0

zn

n!(λ1 + n) · · · (λk + n)
. (7)

The following theorem due to Shidlovskii about these E-functions is the key
ingredient of the proof of Theorem 2.

Theorem 8. (See [18, p. 239] or [17]) Suppose that λk ∈ Q\Z for k = 1, . . . , m;
the differences λi − λk /∈ Z\{0}; and ξ ∈ Q\{0}. Then the m + 1 numbers

eξ, ψλ1(ξ), . . . , ψλm
(ξ)

are algebraically independent.

4. Proofs of the Theorems. Proof of Theorem 1. Let −α1, . . . ,−αd be the
roots of B(X). If deg A(X) < deg B(X), by partial fractions we can write,

A(X)
B(X)

=
d∑

i=1

ci

X + αi
,
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where ci ∈ Q for all 1 ≤ i ≤ d and not all of them are zero. Using (5) and (6)
we get,

F (z) =
d∑

i=1

ci ωαi
(z) = ez

d∑

i=1

ci

αi
ϕαi

(−z) = ϕ0(z)
d∑

i=1

ci

αi
ϕαi

(−z).

Now by Theorem 7, the following d+1 numbers, ϕ0(β), ϕα1(−β), . . . , ϕαd
(−β)

are algebraically independent. Since ci 	= 0 for some i, we get that F (β) is
transcendental.

Now suppose deg A(X) ≥ deg B(X). Since B(X) does not divide A(X), by
the division algorithm in Q[X], we write A(X) = P (X)B(X) + Q(X), where
deg Q(X) < deg B(X). So in this case we have,

F (z) =
∑

n≥0

P (n)
zn

n!
+

∑

n≥0

Q(n)
B(n)

zn

n!
.

By induction on r, it can be easily verified that,
∑

n≥0

nr zn

n!
= Pr(z)ez

for some polynomial Pr(X) ∈ Z[X]. Hence
∑

n≥0

P (n)
zn

n!
= P̃ (z)ez

for some polynomial P̃ (X) ∈ Q[X]. Therefore we get,

F (z) = P̃ (z)ϕ0(z) + ϕ0(z)
d∑

i=1

di

αi
ϕαi

(−z),

for some di ∈ Q, not all zero. So, by Theorem 7, we get F (β) is transcendental.
�

Remark 4. The proof also suggests that, if we start with β1, . . . , βm ∈ Q such
that they are linearly independent over Q, then we can get that F (β1), . . . ,
F (βm) are algebraically independent.

Remark 5. We cannot drop the condition that B(X) does not divide A(X),
otherwise we would have F (z) = P̃ (z)ϕ0(z), which is equal to zero for any
zero of P̃ .

Proof of Corollary 1. The lower incomplete gamma function has the expansion

γ(s, z) =
∑

n≥0

(−1)n

n!
zs+n

s + n
.

So we can write γ(s, z) = zsF (−z), where F (z) :=
∑

n≥0
1

s+n
zn

n! . It follows
from Theorem 1 that for s ∈ Q\{0,−1,−2, . . .} and β ∈ Q\{0}, γ(s, β) is
transcendental. �
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Remark 6. The referee rightly pointed out that the Theorem 3 in page 192
of [18] also gives result about transcendental values of the lower incomplete
gamma function. But, since we obtain our result as a corollary of Theorem 1
we have less restriction on the hypothesis.

Remark 7. To avoid the problem of γ(s, z) being multi-valued, we chose a spe-
cific branch of zs. We defined γ(s, z) as a well-defined holomorphic function on
the open set U = {(z1, z2) ∈ C2 : −π < arg(z1) < π and z2 	= 0,−1,−2, . . .}.
However, for β ∈ Q\{0} such that arg(β) 	∈ (−π, π), we get the same result
because βs is algebraic when s ∈ Q, independent of the choice of branch of zs.

Remark 8. At present we have very little knowledge about values of the
gamma function at rational numbers. For example, we know that Γ(1/2) =

√
π;

Γ(1/3),Γ(1/4) are transcendental; but the nature of Γ(1/5) is unknown. How-
ever some partial result is known due to Grinspan. Grinspan [8] showed that
at least two of the three numbers π,Γ(1/5),Γ(2/5) are algebraically indepen-
dent. Hence we can say at least one among Γ(1/5),Γ(2/5) is transcendental.
In a recent article [12], Murty and Weatherby obtained a result concerning
transcendental values of the Gamma function at various CM points, for exam-
ple: the Gamma function takes transcendental values at rational points on the
imaginary axis. Hence as of now we can only say that, Γ(s, z) is transcendental
for s ∈ N\{0} and z ∈ Q\{0}.

Proof of Theorem 3. Because of uniform convergence on compact subsets of
Cr, we have,

G(z1, . . . , zr) =
r∏

i=1

∑

ni≥0

Ai(ni)
Bi(ni)

zni
i

ni!
.

Let Si := {αij : 1 ≤ j ≤ di} be the set the roots of Bi(X) for 1 ≤ i ≤ r. Then
as in Theorem 1 we can deduce that,

∑

ni≥0

Ai(ni)
Bi(ni)

zni
i

ni!
= P̃i(zi)ϕ0(zi) + ϕ0(zi)

di∑

j=1

νijϕαij
(−zi),

for some νij ∈ Q. Therefore,

G(β1, . . . , βr) =
r∏

i=1

⎛

⎝P̃i(βi)ϕ0(βi) + ϕ0(βi)
di∑

j=1

νijϕαij
(−βi)

⎞

⎠ ,

which is non-zero by Theorem 1 and hence transcendental by Theorem 7. �

Proof of Theorem 5. The proof of Theorem 1 was completed by using the simple
idea of partial fraction decomposition to connect the corresponding infinite
series to the E-functions that we mentioned in Sect. 3 and by appealing to
Shidlovskii’s theorem. Here we would further need the idea of using Fourier
inversion to put the corresponding series into the framework of Shidlovskii’s
theorem.
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Let q be the period of f . Now by Fourier inversion we can write

f(n) =
q−1∑

b=0

f̂(b)ζnb
q .

