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Letting G(n) denote the number of nonisomorphic groups of order #. it is shown
that for square-free n, G(n) < ¢(n) and G(n) < (log n) on a set of positive density.
Letting F,(x) denote the number of n < x for which G(n) ==k, it is shown that
F,{x) = O(x(log, x)/(log, x)*), where log, x denotes the r-fold iterated logarithm.

[. INTRODUCTION

Let G(n) denote the number of nonisomorphic groups of order n.
Gallagher |2] has shown that

log G(n) < n**(log n)’.

The problem of obtaining sharp estimates, in general, seems to be very
difficult. Sims [S| has conjectured that

log G(n) < (log n)°, (L.1)

and has shown that (1.1) is true if we restrict our attention to solvable
groups of order n. We shall show that for square-free #,

Gn) < o(n),

* Supported in part by NSF Grant MCS 77-18723 A03

178
0022-314X/84 $3.00

Copyright ‘€ 1984 by Academic Pre.ss. Inc.
All rights of reproduction in any form reserved.



GROUPS OF A GIVEN ORDER 179

where ¢ is Euler’s totient function, using the well-known fact that groups of
square-free order are supersolvable. Moreover, we show that for n belonging
to a set of positive density,

G(n) < (log n)".

is true.
The distribution of the values of G(n) is a more intricate question. Let
F,(x) denote the number of n < x for which G(n) = k. Erd6s [1] showed that

(1 +o(l))xe™ 7
Fyx) =" s
0g, X
where y is Euler’s constant and log, x =log(log,_, x), log, x =log x. We
shall show that

F0=0 (T 255)

2. GROUPS OF SQUARE-FREE ORDER

We now derive a bound for G(n), when n is square-free. We refer to a
group and its isomorphism class interchangeably.

THEOREM 2.1. Let n be square-free. Then,

Gm< || (p—1.n).

pln
where (a, b) denotes the greatest common divisor of a and b.

Proof. Let g be the largest prime divisor of #, and G a group of order n.
Since G is supersolvable, we have by |4, 7.2.19] that the g-Sylow subgroup
S (say) is normal and G is a semidirect product of a group H of order (n/q)
and S. Thus, an upper bound for G{n), is obtained by counting the number
of homomorphisms &: H — Aut(S). For each prime p|n, choose a p-Sylow
subgroup of H and let x, be a generator of this p-Sylow subgroup. As H is
generated by these Sylow subgroups, & is determined by the &(x,). Since
Aut(S) is cyclic of order (g — 1), and 8(x,)” = 1, the number of solutions for
f(x,) is (9 — 1, p). Therefore, there are at most

[l @-Lp=]] @—1Lp)

plin/q) pln
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possibilities for §. As there are G(n/q), possibilities for H, we obtain
n n \
6o <G (=) []@—1.2)=6 (=) @=L
q pln v q /

and the result of the theorem follows by induction.

COROLLARY 2.2. For square-free n,

G(n) < o(n).

This theorem allows us to deduce that there are very “few” groups of
square-free order. More precisely, Higman [3] and Sims [5]| have shown
that,

G(zn) 2 2(’n"
for some constant ¢ > 0. Therefore, if 1 = [log x/log 2|, then,

N Gn) > G(2Y) > 20 > xeillor02,

n<x

for some constant ¢, > 0. Now by Corollary 2.2,

N L) G < N p(n) = 0(x).

n<x n<x

and so we deduce

CoRrROLLARY 2.3. Groups of square-free order are scarce.

Let us write,

s =1 p.

pln

where v,(n) is the number of primes g |n, with g =1 (mod p). Then, for n
square-free,

fm=1] (p—1L.n).
pln

In the next sections, we shall determine the average orders of log f(n) and
log? f(n). This will allow us to deduce that for » belonging to a set of
positive density,

G(n) < (log n)™.
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3, THE AVERAGE ORDER OF log f(n)
We need some preliminary lemmas.

Lemma 3.1. Let p be a prime. Then

| log lo

N —:ﬁ—{—O(l).
i 9 p—1

qg=1(p)

where the constant implied is absolute. If furthermore, p < (log z)¢ (where ¢
is an arbitrary constant) then

v L:loglogz+0<logp).
- 9 pr—1 p

g=1(p)

Proof. The result follows easily from the Siegel-Walfisz theorem and
partial summation, and the Brun—Titchmarsh theorem.

LEMMA 3.2. Let p be a prime. Then,

| Cloglog:z lo

AP g iog +0( gp)i
i 4 p—1 P
g=1(p)

where C is an absolute constant.

Proof. See Erdos |1.p. 76].

THEOREM 3.3.

N log f(n) = ex log log x + O(x log, x),

<X

where ¢ =73, log p/p(p — 1).
Proof.

