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We investigate values of modular forms with algebraic Fourier coefficients at algebraic
arguments. As a consequence, we conclude about the nature of zeros of such modular
forms. In particular, the singular values of modular forms (that is, values at CM points)
are related to the recent work of Nesterenko. As an application, we deduce the transcen-
dence of critical values of certain Hecke L-series. We also discuss how these investigations
generalize to the case of quasi-modular forms with algebraic Fourier coefficients.
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1. Introduction

The naturally occurring transcendental functions like the exponential function and
the logarithm function take transcendental values when evaluated at algebraic
points, except for some obvious exceptions. This is also exhibited by the Weierstrass-
℘ function associated to an elliptic curve defined over algebraic number fields. We
also expect other transcendental functions like the gamma function and Riemann
zeta function to exhibit similar properties.

In this paper, we investigate this phenomena for modular forms and quasi-
modular forms which are a rich source of transcendental functions. This work is
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an attempt to investigate along the above suggested supposition, relying on the
works of Schneider, Bertrand, Chudnovsky and Nesterenko.

We first introduce some preliminaries relevant to our results in the next section.
In Sec. 2, we take up the theme of the nature of zeros of modular forms. Investi-
gations of such zeros have been carried out by Rankin and Swinnerton-Dyer [15],
Kanou [10], Kohnen [11] and Gun [8]. Throughout the paper, H denotes the upper
half plane and a CM point is an element of H lying in an imaginary quadratic field.
Every modular form considered is assumed to be non-zero.

To study the algebraic nature of values taken by modular forms, we need to
define an equivalence relation on the set of all modular forms with algebraic Fourier
coefficients. We define two such modular forms f and g to be equivalent, denoted
by f ∼ g, if there exists natural numbers k1, k2 such that fk2 = λgk1 with λ ∈ Q

∗
.

We have the following theorem.

Theorem 1. Let f be a non-zero modular form of weight k for the full modular
group SL2(Z). Suppose that the Fourier coefficients of f are algebraic. Then any
zero of f is either CM or transcendental.

Let ∆ be the unique normalized cusp form of weight 12 for the full modular
group. Then the above theorem extends to the following:

Theorem 2. Let f be as in Theorem 1 not equivalent to ∆ and α ∈ H be an
algebraic number such that f12(α)/∆k(α) is algebraic. Then α is necessarily a CM
point.

Remark 1.1. If f is equivalent to ∆ and α is CM, then f(α) is transcendental
by a theorem of Schneider (see [14, p. 141], for instance). On the other hand, if
α ∈ H is non-CM algebraic, a conjecture of Nesterenko (see [13, p. 31]) will imply
the transcendence of f(α).

While investigating the nature of values of modular forms at algebraic numbers
in H, it is natural to divide them into CM points and non-CM points. In Sec. 3, we
investigate the values taken by modular forms at CM points. Here, we prove the
following theorem.

Theorem 3. Let α ∈ H be such that j(α) ∈ Q. Then e2πiα and ∆(α) are alge-
braically independent.

An algebraic α for which j(α) is algebraic is a CM point. In this case, ∆(α) can
be explicitly expressed as a power of period of an elliptic curve defined over Q. This
can be inferred from the papers of Ramachandra, Siegel and Schneider which we
briefly describe later.

As a consequence of the above theorem, we now have the following:

Theorem 4. Let α ∈ H be such that j(α) ∈ Q. Then for a non-zero modular form
f for SL2(Z) with algebraic Fourier coefficients, f(α) is algebraically independent
with e2πiα except when f(α) = 0.
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We note that there exist transcendental numbers α for which j(α) is algebraic.
This is a consequence of CM theory and surjectivity of the j function.

For a non-CM algebraic number, we have the following theorem:

Theorem 5. Let α ∈ H be a non-CM algebraic number. Let Sα be the set of
all non-zero modular forms of arbitrary weight for SL2(Z) with algebraic Fourier
coefficients for which f(α) is algebraic. Then, up to equivalence, Sα has at most one
element.

The existence of the fugitive exceptional class in the above theorem can be ruled
out if we assume the conjecture of Nesterenko alluded to in the remark above.

