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Letting G(n) denote the number of nonisomorphic groups of order a. it is shown 
that for square-free n, G(n) < q(n) and G(n) < (log n)’ on a set of positive density. 
Letting F,(x) denote the number of n < .Y for which G(>r) = k. it is shown that 
F,(x) = O(.x(log, x)/(log, x)‘), where log< I denotes the r-fold iterated logarithm. 

1. INTRODUCTION 

Let G(n) denote the number of nonisomorphic groups of order n. 
Gallagher 121 has shown that 

log G(n) < @(log n)‘. 

The problem of obtaining sharp estimates, in general, seems to be very 
difficult. Sims [ 5 1 has conjectured that 

log G(n) < (log n)‘, (1.1) 

and has shown that (1.1) is true if we restrict our attention to solvable 
groups of order 12. We shall show that for square-free n, 
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where (o is Euler’s totient function, using the well-known fact that groups of 
square-free order are supersolvable. Moreover, we show that for n belonging 
to a set of positive density, 

G(n) < (log II)‘. 

is true. 
The distribution of the values of G(n) is a more intricate question. Let 

Fk(x) denote the number of II < x for which G(n) = k. Erdos [ 1 ] showed that 

F(x)= (1 +41))-ye-’ 
I 

1%X ’ 

where ‘J is Euler’s constant and log, .K = log(log,P, x), log, x = log x. We 
shall show that 

2. GROUPS OF SQUARE-FREE ORDER 

We now derive a bound for G(n), when ?I is square-free. We refer to a 
group and its isomorphism class interchangeably. 

THEOREM 2.1. Let n be square-free. Then, 

G(n)< 11 (P- 1-n). 
P I II 

where (a, b) denotes the greatest common divisor of a and b. 

Proof: Let q be the largest prime divisor of n, and G a group of order n. 
Since G is supersolvable, we have by [ 4, 7.2.191 that the q-Sylow subgroup 
S (say) is normal and G is a semidirect product of a group H of order (n/q) 
and S. Thus, an upper bound for G(n), is obtained by counting the number 
of homomorphisms 0: H + Aut(S). For each prime p 1 n, choose a p-Sylow 
subgroup of H and let x,, be a generator of this p-Sylow subgroup. As H is 
generated by these Sylow subgroups, 19 is determined by the 0(x,). Since 
Aut(S) is cyclic of order (q - I), and So = 1, the number of solutions for 
19(x,) is (q - 1, p). Therefore, there are at most 

11 k--4=II (4-l,P) 
PI(tliCl) Pin 
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possibilities for 8. As there are G(n/q), possibilities for H, we obtain 

G(n)W($) 11 (q-Lp)=G(;](q-11.n) 
Pin 

and the result of the theorem follows by induction. 

COROLLARY 2.2. For square-free n, 

This theorem allows us to deduce that there are very “few” groups of 
square-free order. More precisely, Higman [3] and Sims ]5] have shown 
that. 

G(2”) > 2““‘, 

for some constant c > 0. Therefore, if t = [log x/log 2 1, then, 

\‘ G@) > G(2’) > 2”’ > ,f~(‘~g-~)‘~ 
n s x 

for some constant c, > 0. Now by Corollary 2.2, 

x p*(n) G(n) < \‘ p(n)= 0(x*), 
n c x n 6-Y 

and so we deduce 

COROLLARY 2.3. Groups of square-free order are scarce. 

Let us write, 

f(n) = [ 1 p”,Jn), 
Pin 

where v,(n) is the number of primes q 1 n, with q = 1 (modp). Then, for II 
square-free, 

f(n) = 11 (P - 1, n). 
Plfl 

In the next sections, we shall determine the average orders of log/(n) and 
log’f(n). This will allow us to deduce that for n belonging to a set of 
positive density, 

G(n) < (log n)‘. 



GROUPS OFAGIVENORDER 181 

3. THE AVERAGE ORDER OF logf(n) 

We need some preliminary lemmas. 

