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Abstract. We will prove that if the unit rank of a number field with cyclic
class group is large enough and if the Galois group of its Hilbert class field
over Q is abelian, then every generator of its class group is a Euclidean ideal
class. We use this to prove the existence of a non-principal Euclidean ideal
class that is not norm-Euclidean by showing that Q(

√
5,

√
21,

√
22) has such

an ideal class.

1. Introduction

Euclidean ideals, introduced by Lenstra, generalize Euclidean algorithms in that
the existence of a Euclidean algorithm for a domain R implies that R has trivial
class group, while the existence of a Euclidean ideal in a domain R implies that R
has cyclic class group. If an ideal is Euclidean, then so is every other ideal in its
ideal class, and therefore we say the ideal class is Euclidean. If a domain R has a
Euclidean ideal class [C], then [C] generates the class group of R.

Lenstra showed ([9]), assuming the generalized Riemann hypothesis (henceforth
abbreviated GRH), that if K is a number field with ring of integers OK and class
group ClK , and if |O×

K | = ∞, then

ClK = 〈[C]〉 if and only if [C] is a Euclidean ideal class.

Using techniques used by Harper and Murty ([7], [8]), we will prove the following
weaker result without assuming the GRH.

Theorem 1. Let K be a number field, Galois over Q, with ring of integers OK

and cyclic class group ClK . If its Hilbert class field, H(K), has an abelian Galois
group over Q and if rank(O×

K) ≥ 4, then

ClK = 〈[C]〉 if and only if [C] is a Euclidean ideal class.

2. Euclidean ideal classes

The following is equivalent to Lenstra’s definition [9] but is stated differently [4].

Definition 1. Suppose R is a Dedekind domain and that I is the set of its non-zero
integral ideals. If C is an ideal of R, then it is called Euclidean if there exists a
function ψ : I −→ W, W a well-ordered set, such that for all integral ideals I and
all x ∈ I−1C \ C, there exists some y ∈ C such that

ψ((x− y)IC−1) < ψ(I).
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We say ψ is a Euclidean algorithm for C and C is a Euclidean ideal.

Generalizing the work of Malcolm Harper ([7]), the first author showed the fol-
lowing growth result ([3]).

Theorem 2. Let K be a number field with ring of integers O×
K and cyclic class

group ClK . Fix an ideal class [C] in ClK . If |O×
K | = ∞ and if∣∣∣∣

{
prime ideals

p ⊂ OK
: Nm(p) ≤ x, [p] = [C],O×

K � (OK/p)×
}∣∣∣∣
 x

log2 x
,

then [C] is a Euclidean ideal class.

3. Primes and Hilbert class fields

Suppose that K is a number field Galois over Q and that its Hilbert class field
H(K) has abelian Galois group over Q. Let f(K) be the conductor of K, which is
also the conductor of H(K), so that both fields are contained in Q(ζf(K)), where
ζf(K) is a primitive f(K)-th root of unity. Note that H(K) lies in Q(ζf(K)) because
Gal(H(K)/Q) is abelian. We define d to be the smallest even number such that
every root of unity in K is a d-th root of unity.

Given a prime p in Q, we choose a prime p in K that lies above p, a prime P in
H(K) that lies above p, and a prime P in Q(ζf(K)) that lies above P:

Q(ζf(K)) P
| |

H(K) P

| |
K p

| |
Q(ζd) |

| |
Q p

If [C] generates the class group of K, then the Artin map maps all primes q

such that [q] = [C] to a particular element σ of Gal(H(K)/K) because ClK ∼=
Gal(H(K)/K). The Galois group Gal(H(K)/K) is isomorphic to

Gal(Q(ζf(K))/K)/Gal(Q(ζf(K))/H(K)).

We can therefore identify Gal(H(K)/K) (and thus ClK) with a set of elements in
Gal(Q(ζf(K))/Q), as Gal(Q(ζf(K))/K) is a subgroup of Gal(Q(ζf(K))/Q). By the
isomorphism

τ : Gal(Q(ζf(K))/Q) → (Z/f(K)Z)×,

we can see that there exists some 0 < a < f(K), (a, f(K)) = 1, such that if p ≡ a
(mod f(K)), then p is of first degree and [p] = [C].