All of these theorems extend to higher levels. For the sake of clarity of exposition,
and to explicate the new ingredients that are necessary to treat the higher level case,
we have decided to treat this case separately in the last section. We prove:

Theorem 6. If f is a non-zero modular form (of weight k and level N) with alge-
braic Fourier coefficients. Then the following statements are true:

(1) Any zero of f is either CM or transcendental.
(2) If α ∈ H is algebraic and f �∼ ∆ such that f12(α)/∆k(α) is algebraic, then α is

necessarily a CM point.
(3) If j(α) is algebraic, then f(α) and e2πiα are algebraically independent unless

f(α) = 0.
(4) If for a fixed α ∈ H algebraic and not CM, we let Sα be the set of all non-zero

modular forms of arbitrary weight and level N, with algebraic Fourier coeffi-
cients such that f(α) is algebraic, then up to equivalence, Sα has at most one
element.

In the penultimate section, we consider the values taken by quasi-modular forms.
Here we prove the following theorem.

Theorem 7. Let α ∈ H be such that the number j(α) is algebraic. Then for any
quasi-modular form f for Γ0(N) with algebraic Fourier coefficients, the numbers
f(α) and e2πiα are algebraically independent unless f(α) = 0.

We also observe that nearly all of these results have obvious generalization to
half-integral weight modular forms with algebraic Fourier coefficients. Indeed, the
square of any such form is then of integral weight to which nearly all our theorems
apply.

Finally, in the last section we deduce the transcendence of critical values of
certain Hecke L-series as an application.
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2. Preliminaries

We begin by fixing some notations. For z ∈ H, we have the following functions

E2(z) = 1 − 24
∞∑

n=1

σ1(n)e2πinz ,

E4(z) = 1 + 240
∞∑

n=1

σ3(n)e2πinz ,

E6(z) = 1 − 504
∞∑

n=1

σ5(n)e2πinz ,

where σk(n) =
∑

d|n dk. We also have the j-function given by

j(z) = 1728
E4(z)3

E4(z)3 − E6(z)2
.

It is known, from classical theory of complex multiplication, that if z ∈ H is a CM
point, then j(z) is an algebraic number, lying in the Hilbert class field of Q(z). For
instance, we have j(i) = 1728 while j(ρ) = 0 where ρ = e2πi/3.

For algebraic points in the upper half plane, Schneider ([17]) in 1937 proved the
following result:

Theorem 8 ([17]). If z ∈ H is algebraic, then j(z) is algebraic if and only if
z is CM.

Much later, Chudnovsky ([3], see also [4]) in 1976 showed that if z ∈ H, then
at least two of the numbers E2(z), E4(z), E6(z) are algebraically independent.
Chudnovsky’s theorem proves that Γ(1/3) and Γ(1/4) are transcendental. In 1995,
Barré-Sirieix et al. ([1]) made a breakthrough in transcendence theory by proving
the long-standing conjecture of Mahler and Manin according to which the modular
invariant J(e2πiz) := j(z) assumes transcendental values at any non-zero complex
(or p-adic) algebraic number e2πiz in the unit disc. Note that such a z is neces-
sarily transcendental. Finally, Nesterenko ([12]) provided a fundamental advance
by generalizing both the results of Chudnovsky and Barré–Sirieix–Diaz–Gramain–
Philibert.

Theorem 9 ([12]). Let z be a point in the upper half plane. Then at least three of
the four numbers

e2πiz , E2(z), E4(z), E6(z)

are algebraically independent.

We note that the result of Schneider does not follow from the theorem of
Nesterenko. As pointed out by Nesterenko ([13, p. 31]), both his as well as
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Schneider’s theorem will follow from the following conjecture:

Conjecture 10. Let z be a point in the upper half plane and assume that at most
three of the following five numbers

z, e2πiz, E2(z), E4(z), E6(z)

are algebraically independent. Then z is necessarily a CM point and the field

Q(e2πiz , E2(z), E4(z), E6(z))

has transcendence degree 3.

3. Zeros of Modular Forms and Proofs of Theorems 1 and 2

Kanou ([10]) showed that for even k ≥ 16, the normalized Eisenstein series Ek has
at least one transcendental zero in H. Soon after, Kohnen ([11]) proved that any
zero of Ek in H different from ρ or i is necessarily transcendental. We now proceed
to prove Theorem 1 which considers zeros of arbitrary modular forms.