LEMMA 3.1. Let p be a prime. Then 

\‘ i= loglogz 
q<: 9 

p- 1 +0(l)- 
q=llP) 

where the constant implied is absolute. If furthermore, p < (log z)’ (where c 
is an arbitrary constant) then 

1 \‘ -= log log z 1% P 
P-l 

+o -. - 
: 9 

q::,,, 
t 1 P 

ProoJ: The result follows easily from the Siegel-Walfisz theorem and 
partial summation, and the Brun-Titchmarsh theorem. 

LEMMA 3.2. Let p be a prime. Then, 

\‘ 1, 
c log log z 1% P 

- 
qc: 9 p-l +O p ’ i-j 

9Sl(Pl 

where C is an absolute constant. 

Proof: See Erdiis [ 1, p. 161. 

THEOREM 3.3. 

x log f(n) = cx log log x + 0(x log, x), 
n <I 

where c = C, logp/p(p - 1). 

ProoJ 

\’ logf(n)= \’ (logp)T,(x)=C, +C,+C, (sash - 
n s I PSX 

where T,(x) = Cnsx.pin i,(n) = Cq~~x,p~,q~l,p~ [x/ml9 and in x1 3 P < log, x9 
in C,, (log, x) < p < log x, and in Z,, p > log x. Trivially, 

641/18/?-4 
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Therefore, 

For p < log x, we note that, 

c, = O(x). 

log, f = log* x + 0 log, x 
i 1 

- 
logx ’ 

So that by Lemma 3.1, 

T,(x) = 
x log* x X 

P(P-ufO F. i 1 

This gives, 

where 

c, = cx log, x + 0(x log, x), 

c=E logp/p(p- 1). 
P 

Finally, using Lemma 3.2 in Z;,, we see 

c2G\-I x log*x+logP logp 
- 

P t P 1 P ’ 

where the dash on the sum indicates, (log, x) <p < log x. It is now easily 
seen that 

which completes the proof of the theorem. 

4. THE AVERAGE ORDER OF logIf 

Define 

Tp,q(x) = \‘ v,(n) v,(n). 
n <.r 
Pin 
41n 

LEMMA 4.1. If p < (log x)~, then 

Tp,p(x) = 
40& 4’ 
P(P - II2 

+ T,(x) + 0 
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ProoJ: We have, using Lemma 3.2 and the definition of 7’,(x), that 

Lp(x) = -x- GiP) Ii3 - & Ia + ,;,, 121 ?-=1(p) 
= \’ X+T,(x)+o yr’T;lp w (x1T2xi ’ . 

q-l(P) 
i-El(p) 

Now, as 

we get 

x qLp(x) = - * 
P 

(~og2wP)Y + * (x) + o X(10& x) logp 
(P-U2 p i P’ ! 

“(log* xy = p(p _ 1 )2 + T,(x) + 0 ( “(log2;j ‘Ogp), 

since p < (log x)“. This is the desired result. 

LEMMA 4.2. 

\’ ~,,,(x>(‘og PI2 = 
P T T  

c, -+x2 x)’ + 0(x log, x), 

where c, = C, (log~)~/p(p - 1)‘. 

ProoJ We have by Lemma 4.1, 

\‘ ~p&Nog PI2 = ~wv& xl2 K’ (log PI’ - 
P<(logx)* P<c&)2 P(P - II2 

+ 0(x log2 x) 

= c,x(log2 x)’ + 0(x log, x). 

Since vp(n) < log n/logp, we have by a previous estimate, 

Hence, as 

\’ x(log x)2 (logp)2 < x(log x)’ 
P>(loPX)~ P2w%P) 

x logp < x. 
p>(logxl~ P 

we get the result of the lemma. 
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LEMMA 4.3. If p # q, then. 

ProoJ Since v,(n) < log x/log q, 

as desired. 

Now. 