Nologf(my= ) (logp)T,(x)=2,+2,+Z;  (say),
p<

nx

where T,(X) =< o1 VolM) = 2 0cuim.a=1m 1%/P4]), and in X, p < log, x,
in 2,, (log, x) < p <log x, and in Z,, p > log x. Trivially,

. 1
T.(x)< x (x ogx).

Y ==
(<o PP+ 1) p

641/18/2-4
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Therefore,
2, =0(x).

For p < log x, we note that,

X lo
log, —=log,x+ O (ﬂ—>,
P log x

So that by Lemma 3.1,

PRSI
This gives,

2 =cx log, x + O(x log, x),
where

c=2>"logp/p(p—1).

P

Finally, using Lemma 3.2 in Z,, we see

5N x (log2x+logp) log p
P P p’

where the dash on the sum indicates, (log, x) < p < log x. It is now easily
seen that

2, =0(x),

which completes the proof of the theorem.

4. THE AVERAGE ORDER OF log? f(n)

Define

T, 0= N v, (n)v,(n)
ngx
pln
gln

LEmMMA 4.1. If p < (log x)?, then

x(log, x)*

o )2+T()+O

T, (x) = (M&_g) '
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Proof.  We have, using Lemma 3.2 and the definition of T,(x), that

X - X — X
o= S 25 [ 5] v 2]
q=1(p LPAT g=1ip LPG a=1ip L Pq

r=1(p)
N 1
= N L+Tp(x)+0(x szx)
ar<x/;p P4r D
q=1(p)
r=1(p)
Now, as
2 2
(¥ 2)< v —<(x 1),
g<op 9 ar<xip 97 a<xip 9
a=1{p) r=1(p) g=lip)
a=1p)
we get
x  (log,(x/p)y’ x(log, x) log p
Tyalo) = T+ Tyl + 0 FRE) 08P )
p.p p (p__ 1)2 P p3
x(log, x)* x(log, x) lo
_ *(log, )2+Tp(x)+0( (log, 3) gp),
p(p—1) ,

since p < (log x). This is the desired result.

LEmMA 4.2,

. T, (x)(log p)* = ¢, x(log, x)? 4+ O(x log, x),

PLX

where ¢, = )" (log p)*/p(p — 1)
Proof.  We have by Lemma 4.1,

(log p)*

N T, (0)(logp)? =x(log, x) N s+ O(x log, x)

p<(logx)? p<(iogx)? p(p—1)
= c,x(log, x)* + O(x log, x).

Since v,(n) < log n/log p, we have by a previous estimate.

T, ()< N (l—o-g—’f> (1) < (l-f’i’f) T (x) < 2008 %)

nTx \ogp log p ~ pilogp
Hence, as
L x(log x)? . o
N _E__g_)_ (log p)* < x(log x)? N gzp <X
p>(logx)? p (logp) p>(logx)? p

we get the result of the lemma.
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LemMA 4.3. If p# q, then,

T, (x) < x(log x)*/p*q log q.
Proof. Since v,(n) < log x/log g,

e ()0 3 [

ngx 10g q rET(p) E‘;
qln r<x/pq
pln
log x x x x(log x)*

<o) ) 2
log g q g pglogg
as desired.

Now,

Y log’ f(n)= Y T, ,(x)(log p)(log q),
ngx Pa<x
and by Lemma 4.3,

- < v x(log x)*
Noogg) N (ogp)T, ()< Y (logp)loggq) ————
g<x x>p>(logx)? g<x

p*aq

plqlogq
p>(logx)?

2
gEx

-1 L1
ot (5 1) 5,22
q

—_—
p>{logx)? D
<X,

In order to obtain the average order of log” f(n), we may therefore assume
that p < (log x)* and g < (log x)’. We therefore need to evaluate,
N
p<(l‘7‘gx)3

g<(logx)?
p*q

(log p)(log q) T, 4(x)-

LeEmma 4.4, If p+#q, p,q < (log x)°, then,

x(log, x)* x log, x log pg x(log p)(log q)
T = o|——==- =1 o2 ==£ATe
pal®) pg(p—1g—1) ( pq’ ) * ( )

pqu
x log, x x log, x
@) 0 (1128 4y ) 0 (218X
p(q) pqz q(P) pzq

Remark. Note that the latter two error terms do not appear unless
g = 1(mod p) or p= I(mod q).
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Proof. We have if p# 1(mod g) or g % 1(mod p),

- X
T,.00= [—]
P4 rle:odp) pq[r,S]
s=1(modgq)

If g = 1(mod p), then,
| X | X . X
N o RS == ES |
r=(modp} pq[r,s] s=1(modq) pqs s=1{modg) PCIS
s =lmeodq)