This, along with Theorem 2, implies that in order to prove Theorem 1, it suffices
to show that

(1)
∣∣{primes p ≤ x : p ≡ a (mod f(K)),O×

K � (OK/p)×}
∣∣
 x

log2 x
,

where the implied constant depends only on K. Using the linear sieve, we will show
this when rank(O×

K) ≥ 4.
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4. The linear sieve

The following notation is taken from Halberstam and Richert [6]. Suppose that
A is a finite set of integers, that P is a collection of primes, and let z ∈ R, z ≥ 2.
We define S(A;P, z) to be the number of elements of A that are not divisible by
any prime p in P such that p ≤ z. It is a generalization of π(y; q, a), the number of
primes less than or equal to y which are congruent to a (mod q). In order to bound
S(A;P, z), we need to have a decent estimate for the size of A, which we denote by
X.

For q square-free, we define Aq := {a ∈ A : a ≡ 0 (mod q)} and we choose a

function ω0; we will be using ω0(p)
p X to estimate |Ap| for p prime. The definition

of ω0 is extended to all square-free q by defining ω0(1) = 1 and ω0(q) =
∏

p|q ω0(p).

In sieve theory we begin with this data, where we use approximations of the sizes
of sets Aq and keep track of the error terms that emanate from this calculation.

We now relate these definitions to the set of primes P . For ease of notation, we
define the set of all primes not in P to be P , so that P ∩ P = ∅ and P ∪ P is the
set of all primes. For p a prime, we define

ω(p) =

{
ω0(p) if p ∈ P,
0 if p ∈ P.

For q square-free, we define ω(1) = 1, ω(q) =
∏

p|q ω(p), and

Rq := |Aq| −
ω(q)

q
X if μ(q) �= 0,

where μ is the Möbius function. The linear sieve can only be applied if the sets A
and P satisfy certain conditions, enumerated below.

Condition 1. There exists a constant A1 ≥ 1 such that

0 ≤ ω(p)

p
≤ 1− 1

A1
.

Condition 2. There exist constants L and A2, both at least one, independent of
z and w, such that if 2 ≤ w ≤ z, then

−L ≤
∑

w≤p≤z

ω(p) log p

p
− log

( z

w

)
≤ A2.

In order to state Condition 3, we define (q, P ) = 1 if every prime dividing q is
in P.

Condition 3. There exists an α, 0 < α ≤ 1, such that

∑
q < Xα

(log X)A4

(q, P ) = 1

μ2(q)3ν(q)|Rq| ≤ A5
X

log2 X
(X ≥ 2)

for some constants A4, A5 ≥ 1.
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Theorem 3 (The linear sieve lower bound). If A and P satisfy Conditions 1, 2,
and 3, and if z ≤ X, then

S(A;P, z) ≥ X
∏
p<z

(
1− ω(p)

p

){
f

(
α
logX

log z

)
−B

L

(logX)
1
14

}
,

where B is an absolute constant and f is a classical function defined in [6]. When

2 ≤ u ≤ 4, f(u) := 2eγ log(u−1)
u , where γ is the Euler-Mascheroni constant.

5. Applying the linear sieve

In order to prove that (1) holds in any number field K satisfying the conditions in
Theorem 1, we will show that for any given x ∈ R>0, A,P, and z satisfy Conditions
1, 2, and 3, where

A =

{
p− 1

d
: p ≤ x, p ≡ a (mod f(K)),

(
p− 1

d
, 2f(K)

)
= 1

}

and P is the set of primes ≤ z. The a in the definition of A is chosen so that if p ≡ a
(mod f(K)), then [p] = [C] and p is of degree one. Note that p ≡ 1 (mod d). Since∣∣∣∣

{
p− 1

d
: p ≤ x, p ≡ a (mod f(K))

}∣∣∣∣ ∼ li(x)

φ(f(K))
,

|A| ∼ Cli(x)
φ(f(K)) by the Eratosthenes sieve for some constant 0 < C < 1 that depends

only on f(K).