Proof of Theorem 1. Let f be a non-zero modular form of weight k for SL2(Z)
with algebraic Fourier coefficients. Let g(z) be the function defined as

g(z) =
f12(z)
∆k(z)

,

where ∆(z) is the Ramanujan cusp form of weight 12. Thus g(z) is a modular
function of weight 0 and hence is a rational function in j. Since ∆ does not vanish
on H, g is a polynomial in j. Further, since f has algebraic Fourier coefficients,
g(z) = P (j(z)), where P (x) is a polynomial with algebraic coefficients. If α is
a zero of f , then P (j(α)) = 0 and hence j(α) is algebraic. Thus by Schneider’s
theorem, α is either CM or transcendental. This completes the proof.

We note that the above theorem does not say anything about the transcenden-
tal zeros of f . However, when f is the Eisenstein series Ek, we have some more
information about the location of their zeros. For instance, all the zeros of Ek in
the fundamental domain were shown to lie in the arc

{eiθ | π/2 ≤ θ ≤ 2π/3}

by Rankin and Swinnerton-Dyer ([15]).
It is worthwhile to point out that for cusp forms, the situation is rather different.

Here we have a result due to Rudnick [16] which is as follows: let {fk} be a sequence
of L2-normalized holomorphic cusp forms for SL2(Z) such that fk is of weight k, the
order of vanishing of fk at the cusp is o(k), and the masses yk|fk(z)|2dV (z) (where
dV (z) stands for the normalized hyperbolic measure on the fundamental domain)
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tend in the weak star topology to c dV (z) for some constant c > 0. Then the zeros
of fk (in the fundamental domain) are equidistributed with respect to dV (z).

The proof of Theorem 2 proceeds exactly along the same lines as the proof of
Theorem 1. Indeed, as before we deduce that j(α) is algebraic and by Schneider’s
theorem, this means that α is a CM point. This completes the proof of Theorem 2.

Let us observe that this theorem does not tell us anything about the possible
transcendence of f(α) when α is an arbitrary algebraic number. However, when α

is a CM point and more generally when j(α) is algebraic, we can conclude algebraic
independence of f(α) and e2πiα. We do this in the next section.

4. Proofs of Theorems 3 and 4

We begin with the proof of Theorem 3. Since j(α) is algebraic, ∆(α) is transcen-
dental. For, algebraicity of ∆(α) will imply that j(α)∆(α) = E4(α)3 is algebraic
and hence both E4(α) and E6(α) are algebraic. This will contradict Chudnovsky’s
theorem. Now suppose that e2πiα = q and ∆(α) are algebraically dependent. Since
∆(α) is transcendental, there exists a non constant polynomial P (X) =

∑
i piX

i

where pi’s are polynomials in ∆(α) with algebraic coefficients such that P (q) = 0.
Thus q is algebraic over the field Q(E4(α), E6(α)). Since j(α) is algebraic, transcen-
dence degree of Q(E4(α), E6(α)) is one which is also the transcendence degree of
Q(E4(α), E6(α), q). This will contradict Nesterenko’s theorem.

We now give the proof of Theorem 4. Suppose that f(α) is not equal to zero.
Since the non-zero number fk(α)/∆12(α) is a polynomial in j(α) with algebraic
coefficients, it is algebraic. Thus the fields Q(q, f(α)) and Q(q, ∆(α)) have the same
transcendence degree and hence the theorem follows from Theorem 3.

The study of ∆(z) when z is a CM point is a chapter in the theory of complex
multiplication and is treated in several places, for example in the famous paper of
Chowla and Selberg ([2]). In this paper (see Lemma 3, p. 109), they prove that if
z1, z2 ∈ H belong to the same imaginary quadratic field, then ∆(z1)/∆(z2) is an
algebraic number. Thus if α ∈ Q(

√−D) with D > 0, the transcendence of ∆(α)
is equivalent to the transcendence of ∆

(
D+

√−D
2

)
. Computation of this number is

carried out in number of places, for instance [14, p. 142], we find that

∆
(

D +
√−D

2

)
= (−1)D

(
2π

d

)6 d∏
a=1

Γ
(a

d

)3χd(a)ω/h

.

