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A NOTE ON SPECIAL VALUES OF L-FUNCTIONS

SANOLI GUN, M. RAM MURTY, AND PURUSOTTAM RATH

(Communicated by Matthew A. Papanikolas)

Abstract. In this paper, we link the nature of special values of certain Dirich-
let L-functions to those of multiple gamma values.

1. Introduction

Special values of L-functions are one of the deepest mysteries in mathematics,
and it is fair to say that our knowledge about this world is still in its infancy. In
this note, we investigate these values in terms of multiple gamma functions.

The multiple Γ-functions were introduced around 1900 by Barnes and Glaisher
and have now come into prominence due to the works of Shintani [19], Sarnak [18],
Keating and Snaith [10], etc., in relation to the analytic study of the Riemann zeta
function. The goal of this work is to relate the algebraic nature of special values of
these mysterious functions to that of ζ(3) and Catalan’s constant. Our investigation
is based upon the work of Nesterenko [14] in transcendence theory and the recent
work of Adamchik [1].

We first define the multiple Γ-functions Γm(x). They are natural generalizations
of the classical Γ-function. As a real function, the multiple gamma function Γm(x)
for positive x and m ≥ 0 is defined as follows:

Γ0(x) =
1

x
, Γm(1) = 1, Γm+1(x+ 1) =

Γm+1(x)

Γm(x)
,

1

Γm(x)
is C∞ on R,

(−1)m+1 dm+1

dxm+1
log Γm(x) ≥ 0 for x > 0.

The existence and uniqueness of Γm(x) follows from the works of Dufresnoy and
Pisot (see [8] for details). This can be regarded as a generalisation of the Bohr-
Mollerup theorem, which asserts that Γ1(x) is equal to the classical gamma function.

Here, we have the following theorems:

Theorem 1.1. At least one of the following is true:

(i) The number (ζ(3)/π3)2 is irrational.
(ii) Γ3(1/2)Γ2(1/2)

−1 is transcendental.

Let G be Catalan’s constant defined as

G =
∞∑

n=0

(−1)n

(2n+ 1)2
.
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1148 SANOLI GUN, M. RAM MURTY, AND PURUSOTTAM RATH

Unlike ζ(3), its irrationality is yet to be established (we refer to the work of Rivoal
and Zudilin [17] in relation to this constant). We have the following theorems:

Theorem 1.2. At least one of the following is true:

(i) G/π2 is irrational, where G is Catalan’s constant.

(ii) Γ2(1/4)Γ2(3/4)
−1

is transcendental.

Theorem 1.3. At least one of the following is true:

(i) L(2, χ3)/π
2 is irrational, where χ3 is the odd character modulo 3.

(ii) Γ2(1/3)Γ2(2/3)
−1 is transcendental.

Further, we investigate from the viewpoint of Schanuel’s conjecture (see §2),
which is about the algebraic independence of exponential values. We show that
the conjecture of Schanuel can remarkably refine Theorem 1.1 derived above. For
instance, we have

Theorem 1.4. Assume that Schanuel’s conjecture is true. Then at least one of
the following is true:

(i) ζ(3) and π are algebraically independent.
(ii) Γ3(1/2)Γ2(1/2)

−1 is transcendental.

Motivated by this and the works of Nesterenko, we propose a question which is an
elliptic-exponential generalisation of Schanuel’s conjecture (see §7). Our question
seems to follow from a more general conjecture of Bertolin [4] and is related to
conjectures of Grothendieck (see [7], [2] as well as the remarks at the end of our
paper).

Finally, for Dirichlet characters χ modulo some integer q > 1 and integers k > 1,
the values L(k, χ) lie in the field Q(π) when k and χ have the same parity. However,
when k is fixed and χ and k have different parity, we expect these ϕ(q)/2 numbers
to be unrelated and generate new transcendental numbers. In this connection, it
is worthwhile to mention the recent paper of Lutes and Papanikolas [12], where
analogous questions for the Goss L-functions are considered and partial results
have been obtained (see Theorem 1.2, for instance).

In the following theorem, we note that these unknown numbers can be generated
by derivatives of Riemann zeta values at rational arguments. More precisely, we
have

Theorem 1.5. For integers k, q > 1, let S be the set

S :=
{
ζ(j)(a/q) : 0 ≤ j ≤ k, 1 ≤ a ≤ q − 1

}
∪ {π}.

Also let f be an algebraic valued periodic function with period q. Then one has
L(k, f) ∈ Q(S). In particular, for any Dirichlet character χ modulo q, we have

L(k, χ) ∈ Q(S).