If p′ is a prime, p′ ≤ x, and p′ � 2f(K), then |Ap′ | ∼ Cli(x)
φ(f(K))φ(p′) , so

ω0(p
′)

p′
=

1

φ(p′)
.

If p′ is a prime, p′ ≤ x, and p′|2f(K), then |Ap′ | = 0, so ω0(p
′)

p′ = 0. From this, we

see that for all square-free q,

ω(q) =

{ q
φ(q) if (q, P ) = 1, (q, 2f(K)) = 1,

0 otherwise.

Lemma 1. The sets A and P satisfy Condition 1.

Proof. Note that for p > 2, ω(p)
p = 1

φ(p) or 0 and

0 ≤ 1

φ(p)
≤ 1

2
= 1− 1

2
.

As 2|2f(K), we can see that 0 ≤ ω(2)
2 = 0 < 1− 1

2 . �

Lemma 2. The set A, the set P, and the quantity z satisfy Condition 2.

Proof. Suppose that 2 ≤ w ≤ z. Then

∑
w≤p≤z

ω(p) log p

p
=

∑
w≤p≤z

p
p−1 log p

p
−

∑
w≤p≤z,p|2f(K)

p
p−1 log p

p
,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

A FAMILY OF NUMBER FIELDS WITH UNIT RANK AT LEAST 4 2983

and as ∑
w≤p≤z,p|2f(K)

p
p−1 log p

p
≤

∑
p|2f(K)

p
p−1 log p

p
= O(1),

we know that

(2)
∑

w≤p≤z

ω(p) log p

p
− log

( z

w

)
=

∑
w≤p≤z

log p

p
+
∑

w≤p≤z

log p

p(p− 1)
− log

( z

w

)
−O(1).

The sequence
∑

p≤x
log p

p(p−1) = O(1). By Chebyshev’s Theorem (see [1], p. 6),∑
p≤x

log p

p
= log x+ O(1),

so (2) becomes

log z − logw − log
( z

w

)
+ O(1) = O(1).

�

To prove that Condition 3 holds, we must first prove the following lemma.

Lemma 3. If c ∈ N, then ∑
(q, P ) = 1

q ≤ z
q square-free

cν(q)

q
� logc z,

where ν(q) is the number of distinct prime factors of q.

Proof. Note that ∑
(q, P ) = 1

q ≤ z
q square-free

cν(q)

q
≤
∏
p≤z

(
1 +

c

p

)
≤
∏
p≤z

(
1 +

1

p

)c

.

Now ∏
p≤z

(
1 +

1

p

)
≤
∏
p≤z

⎛
⎝ ∞∑

j=0

1

pj

⎞
⎠ =

∏
p≤z

(
1− 1

p

)−1

.

Mertens’ Theorem (see [10], p. 128) states that∏
p≤z

(
1− 1

p

)
=

e−γ

log z

(
1 + O

(
1

log z

))
,

where γ is the Euler constant. Thus∏
p≤z

(
1− 1

p

)−1

= eγ log z

(
1 + O

(
1

log z

))−1

.

Noting that (
1 + O

(
1

log z

))−1

= 1 + O

(
1

log z

)
,

we see ∏
p≤z

(
1− 1

p

)−1

= eγ log z + O(1).
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Thus

∏
p≤z

(
1 +

1

p

)c

= O(logc(z)). �

Lemma 4. The sets A and P satisfy Condition 3.

Proof. According to the Bombieri-Vinogradov inequality (see [1], p. 39), there exists
some B > 1 such that

∑
q≤ x

1
2

logB−1 x

max
y≤x

max
(α,q)=1

∣∣∣∣π(y; q, α)− li(y)

φ(q)

∣∣∣∣� x

log13 x
.

By applying Cauchy-Schwarz (see [1], p. 27), we see that

∑
q ≤ x

1
2

logB x

(q, P ) = 1

μ2(q)3ν(q)|Rq| ≤
∑

q ≤ x
1
2

logB x

(q, P ) = 1

3ν(q)|Rq|

≤
√√√√√√

∑
q ≤ x

1
2

logB x

(q, P ) = 1

9ν(q)|Rq|
√√√√√√

∑
q ≤ x

1
2

logB x

(q, P ) = 1

|Rq|.