Here, d is the absolute discriminant of Q(
√−D) and χd(a) is the Kronecker–Jacobi

symbol ( d
a ). We shall call the factor

Ω :=
d∏

a=1

Γ
(a

d

)χd(a)

,

the Chowla–Selberg period of level D. Thus ∆ at a CM point is, up to an alge-
braic factor, a product of π6 and a power of Ω. As mentioned by Ramachandra
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(see [14, p. 141]), the transcendence of ∆(
√−D) follows from a theorem of Schnei-

der ([20, p. 89]).

5. Modular Forms at Non-CM Algebraic Points and
Proof of Theorem 5

Let f and g be modular forms in Sα of weight k1 and k2, respectively. Let α be a
non-CM algebraic number in H and suppose that both f(α) and g(α) be algebraic.
Note that by Theorem 1, neither is equal to zero. We consider the modular form
F = fk2(α)gk1 −gk1(α)fk2 of weight k1k2. If F �≡ 0, then by Theorem 1, any zero of
this modular form is either CM or transcendental. Since α is non-CM and algebraic,
we get a contradiction unless F is identically zero. This means that f and g are
equivalent (in the sense defined in Sec. 1).

6. The Higher Level Case and the Proof of Theorem 6

To treat the higher level case, the essential idea is to use the fact that the field
of modular functions of level N with algebraic Fourier coefficients (with respect to
e2πiz/N ) is a finite Galois extension of Q(j). This is essentially a consequence of
[18, Proposition 6.9]. We indicate a proof of this assertion. If our function f has
algebraic Fourier coefficients, then as is well-known fσ is again a modular form with
algebraic Fourier coefficients for every automorphism of Gal(Q/Q) (here fσ is the
modular form obtained by applying σ to every Fourier coefficient in the q expansion
of f). Since the Fourier coefficients of f lie in a fixed algebraic extension of Q, f

has only finitely many such distinct conjugate forms. We consider gσ = (fσ)12/∆k

and define the polynomial ∏
γ∈Γ(1)\Γ(N)

∏
σ

(X − gσ | γ)

which is a polynomial whose coefficients are weight zero modular functions of level
1 with algebraic Fourier coefficients. Here, the outer product is over coset represen-
tatives of Γ(1)\Γ(N). Consequently, we can write the polynomial as

d∑
m=0

am(j)Xm, ad(j) = 1,

where am(j) are polynomials in j. In particular, the constant term is a polynomial
in j. If α is algebraic such that f(α) = 0, then a0(j(α)) = 0 and again by Schneider’s
theorem, α is a CM point. This establishes part (1) of Theorem 6. Proofs of rest of
the parts follow analogously, suitably modifying the proofs for level one.

7. Values of Quasi-Modular Forms and Proof of Theorem 7

We begin by recalling the notion of quasi-modular forms, following Kaneko and
Zagier ([9]). As defined by them, an almost-holomorphic modular form of weight k
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is a function F (z) with the same transformation properties and growth conditions
as modular forms, but which belongs to the ring C[[q]][Y −1] instead of C[[q]] and is
of the form

F (z) =
M∑

m=0

fm(z)Y −m, f0, . . . , fM holomorphic

where M ≥ 0 is an integer not exceeding k/2. The holomorphic function f0(z)
obtained formally as the constant term with respect to Y −1 of F is called a quasi-
modular form of weight k. The simplest example of a quasi-modular form is E2. The
ring of quasi-modular forms are closed under differentiation and hence all derivatives
of modular forms are quasi-modular. Further, in the above mentioned paper, they
proved the following:

Theorem 11. Let Γ be a finite index subgroup of SL2(Z). Any quasi-modular form
on Γ can be written uniquely as a polynomial in E2 with coefficients which are
modular forms for Γ.