K‘ log2f(n) = x 
nz 

T,,q(-Wxp)(log q), 
P-9<-y 

and by Lemma 4.3, 

1 (1% 4) x (logp) Tp.qW < \‘ 
4 < .r .x>p>(log*)J 4 < x 

(logp)(log q) ;:;;o;‘; 

P#4 p>(log;J 

In order to obtain the average order of log’f(n), we may therefore assume 
that p < (log x)’ and q < (log x)‘. We therefore need to evaluate, 

\’ 
,<z3XJ~ 

(1ogpNog 4) T,,,(x). 

q< (log.Y)J 
P2q 

LEMMA 4.4. Zf p # q, p, q < (log x)“, fhen, 

Tp,q(x) = 4% 4’ x 1% x 1% P9 x(log P)(l% 9) 
Pq(P - 1)(9 

+ o 
- 1) 

+v,(q) 0 [x;;;‘: 

( 1 ( +vq(pfY(x;;xj. p2q2 1 

Remark. Note that the latter two error terms do not appear unless 
q = l(modp) or p = I(mod q). 
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ProoJ We have if p f 1 (mod q) or q & 1 (modp), 

If q = 1 (modp), then, 

A similar result holds if p 5 l(mod q). In these last two cases, the error is 
easily estimated to be 

v,(q) 0 (” ;;“) +v,(P) o(x;;x). 

The sum, 

= \‘ 

r= I(modp) 
s=l(modq) 

X 
=- \‘ 

P9 r=l(mo 

I X 

I 

\‘ 
X 

I I 

. X - - 

PVS r=l(xdpq, pqr ----?- +4,&d,,, pqr I-J 

.s=l(modq) 
rs<xlpq 

Using Lemma 3.1 and the Brun-Titchmarsh inequality, this becomes 

\‘ X 

- 
r= ICmodp) I I Pq[r, sl 
ss I(modq) 

4% 4’ 
=Pq(P- l)(q- 1) 

+ 0 
i 

4% x)(log P4) 4% Pmg 4) 
P2@ 1 + 0 t PT 1 y 

as desired. 
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We can now prove 

THEOREM 4.5. 

\- log2 f(n) = c*x(log, x)’ + 0(x log* x). 
n<x 

where 

Proof: We have, by Lemma 4.2, 

\‘ log2 f(n) = c,x(log, x>? + x 7-,&)(log PWX 9) 
n G x P,f4 

P.4G.T 

+ 0(x log, x). 

We have already seen that we need only consider 

\’ ~p*qcalog P)W 9). 
P.41 (IWX)~ 

P*q 

By Lemma 4.4, this is 

\’ 
P.4<T&.Y,i 

~p,q(x>(log Pm? 9) 

Ptq 

\’ 
p,q<Zg.rr)~ 

X(10& x)’ (logp)(log 4) + * \’ -+x2 x)(log PY (log d2 

Pq(P- l&- 1) c E7 P2q2 ! 
Pf9 $0 c x v,(q) 

xuog2xNog Pm% 4) 

P.Y Pq2 1 

+CJ 
i 
\‘ V,(P) 

x(lw2 x)(log Pm2 9) 

P.4 P29 1, 

The first error term is easily seen to be 

0(x log, x). 

The penultimate error term is 

0 \‘ 
i 

+x2 x)Oog Pm% 9) 
~‘IZ3dp, Pq2 1 

= t 
o \‘ F 4og2 XN%Pm% Pl) 

3- 
p f-1 p3t2 1 

= 0(x log, x). 
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The error term corresponding to p ZE l(mod q) is handled similarly. Finally, 

1’ ~(log* -q2 (lwP)(log 4) 

p.q<t;o&!x,’ PdP - 1m - 1) 
Pf9 

= ic2 -\‘ (‘ogP)2 
7 P2(P- 1)’ -to ( (loglx)3) 1 mx2x)2. 

which completes the proof. 

We deduce 

COROLLARY 4.6. Let 

S = (n ,< x: n squarefree, G(n) < (log n)’ I. 

Then 

ProoJ We see easily that ISI > ((6/z’) - (c2/4))x and a simple 
computation gives the result. 

Remark. The weaker result, 1 SI > ix can be deduced from Theorem 3.3. 

5. THE CASE G(n)=2 

In this section, we shall show that F,(x) is much smaller than I’,(x). We 
begin with a group-theoretic lemma. 