Let us examine the first term in the product. We can see that for q square-free,

|Rq| ∼
(
|Aq| −

Cli(x)

φ(qf(K))

)
if (q, P ) = (q, 2f(K)) = 1

and

|Rq| = 0 otherwise,

so

|Rq| ≤ |Aq|+
∣∣∣∣ Cli(x)

φ(qf(K))

∣∣∣∣ ≤ 2x

q
.

Therefore

∑
q ≤ x

1
2

logB x

(q, P ) = 1

9ν(q)|Rq| ≤ 2x
∑

q ≤ x
1
2

logB x

(q, P ) = 1
q square-free

9ν(q)

q
≤ 2x

∑
q ≤ x

1
2

logB x

(q, P ) = 1
q square-free

9ν(q)

q
� 2x log9 x

by Lemma 3.
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We shall now examine the second term in the product. By definition, if (q, 2f(K))
�= 1, then |Rq| = 0. If (q, 2f(K)) = 1 = (q, P ), then

|Rq| =
∣∣∣∣|Aq| −

1

φ(q)
|A|
∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
p ≤ x

p ≡ a mod(f(K))
p ≡ 1 mod(q)(

p−1
d

, 2f(K)
)

= 1

1− 1

φ(q)

∑
p ≤ x

p ≡ a mod(f(K))(
p−1
d

, 2f(K)
)

= 1

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
∑
p ≤ x

p ≡ a mod(f(K))
p ≡ 1 mod(q)

∑
l|( p−1

d ,2f(K))

μ(l)− 1

φ(q)

∑
p ≤ x

p ≡ a mod(f(K))

∑
l|( p−1

d ,2f(K))

μ(l)

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
l|2f(K)

μ(l)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑
p ≤ x

p ≡ a mod(f(K))
p ≡ 1 mod(q)
p ≡ 1 mod(dl)

1− 1

φ(q)

∑
p ≤ x

p ≡ a mod(f(K))
p ≡ 1 mod(dl)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤

∑
l|2f(K)

∣∣∣∣π(x, q[f(K), dl], a′)− 1

φ(q)
π(x, [f(K), dl], a∗)

∣∣∣∣ ,
where a′ is the smallest positive solution to a′ ≡ a (mod f(K)), a′ ≡ 1 (mod q), a′

≡ 1 (mod dl); where a∗ is the smallest positive solution to a∗ ≡ a (mod f(K)), a∗ ≡
1 (mod dl); and where [c1, · · · , ck] = lcm(c1, · · · , ck). This means that

∑
q ≤ x

1
2

logB x

(q, P ) = 1

|Rq| ≤
∑

q ≤ x
1
2

logB x

(q, P ) = 1

∣∣∣∣π(x, q[f(K), dl], a′)− li(x)

φ(q[f(K), dl])

∣∣∣∣

+
∑

q ≤ x
1
2

logB x

(q, P ) = 1

∣∣∣∣ li(x)

φ(q[f(K), dl])
− 1

φ(q)
π(x, [f(K), dl], a∗)

∣∣∣∣ .

Note that ∑
q ≤ x

1
2

logB x

(q, P ) = 1

∣∣∣∣π(x, q[f(K), dl], a′)− li(x)

φ(q[f(K), dl])

∣∣∣∣

≤
∑

q≤ [f(K),dl]x
1
2

logB x

∣∣∣∣π(x, q, a′)− li(x)

φ(q)

∣∣∣∣ ≤ ∑
q≤ [f(K),dl]x

1
2

logB x

max
(r,q)=1

∣∣∣∣π(x, q, r)− li(x)

φ(q)

∣∣∣∣ .
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By definition, as (q, [f(K), dl]) = 1,

1

φ(q)
π(x, [f(K), dl], a∗) =

1

φ(q)

q−1∑
r=0

π(x, q[f(K), dl], a∗r),

where a∗r is the smallest positive solution to

t ≡ a∗ (mod [f(K), dl]), t ≡ r (mod q).