A similar result holds if p= 1(mod g). In these last two cases, the error is
easily estimated to be

x log, x x log, x
000 () g (212,
p(q) pqz q(p) p-q

The sum,

N l X J
r=1tmodp) L PG[r.s]

s=1{modgqg)
X 5 X B X
= \ - A + N X
r=1(modp) pq r=1(modpq) pq r=1(modpq) pPq
s=1(modgq)

5 1 -
_x N\ _+0( N\ n(if_ q,1>)

pq rElGOdp) rs r‘zlﬁodp) pqr
s=1(modg) r<x1i?
rs<x/pq
. x x log, x
s=1{modgq) pqs p q
s<xli2

Using Lemma 3.1 and the Brun-Titchmarsh inequality, this becomes

\ [LJ
rslmodp) pq[r’s]

s=1(modg}

x(log, x)* 0 (X(logzx)(logpq)) Lo (x(logp)(log q))‘

Cpglp—1)g—1) 7'q’ p'q’

as desired.



186

MURTY AND MURTY
We can now prove

THEOREM 4.5.

Y log® f(n) = c,x(log, x)* + O(x log, x),
n<x
where | s :
CZ—CZ-I-: (log p) i ( __).
» pp—1) P
Proof. We have, by Lemma 4.2,

Y log? f(n)=c,x(log, x)" + Y T, (x)(log p)(log q)
n<x p#q

pPg<x

+ O(x log, x).

We have already seen that we need only consider

N T, (x)(log p)(log g).
p.g<(logx)?
p+q
By Lemma 4.4, this is
N T, (x)(log p)log q)
p.g< {logx)?
p#q
_ o« x(og,x)* (logp)logq) (\« x(log, x)(log p)* (log q)’
pa<tozy  Pg(p—1)g—1) = p’q’
pq
. x(log,x)(log p)(log q)
+0 (L v (q) 822N 08 )
P pq

p ( N () x(log, X)(Ilgip)(log q))_

The first error term is easily seen to be

O(x log, x).
The penultimate error term is

0( \ X(logZX)(logp)(logq))
q=1modp) qu

_0 (: N x(logzx)(lczgzp)(logpt))
7 =1 pt
= O(x log, x).

)
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The error term corresponding to p = 1(mod ¢) is handled similarly. Finally,

\  X(og,x) (log p)(log q)
p.q<‘(ld0gxi3 pq(p - 1)(q - 1)

p+q

|, o (logp) Y :
& T~ P 1) (ogyr) | = loes 20

which completes the proof.

We deduce

CoRroOLLARY 4.6. Let
S = {n < x: n square-free, G(n) < (log n)*|.
Then
|S] > 2x.

Proof. We see easily that |S|> ((6/n')— (c,/4))x and a simple
computation gives the result.

Remark. The weaker result, | S| > tx can be deduced from Theorem 3.3.

5. THE CASE G(n) =12

In this section, we shall show that F,(x) is much smaller than F,(x). We
begin with a group-theoretic lemma.

LEMMA 5.1. G(n)=2 if and only if
(i) n=2p, p prime, or

(i) n=p,pym, (pm, e(pm)=1, (p,m, o(p,m)=1, p,=1
(mod p,), or

(ili) n=p’m, (pm,o(pm))=1,(p+ 1,m)=1.

Proof. Suppose first G(n) = 2. If n is even, then writing n = 2%m, with m
odd, we observe that m must be a prime power. For if p and g are distinct
primes dividing m we can use the dihedral groups of orders 2p and 2¢ to
construct two nonabelian groups of order n. This would force G(n)> 3.
Writing then m = p®, we note that 0 <a <2, b<2 as G(g’)=5 for any
prime g. If a=2 clearly =0, for otherwise we would have two abelian
groups of order # and at least one nonabelian group of order n. If ¢ = 1 then
b=1 as G(2q) =2 for any prime g. So we deduce (i).
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Now suppose # is odd. If n is square-free, then it must have exactly one
pair of prime divisors (p,,p,) such that p, =1 (mod p,). It must have at
least one such pair, otherwise (n, ¢(n))=1 and by a well-known result of
Burnside, this implies G(n) = 1. Furthermore, it cannot have more than one
such pair as G(pg)=2 if g=1 (mod p). This shows that n is of the form
(ii).

Finally, if # is odd and not square-free, it must clearly have exactly one
squared prime factor as G(g’)=2. If n=p’m, with m square-free, then
G(n) =2 implies all groups of order n are abelian. So by a known result (see
Scott [4, p. 217}), (iii) holds.