We now proceed to prove Theorem 7. We are given that α ∈ H is such that j(α)
is algebraic. Then E4(α) and E6(α) are algebraically dependent. Let f be a non-zero
quasi-modular form for SL2(Z) with algebraic Fourier coefficients and f(α) �= 0. By
the result of [9], f is a polynomial in E2, E4 and E6, that is,

f(z) = P (E2, E4, E6),

where P (X, Y, Z) is a polynomial with algebraic coefficients since f has algebraic
Fourier coefficients. More precisely,

f(z) = f0(z) + f1(z)E2(z) + · · · + fr(z)E2(z)r

where fi(z) is a modular form of weight k − 2i. Note that f(α) is transcendental.
For, either f(α) = f0(α) /∈ Q or otherwise the transcendence degree of the field
Q(E2(α), E4(α), E6(α)) is one. This will contradict Chudnovsky’s result. Now if
f(α) and e2πiα are algebraically dependent, since f(α) is transcendental, there
exists a non constant polynomial P (X) =

∑
i piX

i where pi’s are polynomials
in f(α) with algebraic coefficients such that P (q) = 0. Thus q is algebraic over
the field Q(E2(α), E4(α), E6(α)). Since j(α) is algebraic, transcendence degree of
Q(E2(α), E4(α), E6(α), q) is at most two. This will contradict Nesterenko’s theorem.

Now for a quasi-modular form f for Γ0(N) with algebraic Fourier coefficients,
the proof follows by noting that:

(1) A modular function of weight zero for Γ0(N) is a rational function in j(z) and
j(Nz).

(2) If j(α) is algebraic, then any rational function in j(α) and j(Nα) with alge-
braic coefficients is also algebraic. Thus for any modular form g for Γ0(N) with
algebraic Fourier coefficients, g(α) is algebraic over Q(∆(α)).
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8. Transcendence of Critical Values of Certain Hecke L-Series

For an imaginary quadratic field K, Shimura ([19]) introduced the Dirichlet series

Lr(s; β, b) =
∑

ξ∈β+b
ξ �=0

ξ−r|ξ|r−2s,

where b is a lattice in K, β ∈ K and r is a natural number. He shows that

π−sΓ
(
s +

r

2

)
Lr(s; β, b)

extends to an entire function (see [19, Theorem 7.3]). In [19, Theorem 13.2], he
proves:

Theorem 12. Let j be an integer such that 2 − r ≤ j ≤ r and r − j ∈ 2Z. Let
σ ∈ K ∩H and g a modular form of weight r with Fourier coefficients in the maximal
abelian extension Qab of Q such that g(σ) �= 0. Then

Lr(j/2; β, b) ∈ π−(r+j)/2g(σ)Kab

where Kab is the maximal abelian extension of K.

As a consequence of our work discussed in earlier sections, we deduce that
Lr(j/2; β, b) is transcendental and in fact of the form πaΩb up to an algebraic
factor, where Ω is the Chowla–Selberg period attached to K and a, b are rational
numbers.

If we now fix an integral ideal C and a non-zero integer r, let λ be a Hecke
character such that

λ((β)) = |β|r/βr, ∀β ∈ OK , β coprime to C.

Then, for any integer j with 2 − r ≤ j ≤ r, r − j ∈ 2Z, τ ∈ K ∩ H, we have
L(j/2, λ) is an algebraic number times π(r+j)/2h(τ) where h is a modular form of
weight r with algebraic Fourier coefficients and h(τ) �= 0 (see [19, Theorem 13.6]).
As a consequence of our work, we deduce

Theorem 13. Let K, C and λ be as above, and D be the discriminant of K. For
any integer j with 2 − r ≤ j ≤ r, r − j ∈ 2Z, the special value L(j/2, λ) is of the
form πaΩb up to an algebraic factor, where Ω is the Chowla–Selberg period of K.
The values eπ

√
D, L(j/2, λ), π are algebraically independent. In particular, L(j/2, λ)

is transcendental for every value of j in the stated interval.

We close with some final remarks. The special values L(j/2, λ) fit into a
larger philosophy of Deligne ([7]) regarding “critical values” of L-series arising
in the “motivic” context. The explicit evaluation of L(j/2, λ) was carried out by
Damerell [5, 6] as part of his doctoral thesis. One expects these critical values to be
transcendental and the results of this paper are one step more towards the realiza-
tion of such an expectation.



June 9, 2011 14:37 WSPC/S1793-0421 203-IJNT S1793042111004769

1074 S. Gun, M. Ram Murty & P. Rath

Acknowledgement

The authors thank Kumar Murty for some helpful discussions. The research of the
second author was partially supported by an NSERC Discovery grant.

References
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