The sum
∑

(r,q) �=1 π(x, [f(K), dl], a∗r) counts all the primes less than or equal to x

that are equivalent to a∗ (mod [f(K), dl]) and r (mod q), where r is not relatively
prime to q. If p ≡ r (mod q) and (r, q) �= 1, then p must divide q. Our sum,

therefore, is bounded above by
∑

p|q 1 = ν(q) ≤ log q
log 2 , so

1

φ(q)

q−1∑
r=0

π(x, q[f(K), dl], a∗r) =
1

φ(q)
ν(q) +

1

φ(q)

∑
(r,q)=1

π(x, q[f(K), dl], a∗r)

=
1

φ(q)

∑
(r,q)=1

π(x, q[f(K), dl], r) +
1

φ(q)
ν(q).

This is used to rewrite

∑
q ≤ x

1
2

logB x

(q, P ) = 1

∣∣∣∣ li(x)

φ(q[f(K), dl])
− 1

φ(q)
π(x, [f(K), dl], a∗)

∣∣∣∣

as

∑
q ≤ x

1
2

logB x

(q, P ) = 1

∣∣∣∣∣∣
ν(q)

φ(q)
+

1

φ(q)

∑
(r,q)=1

π(x, q[f(K), dl], r)− li(x)

φ(q[f(K), dl])

∣∣∣∣∣∣ ,

which is bounded above by

∑
q ≤ x

1
2

logB x

(q, P ) = 1

ν(q)

φ(q)
+

∣∣∣∣∣∣
∑

(r,q)=1

π(x, q[f(K), dl], r)

φ(q)
− li(x)

φ(q)φ(q[f(K), dl])

∣∣∣∣∣∣

≤
∑

q≤ x
1
2

logB x

log q

log 2
+ max

(r,q)=1

∣∣∣∣π(x, q[f(K), dl], r)− li(x)

φ(q[f(K), dl])

∣∣∣∣ .
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Putting the pieces together, we see that

∑
q ≤ x

1
2

logB x

(q, P ) = 1

|Rq| ≤
∑

l|2f(K)

⎛
⎜⎜⎜⎝

∑
q≤x

1
2 [f(K),dl]

logB x

2 max
(r,q)=1

∣∣∣∣π(x, q, r)− li(x)

φ(q)

∣∣∣∣+ ∑
q≤ x

1
2

logB x

log q

log 2

⎞
⎟⎟⎟⎠

� x
1
2

logB−1 x
+

∑
q≤ x

1
2 [f(K),dl]

logB x

max
(r,q)=1

∣∣∣∣π(x, q, r)− li(x)

φ(q)

∣∣∣∣

� x
1
2

logB−1 x
+

∑
q≤ x

1
2

logB−1 x

max
(r,q)=1

∣∣∣∣π(x, q, r)− li(x)

φ(q)

∣∣∣∣

� x
1
2

logB−1 x
+

x

log13 x
� x

log13 x
.

In conclusion,

∑
q ≤ x

1
2

logB x

(q, P ) = 1

μ2(q)3ν(q)|Rq| �
√
2x log9 x

√
x

log13 x
� x

log2 x
. �

We may now apply the linear sieve to A.

Lemma 5. For any small ε > 0, there exists a positive constant k such that if x is
large enough, then

S(A,P, x
1−ε
4 ) ≥ k

x

log2 x
.