For the converse, we note that (i) easily gives G(n)= 2, and the cited
result in Scott |4] shows that (iii) implies all groups of order » are abelian so
that G(n) =2, in this case. In case (ii), we have that n is square-free. Any
group G of order n must therefore be supersolvable. In particular, it has a
subgroup H of order m which, by the congruence conditions, must be cyclic
and normal in G. Furthermore, G is the semidirect product of H# and a group
of order p, p,. Since p, p,4o{m), this semidirect product is in fact a direct
product, so that G(n) = G(p, p,) = 2.

Remark. An alternate proof can be deduced from the proof of Theorem
2.1 and by noting that (p, — 1) homomorphisms lead to isomorphic groups.

LEMMA 5.2. The number of n< x satisfying (i) n=2p, p is prime is
O(x/log x).

Proof. Obvious.

LemMA 5.3. Let p< (log,x)/(log,x). Then the number of n<x,
n= 0 (mod p) and having no prime divisor =1 (mod p) is <x/p(log, x)".

Proof. We have by Brun’s sieve that for z = x'/*

the number of positive integers in question is <x/p [,21y).4-: (1 — 1/g)<
x/p exp(—(log, z/p — 1) + O(1)), by Lemma 3.1. As p < (log, x)/log, x, this
is

p < x/p(log; x)* for any A > 0.

LEMMA 5.4. The number of n < x satisfying (iii) is o(x/(log; x)*).

Proof. First suppose p < (log, x)*. Then, the number of n < x satisfying
(i) <Yy gy (¥/P)(1/(10g; X)) = 0(x/(log; x)*). by Lemma 5.3. If
p > (logy x)*, then the number is at most <3, oz, X/P° < x/(log; x)*.

We now focus our attention on the integers satisfying (ii). These integers
have a distinguished pair (p, g) of prime divisors, with g = 1 (mod p). Let us
write 4 ,,(x) to be those n < x satisfying (ii) divisible by pg, ¢ =1 (mod p).
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LEMMA 5.5.

A (x) <

p>logx pe lgz
Proof. Clearly,

Rl X R 1 X

N4, 00 N Y ——<(xlogx) Y m<—,
PR \P>‘|_0gx -1 p(pt+1) piToex PT logy x
as desired.

LEMMA 5.6.

N Ay (x) < 5
p<log‘2-;/log3x - (l g3 x)H

Proof. The number of n< x/pg which are not divisible by any prime
=1 (mod p) < (x/pq) exp(—(log, x)/(p — 1)), by Brun’s sieve. Therefore,
summing over p in the stated range gives by Lemma 3.2,

Al ~ - X
N\ A, (x)< AN P
— p.q p— pa— (10 x)2
p<log,x/logix p<logyx/logyx g=1(p) q gz ;
g<x

< x/(log; x)*,

as desired.

LEMMA 5.7. Let p < (log,x)' " Then the number of n<x, n=0
(mod p), having no prime divisor =1 (mod p) is o(x/(log, x)*) uniformly in p.

Proof. See Erdos |1, p. 77].
THEOREM 5.8.

Fy(x)=0 (LI‘M)

(log; x)’
Proof. Lemmas 5.5 and 5.6 show that we can assume

log, x

< p < (log x).
log, x

Moreover, by Lemma 5.7, we can assume that those integers satisfying (ii)
have all their prime factors >(log,x)' % By Brun’s sieve, the number of
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integers n < x divisible by p and having all their prime factors >(log, x)' ¢
is <x/p log, x. Summing over p in the range,

log, x

1
log, x < p <log, x,
we deduce
R . log, x
‘(\‘ ! A (x)<\ ! X < X 4 ,
i = plog;x ~ (log, x)*

where the dash on the sum indicates p is in the stated range. Here we have
used the well-known formula,

L1 1
N —=loglogx+B+0 (—)
pox log x

Again, by a sieve argument it is seen that the number of » < x divisible by
pq and having all the prime factors >(log, x)' ~° is <(x/pq) - (1/log; x).
Hence,
x log, x X

< .

p*logyx  (log; x)’

S e ¥

log,x<p<logx p>log)x

This completes the proof.

6. CONCLUDING REMARKS

An examination on the proof of the upper bound for F,(x) reveals that the
main contribution is coming from those primes p satisfying

(log, x)' "¢ < p < log, x.

This should not be the case, though we are unable to show it. Ignoring the
primes in this range, our proof can be modified to show

Conjecture 6.1.
_(I4o(1))xe 7

B =" og, x)°

The corresponding question for & = 3 is more difficult. An arithmetical
description of those n such that G(n)=k becomes more complicated as &
increases. One can show (though not easily),

F3(x)=0( al )

log, x
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t would be important to have asymptotic formulas for both F, and F;. In

the general case, we conclude by stating the following:

1.

Problem. Determine an asymptotic formula for F,(x).
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