In the special case of q = 2, we have the following interesting corollary:

Corollary 1.6. Let S be the set

S :=
{
ζ(j)(1/2) : j = 0, 1, 2, 3, · · ·

}
∪ {π}.

Then for all k > 1, we have
ζ(k) ∈ Q(S).
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2. Some prerequisites

Let ψ be the digamma function which is the logarithmic derivative of the classical
gamma function. We have for z �= 0,−1,−2, · · · ,

−ψ(z) = γ +
1

z
+

∞∑
n=1

(
1

n+ z
− 1

n

)
.

Here γ is Euler’s constant. For i ≥ 1, we have the following i-th derivatives of the
digamma function which are referred to as poly-gamma functions:

(1) ψi(z) = (−1)i−1i!

∞∑
n=0

1

(n+ z)i+1
.

Next, we define the multiple Γ-functions Γm(z) for complex z. We have already
defined Γm(x) for real positive x. As in the case of a classical gamma function, 1

Γm(x)

can be extended to an entire function of order m with the Hadamard factorization

1

Γm(z + 1)
= ePm(z)

∏
n≥1

((
1 +

z

n

)
e

(
− z

n+ z2

2n2 −···+ (−z)m

mnm

))(n+m−2
m−1 )

.

Here Pm(z) is a polynomial of degree m (see [21]). In particular, Γ2 and Γ3 are
given by

1

Γ2(z + 1)
= eP2(z)

∞∏
n=1

{(
1 +

z

n

)n

e−z+ z2

2n

}
,

1

Γ3(z + 1)
= eP3(z)

∞∏
n=1

{(
1 +

z

n

)n(n+1)
2

e(−z+ z2

2n− z3

3n2 )
n+1
2

}
,

where

P2(z) = −1

2
[(1 + γ)z2 + z] +

z

2
log 2π,

P3(z) =

(
ζ ′(−1)− log 2π

4
+

7

24

)
z +

(
γ + log 2π

4
+

1

8

)
z2

−
(
γ

6
+

π2

36
+

1

4

)
z3.

They were first studied by Barnes [3] and often referred to as Barnes gamma func-
tions. For basic properties of these functions, we refer the reader to [1], [8], [9], [20],
[21].

Recently, Adamchik has expressed derivatives of Hurwitz zeta function in terms
of multiple gamma function Γm(z) as follows (see Proposition 3 of [1]):

ζ ′(−m, z)− ζ ′(−m) = (−1)m
m∑

n=0

n! Qn,m(z) log Γn+1(z) for �(z) > 0,

where

Qn,m(z) = (−1)n
m∑

j=n

(1− z)m−j

(
m

j

){
j

n

}
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is a polynomial with rational coefficients. Here
{
j
n

}
are the Stirling numbers of the

second kind defined by {
j

n

}
:=

1

n!

n∑
k=0

(−1)k
(
n

k

)
(n− k)j .

When n = 0, this is 1 for j = 0 and zero for j > 0. In particular, for m = 2, 1 and
�(z) > 0, one has

ζ ′(−2, z)− ζ ′(−2) = 2 log Γ3(z)− (3− 2z) log Γ2(z) + (1− z)2 log Γ(z),(2)

ζ ′(−1, z)− ζ ′(−1) = log Γ2(z) + (z − 1) log Γ(z).(3)

We recall that for a real number 0 < x ≤ 1 and s ∈ C with �(s) > 1, the Hurwitz
zeta function ζ(s, x) is defined as

ζ(s, x) =

∞∑
n=0

1

(n+ x)s
.

It extends meromorphically to the whole complex plane with a simple pole at s = 1
with residue 1. Let us note that ζ(s, 1) = ζ(s) and that

(qs − 1)ζ(s) =

q−1∑
a=1

ζ(s, a/q).

One of the crucial ingredients in our proofs is the following theorem due to
Nesterenko [14] (see also page 6 of [15]).

Theorem 2.1 (Nesterenko). For any imaginary quadratic field with discriminant
−D and character ε, the numbers

π, eπ
√
D,

D−1∏
a=1

Γ(a/D)ε(a)

are algebraically independent. Thus, in particular the three numbers Γ(1/4), π and

eπ are algebraically independent and so are the three numbers Γ(1/3) , π and eπ
√
3.

We end the section by recalling a conjecture of Schanuel [11].

Schanuel’s conjecture. Let α1, α2, · · · , αn be complex numbers which are linearly
independent over Q. Then the transcendence degree of the field

Q(α1, α2, · · · , αn, e
α1 , · · · , eαn)

over Q is at least n.