Proof. By Lemmas 1, 2, and 4 we may apply the linear sieve to A, implying that

S(A,P, x
1−ε
4 )

≥ Cli(x)

φ(f(K))

∏
p < x

1−ε
4

(p, 2f(K)) = 1

(
1− 1

φ(p)

)⎧⎨
⎩f

⎛
⎝1

2

log
(

Cx
φ(f(K)) log x

)
log x

1−ε
4

⎞
⎠− BL

(log x)
1
14

⎫⎬
⎭


 Cx

φ(f(K)) logx

∏
p < x

1−ε
4

(p, 2f(K)) = 1

(
1− 1

φ(p)

)

×

⎧⎨
⎩f

⎛
⎝1

2

log
(

Cx
φ(f(K)) log x

)
log x

1−ε
4

⎞
⎠− BL

(log x)
1
14

⎫⎬
⎭ .
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For 0 < ε′ < ε and for x large enough,

1

2

⎛
⎝ log x− log log x+ log

(
C

φ(f(K))

)
(
1−ε
4

)
log x

⎞
⎠ ≤ 1

2

(
log x(

1−ε
4

)
log x

)
=

2

1− ε
< 4 and

1

2

⎛
⎝ log x− log log x+ log

(
C

φ(f(K))

)
(
1−ε
4

)
log x

⎞
⎠ ≥ 1

2

(
log x(1− ε′)(

1−ε
4

)
log x

)
=

2(1− ε′)

1− ε
> 2,

so that f

(
1
2

log( Cx
φ(f(K)) log x )

log x
1−ε
4

)
is bounded below by a positive constant.

Thus there exist constants C1, C2 > 0 such that for large enough x,

S(A,P, x
1−ε
4 ) ≥

(
C1

x

log x
− C2

x

(log x)
15
14

) ∏
p≤x

1−ε
4

(
1− 1

p

)

≥
(
C1

x

log x
− C2

x

(log x)
15
14

)
e−γ

log(x
1−ε
4 )

(
1 + O

(
1

log(x
1−ε
4 )

))

by Mertens’ Theorem (see [10], p. 128), and so there exists some k > 0 such that
for large enough x,

S(A,P, x
1−ε
4 ) ≥ k

x

log2 x
. �

6. Proof of Theorem 1

In order to prove Theorem 1, we first need to state the following definition and
the Gupta-Murty bound [5].

Definition 2. If M is a monoid in OK such that its elements are relatively prime
to an ideal I, then we define fM(I) to be the size of the image of M in (OK/p)×.
We define f(I) to be fO×

K
(I).

Proposition 1 (The Gupta-Murty bound [5]). If M is a monoid in O×
K containing

t multiplicatively independent elements, then

|{p : fM(p) ≤ x}| � x
t+1
t .

We can now prove Theorem 1.

Proof of Theorem 1. Recall that, by Lemma 5,∣∣∣∣∣∣
⎧⎨
⎩p ≤ x :

p ≡ a (mod f(K))(
p−1
d , 2f(K)

)
= 1

l|p−1
d ⇒ l = 1 or l > x

1−ε
4

⎫⎬
⎭
∣∣∣∣∣∣ ≥ k

x

log2 x
for some k > 0.

For the following, suppose that p is one of the primes in the above set and that
p lies above it in K. Since p ≡ a (mod f(K)), Nm(p) = p and f(p)|(p − 1). Note

that O×
K �

(
O×

K/p
)×

if and only if f(p) = p− 1.

As d � f(p) if and only if p|Nm(1− ζr−1
d ) for some r such that (r, d) = 1, d � f(p)

implies that p|d. This is a contraction as p ≡ a ≡ 1 (mod d), so d|f(p), and we

can see that if l| p−1
f(p) , then l = 1 or l > x

1−ε
4 . Thus either p−1

f(p) = 1 or p−1
f(p) > x

1−ε
4 .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

A FAMILY OF NUMBER FIELDS WITH UNIT RANK AT LEAST 4 2989

If p−1
f(p) �= 1, we can see that x

3+ε
4 > f(p). The Gupta-Murty bound implies that∣∣∣{p : f(p) ≤ x

3+ε
4 }
∣∣∣ � x

3+ε
4

5
4 = x

15+5ε
16 since we assumed that rank(O×

K) ≥ 4.