Hence, we get

Ff (z)=
∑

n≥0

q−1∑

b=0

f̂(b)ζnb
q

A(n)
B(n)

zn

n!
=

q−1∑

b=0

f̂(b)
∑

n≥0

A(n)
B(n)

(zζb
q)n

n!
=

q−1∑

b=0

f̂(b)F (zζb
q),

where F is as in Theorem 1. So for β algebraic,

Ff (β) =
q−1∑

b=0

f̂(b)

(

P̃ (βζb
q)ϕ0(βζb

q) + ϕ0(βζb
q)

d∑

i=1

di

αi
ϕαi

(−βζb
q)

)

.

Note that the set {βζb
q : 0 ≤ b ≤ q − 1} is not Q-linearly independent. Hence

one cannot readily appeal to Theorem 7 to conclude the theorem. We get
around this difficulty by the following observation: one can work with a max-
imal linearly independent subset, and which is possible due to the fact that
exp(x + y) = exp(x) exp(y). We elaborate below.

Let us start with a maximal Q-linearly independent subset, say
{β1, . . . , βm}. For 0 ≤ b ≤ q − 1, we write, βζb

q =
∑m

j=1 rbjβj with rbj ∈ Q.
Now for a fixed j, one can write, rbj = rj ·nbj for all 0 ≤ b ≤ q−1, where rj is a
rational number and the nbj ’s are integers. Thus ϕ0(βζb

q) =
∏m

j=1 ϕ0(rbjβj) =
∏m

j=1 ϕ0(rjβj)nbj . Hence we get,

Ff (β)=
q−1∑

b=0

f̂(b)

⎛

⎝P̃ (βζb
q)

m∏

j=1

ϕ0(rjβj)nbj +
m∏

j=1

ϕ0(rjβj)nbj

d∑

i=1

di

αi
ϕαi

(−βζb
q)

⎞

⎠ .

Now we can apply Theorem 7 and conclude the theorem, provided at least
one of the algebraic coefficients involved in the expression is non-zero. Since
B(X) does not divide A(X), we get di0 	= 0 for some 1 ≤ i0 ≤ d. Further, f

is non-zero, thus f̂(b0) is non-zero for some 0 ≤ b0 ≤ q − 1. Thus we get that
the coefficient of ϕαi0

(−βζb0
q )

∏m
j=1 ϕ0(rjβj)nb0j is non-zero. �

Proof of Theorem 2. In this case, unlike Theorem 1, a partial fraction decom-
position does not help us to connect our series to the relevant E-functions.
Rather, the following lemma enables us to view our series in terms of the E-
functions that we encounter in Sect. 3. We view this lemma as a variant of the
partial fraction decomposition.

Lemma 1. Let K be an algebraically closed field and A(X), B(X) ∈ K[X] with
the condition deg A < deg B. Let α1, . . . , αd be the roots of B(X). Then, we
can write,

A(X)
B(X)

=
d∑

k=1

ck
∏k

i=1(X − αi)
,

for some ck ∈ K.
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Proof of the Lemma. Without loss of generality let A(X), B(X) be monic. We
induct on the degree of A.

If deg A = 0, the result is immediate.
Suppose A =

∏r
i=1(X − βi), then

A(X)
B(X)

=
(X − αd + αd − βr)

∏r−1
i=1 (X − βi)

∏d
i=1(X − αi)

=
∏r−1

i=1 (X − βi)
∏d−1

i=1 (X − αi)
+

(αd − βr)
∏r−1

i=1 (X − βi)
∏d

i=1(X − αi)
.

So we are done by induction since the degrees of the polynomials in the nu-
merators are less than deg A. �

Now we start the proof of Theorem 2. Since B(X) does not divide A(X), by
the division algorithm in Q[X] we write, A(X) = P (X)B(X) + Q(X), where
deg Q(X) < deg B(X). As in Theorem 1, we get,

F (z) = P̃ (z)ez +
∑

n≥0

Q(n)
B(n)

zn

n!
.

Now using (7) and Lemma 1, F (z) can be re-written as

F (z) = P̃ (z)ez +
d∑

k=1

ckψαk
(z),

where, −α1, . . . ,−αd are the roots of B(X) and ck’s are in Q, not all are zero.
Hence by Theorem 8, F (β) is transcendental. �

Proof of Theorem 4. Again by uniform convergence on compact subsets of C,
we have,

H(z) =
r∏

i=1

∑

ni≥0

Ai(ni)
B(ni)

zni

ni!
.

Now, following the steps of Theorem 2 we can write,

H(z) =
r∏

i=1

(

P̃i(z)ez +
d∑

k=1

cikψαk
(z)

)

.

Hence we have that H(β) is non-zero by Theorem 2 and therefore transcen-
dental by Theorem 8. �

5. Concluding remarks. Clearly, this work opens up several avenues of future
research, for example,
(1) Can ϕλ be an E-function, for some λ ∈ Q\Q? Most likely not. What

about other functions that we considered here?
(2) In our theorems, can one have roots which are not necessarily rational?
(3) What about a multiple root analogue of Theorem 5 like other theorems?

Clearly, Theorem 8 is not good enough to obtain such a result.
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(4) What if we replace a periodic function with a multiplicative or an additive
function or more generally with a nice arithmetical function?

These questions we relegate to future work.

Acknowledgement. We thank the referee and the editor for their valuable sug-
gestions that improved the presentation of the article.
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