This includes almost all known results on transcendence as well as all reasonable
conjectures on the values of the exponential function. For instance, it implies the
algebraic independence of e and π.

3. Proof of Theorem 1.1

For all s ∈ C, we have

ζ(1− s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s).

Thus,

−ζ ′(−2) =
ζ(3)

4π2
.
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Further,

ζ(s, 1/2) = (2s − 1)ζ(s),

and hence

ζ ′(s, 1/2) = (2s − 1)ζ ′(s) + 2s(log 2)ζ(s).

Evaluating at s = −2, we get

ζ ′(−2, 1/2) = −3

4
ζ ′(−2).

Now by evaluating (2) at z = 1/2, we get

ζ ′(−2, 1/2)− ζ ′(−2) = 2 log Γ3(1/2)− 2 log Γ2(1/2) +
1

4
log Γ(1/2).

Hence we have

−7

4
ζ ′(−2) = 2 log

(
Γ3(1/2)π

1/16

Γ2(1/2)

)
.

Thus

(4)
ζ(3)

π3
=

32

7π
log

(
Γ3(1/2)π

1/16

Γ2(1/2)

)
.

Now suppose that

ζ(3)

π3
= A

√
d, for some A ∈ Q and d ∈ N,

where d can be assumed to be square free. Then

Γ3(1/2)π
1/16

Γ2(1/2)
= eπr

√
d,

where r is a rational number. Since by Nesterenko’s theorem, π and eπ
√
d are

algebraically independent, we get that

Γ3(1/2)

Γ2(1/2)

is necessarily transcendental. This proves the theorem.

4. Proofs of Theorem 1.2 and Theorem 1.3

Let χ be a primitive Dirichlet character modulo q. Then for all s ∈ C, we have

L(1− s, χ) =
qs−1Γ(s)

(2π)s
{e−πis/2 + χ(−1)eπis/2}G(1, χ)L(s, χ),

where

G(1, χ) =

q∑
a=1

χ(a)e2πia/q.

Hence for the odd primitive Dirichlet character χ4 modulo 4, one has

(5) L(1− s, χ4) =

(
2

π

)s

sin
πs

2
Γ(s)L(s, χ4).

Differentiating the above expression and then evaluating at s = 2, we get

L′(−1, χ4) =
2

π
G,
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where G is Catalan’s constant. On the other hand, we know

L(s, χ4) = 4−s
4∑

a=1

χ4(a)ζ(s, a/4).

Differentiating, we have

L′(s, χ4) =
1

4s

4∑
a=1

χ4(a)ζ
′(s, a/4)− log 4

4s

4∑
a=1

χ4(a)ζ(s, a/4)

=
1

4s

4∑
a=1

χ4(a)ζ
′(s, a/4)− (log 4)L(s, χ4).

Thus

L′(−1, χ4) = 4
4∑

a=1

χ4(a)ζ
′(−1, a/4)

as L(−1, χ4) = 0 by substituting s = 2 in (5). Using equation (3), we have

L′(−1, χ4) = 4

4∑
a=1

χ4(a)
(a
4
− 1

)
log Γ(a/4) + 4

4∑
a=1

χ4(a) log Γ2(a/4).

Since χ4(1) = 1 and χ4(3) = −1, we have

2

π
G = L′(−1, χ4)

= −3 log Γ(1/4) + log Γ(3/4) + 4 [log Γ2(1/4)− log Γ2(3/4)]

= log
Γ(3/4)

Γ(1/4)3
+ 4 log

Γ2(1/4)

Γ2(3/4)
.

Now suppose that

G

π2
= r,

where r is a rational number. This implies that

Γ(3/4)Γ2(1/4)
4

Γ(1/4)3Γ2(3/4)4
= e2πr.

Since

Γ(1/4)Γ(3/4) =
√
2π,

we have [
Γ2(1/4)

Γ2(3/4)

]4

=
Γ(1/4)4e2πr√

2π
.

By Nesterenko’s theorem, the three numbers Γ(1/4), π and eπ are algebraically
independent. Thus the right hand side is necessarily transcendental, and hence we
have the theorem.

Remark 4.1. When q = 3, we have the unique odd character χ3. Nothing is known
about the nature of the number L(2, χ3). Arguing exactly as above, we can prove
Theorem 1.3, which sheds some light on this question.
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5. Proof of Theorem 1.4

Suppose that ζ(3) and π are algebraically dependent. Hence by (4), we have
that

log

(
Γ3(1/2)

Γ2(1/2)

)
+

1

16
log π

and π are algebraically dependent. Now suppose that

α =
Γ3(1/2)

Γ2(1/2)

is an algebraic number. Then by Schanuel’s conjecture, the transcendence degree
of the field

Q(logα, iπ, log π, α,−1, π)

is at least 3. But this contradicts the algebraic dependence of the numbers
log

(
Γ3(1/2)Γ2(1/2)

−1
)
+ 1

16 log π and π. Hence the theorem.