This implies that∣∣∣∣∣∣
⎧⎨
⎩p ≤ x :

p ≡ a (mod f(K))(
p−1
d , 2f(K)

)
= 1

f(p) = p− 1

⎫⎬
⎭
∣∣∣∣∣∣


x

log2 x
,

so ∣∣∣∣
{
p ≤ x :

[p] = [C]
O×

K � (OK/p)×

}∣∣∣∣
 x

log2 x
,

and thus [C] is a Euclidean ideal class by Theorem 2. �

7. Application

When Lenstra defined Euclidean ideals, he was initially inspired by rings for
which the algebraic norm of its elements is a Euclidean algorithm, leading him to
define norm-Euclidean ideals [9].

Definition 3. If K is a number field and C is a fractional ideal of OK , then C is
norm-Euclidean if for all x ∈ K, there exists some y ∈ C such that

Nm(x− y) < Nm(C).

One can check that this is equivalent to ψ = Nm in Definition 1. If C is norm-
Euclidean, then we say that [C] is a norm-Euclidean ideal class. A ring can have
at most one norm-Euclidean ideal class [9].

In the same paper, Lenstra showed that K has a non-principal Euclidean ideal
if K = Q(

√
d), for d = −20,−15, 40, 60 and 85 [9]. In each of these situations, the

class number is two and the generating ideal is norm-Euclidean. These examples
were found without assuming GRH [9], [2]. The only other example in the literature

that does not assume GRH is Q(
√
2,
√
35), which has class number two [4]. It is

unknown whether the generating ideal is norm-Euclidean.

Proposition 2. The field Q(
√
5,
√
21,

√
22) has a non-principal Euclidean ideal

class that is not norm-Euclidean.

Proof. If one enters the commands

1 sage: z=sqrt (5) + sqrt (22) + sqrt (21);
2 sage: f=z.minpoly ();
3 sage: L.<a>= NumberField (f,’x’);
4 sage: C=L.class_group ();C

into SAGE [11], then the output is

1 Class group of order 4 with structure C4 of
2 Number Field in a with defining polynomial
3 x^8 - 192*x^6 + 8408*x^4 - 70272*x^2 + 163216

Thus the class group of Q(
√
5,
√
21,

√
22) is cyclic and of size four. The field

Q(
√
2,
√
3,
√
5,
√
7,
√
11) is an unramified, degree four extension of Q(

√
5,
√
21,

√
22)

and is therefore its Hilbert class field.
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As
Gal(Q(

√
2,
√
3,
√
5,
√
7,
√
11)/Q) ∼= (Z/2Z)5

and rank(OQ(
√
5,
√
21,

√
22)) = 7 > 4, both generators of the class group of Q(

√
5,
√
21,√

22) are Euclidean ideal classes by Theorem 1. At most one generator can be norm-

Euclidean, so Q(
√
5,
√
21,

√
22) has a non-principal Euclidean ideal class that is not

norm-Euclidean. �

References

[1] Alina Carmen Cojocaru and M. Ram Murty, An Introduction to Sieve Methods and Their
Applications, London Mathematical Society Student Texts, 66. Cambridge University Press,
Cambridge, 2006. MR2200366 (2006k:11184)

[2] Hester Graves and Nick Ramsey, Euclidean Ideals in Quadratic Imaginary Fields, Journal
of the Ramanujan Math Society, 26, no. 1, March 2011. MR2789745

[3] Hester Graves, Growth Results and Euclidean Ideals, submitted, arXiv:1008.2479.

[4] Hester Graves, Q(
√
2,

√
35) has a non-principal Euclidean ideal, Int. J. Number Theory 7,

no. 8, 2269–2271, 2011. MR2873154
[5] Rajiv Gupta and M. Ram Murty, A remark on Artin’s conjecture, Invent. Math. 78, 127-130,

1984. MR762358 (86d:11003)
[6] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, New York, 1974.

MR0424730 (54:12689)

[7] M. Harper, Z[
√
14] is Euclidean, Canad. J. Math. 56, 55-70, 2004. MR2031122 (2005f:11236)

[8] M. Harper and M. Ram Murty, Euclidean rings of algebraic integers, Canad. J. Math. 56,
71-76, 2004. MR2031123 (2005h:11261)

[9] H.K. Lenstra, Euclidean ideal classes, Astérisque 61, 121-131, 1979. MR556669 (81b:12005)
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