6. Proof of Theorem 1.5

We have

L(k, f) =

∞∑
n=1

f(n)

nk
= q−k

q∑
a=1

f(a)ζ(k, a/q).

Consequently, using equation (1), we have

(6) L(k, f) =
(−1)k

qk(k − 1)!

q∑
a=1

f(a)ψk−1(a/q).

Now for all s ∈ C, we have

ζ(1− s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s).

Taking the logarithmic derivative of the above, we have

ψ(s) = log 2π − ζ ′

ζ
(1− s)− ζ ′

ζ
(s) +

π

2
tan

πs

2
.

Differentiating the above expression k − 1 times, we conclude that

ψk−1(a/q) ∈ Q(S).

Using the identity given by (6) and the above two identities, we conclude that

L(k, f) ∈ Q(S).

7. Concluding remarks

The conjecture of Schanuel is about the algebraic independence of the values of
the exponential function. Nesterenko proved the following general result (see [14],
Chapter 3, Corollary 1.6).

Proposition 7.1. Let ℘ be the Weierstrass ℘-function with algebraic invariants g2
and g3 and with complex multiplication by the field k. If ω is any period of ℘(z), η
is the corresponding quasi-period and τ is any element of k which is not real, then
each of the sets

{π, ω, e2πiτ}, {π, η, e2πiτ}
is algebraically independent.
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1154 SANOLI GUN, M. RAM MURTY, AND PURUSOTTAM RATH

For a Weierstrass ℘-function with algebraic invariants g2 and g3 and field of
endomorphisms k, the set

LE = {α ∈ C : ℘(α) ∈ Q ∪ {∞}}

is referred to as the set of elliptic logarithms of algebraic points on E. Here E is
the associated elliptic curve. Let Ω be the lattice of periods. This k-linear space
LE is the elliptic analog of the Q-linear space of logarithms of non-zero algebraic
numbers for the exponential case. The question of linear independence of elliptic
logarithms, analogous to Baker’s theorem, has been established by Masser for the
CM case [13] and by Bertrand and Masser for the non-CM case [5].

The algebraic independence of the values of the Weierstrass ℘-function is more
delicate. When theWeierstrass ℘-function has complex multiplication, the following
analogue of the Lindemann-Weierstrass Theorem has been proved by Philippon [16]
and Wüstholz [22].

Theorem 7.2 (Philippon and Wüstholz). Let ℘(z) be a Weierstrass ℘-function
with algebraic invariants g2 and g3 that has complex multiplication. Let k be its
field of endomorphisms. Let

α1, α2, · · · , αn

be algebraic numbers which are linearly independent over k. Then the numbers
℘(α1), · · · , ℘(αn) are algebraically independent.

For the non-CM case, so far only the algebraic independence of at least n/2 of
these numbers is known by the work of Chudnovski [6].

Motivated by the results of Nesterenko and of Philippon and Wustholz, we ask
the following question, which can be regarded as an elliptic-exponential extension
of the conjecture of Schanuel.

Question. Let ℘(z) be a Weierstrass ℘-function with algebraic invariants g2 and
g3 and lattice Ω. Let k be its field of endomorphisms. Let

α1, α2, · · · , αr, αr+1, · · ·αn

be complex numbers which are linearly independent over k and are not in Ω. Then
is it true that the transcendence degree of the field

Q(α1, α2, · · · , αn, e
α1 , · · · , eαr , ℘(αr+1) · · · , ℘(αn))

over Q is at least n?

This conjecture is a special case of a more general conjecture of Bertolin [4].
Indeed, we can specialize “conjecture elliptico-torique” on p. 206 of [4] to the case
of a single elliptic curve. It is then not difficult to see that Bertolin’s conjecture
reduces to the assertion that with α1, · · · , αn as above, the transcendence degree
of

Q(α1, α2, · · · , αn, e
α1 , · · · , eαr , ℘(αr+1), · · · , ℘(αn), Z(αr+1), · · · , Z(αn))

over Q is at least r + 2(n − r) = 2n − r, where here Z(s) denotes the associated
Weierstrass zeta function. (To see this, one needs to observe that the di1 in [4] give
rise to Z(αi) coming from the elliptic integrals of the second kind.) In particular,
our question is a special case of Bertolin’s conjecture.
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