LEMMA 5.1. G(n) = 2 ij- and onlv if 

(i) n = 2p, p prime, or 

(ii) n=p,p,m (p,m, rp(p,m)) = 1, (p,m, cp(p2m)) = 1, pz = 1 
(mod p, 1, or 

(iii) n =p’m, (pm, q(pm)) = 1. (p + 1, m) = 1. 

Proof. Suppose first G(n) = 2. If n is even, then writing n = 2”m, with m 
odd, we observe that m must be a prime power. For if p and q are distinct 
primes dividing m we can use the dihedral groups of orders 2p and 24 to 
construct two nonabelian groups of order n. This would force G(n) > 3. 
Writing then m =p*, we note that 0 < a < 2, b < 2 as G(q3) = 5 for any 
prime q. If a = 2 clearly b = 0, for otherwise we would have two abelian 
groups of order n and at least one nonabelian group of order n. If a = 1 then 
b = 1 as G(2q) = 2 for any prime q. So we deduce (i). 
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Now suppose n is odd. If n is square-free, then it must have exactly one 
pair of prime divisors (p, ,p*) such that p2 = 1 (modp,). It must have at 
least one such pair, otherwise (n, p(n)) = 1 and by a well-known result of 
Burnside, this implies G(n) = 1. Furthermore, it cannot have more than one 
such pair as G(pq) = 2 if q = 1 (modp). This shows that n is of the form 
(ii). 

Finally, if n is odd and not square-free, it must clearly have exactly one 
squared prime factor as G(q’) = 2. If n =p’m, with m square-free, then 
G(n) = 2 implies all groups of order n are abelian. So by a known result (see 
Scott [4, p. 217 j), (iii) holds. 

For the converse, we note that (i) easily gives G(n) = 2, and the cited 
result in Scott [4] shows that (iii) implies all groups of order n are abelian so 
that G(n) = 2, in this case. In case (ii), we have that n is square-free. Any 
group G of order rz must therefore be supersolvable. In particular, it has a 
subgroup H of order m which, by the congruence conditions, must be cyclic 
and normal in G. Furthermore, G is the semidirect product of H and a group 
of order p,p2. Since p, p,i;q(m), this semidirect product is in fact a direct 
product, so that G(n) = G(p, pz) = 2. 

Remark. An alternate proof can be deduced from the proof of Theorem 
2.1 and by noting that (pl - 1) homomorphisms lead to isomorphic groups. 

LEMMA 5.2. The number of rt < x satisfying (i) n = 2p, p is prime is 
O(x/log x). 

ProoJ: Obvious. 

LEMMA 5.3. Let p < (log, x)/(Iog, x). Then the number of n <x, 
n = 0 (modp) and having no prime diuisor =I (modp) is <x/p(log, x)“. 

ProoJ We have by Brun’s sieve that for z = x1” 

the number of positive integers in question is <x/p nq_l(pj,yc; (1 - l/q)< 
x/p exp(-(log, z/p - 1) + O(l)), by Lemma 3.1. As p < (logz x)/log, x, this 
is 

P G x/P(l% xl” for any A > 0. 

LEMMA 5.4. The number of n < x satisfying (iii) is o(x/(log, x)‘). 

Proof: First suppose p < (log, x)‘. Then, the number of n <x satisfying 

(iii) Gzp<~10g3.wJ (x/p)(l/(log, x)‘) = o(x/(log, x)‘), by Lemma 5.3. If 
p > (log, x)“. then the number is at most <Cp>,,OK,.Y,, x/p’ < x/(log, x)‘. 

We now focus our attention on the integers satisfying (ii). These integers 
have a distinguished pair (p, q) of prime divisors, with q E 1 (modp). Let us 
write Ap,(x) to be those n <x satisfying (ii) divisible by pq, q 3 1 (modp). 
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LEMMA 5.5. 

Proof: Clearly, 

z] A,,(x) ‘g --L 
P>lWX 1% x 

p>logx 

as desired. 

\’ L-5 
p >‘;1;‘, I p2 log, x ’ 

LEMMA 5.6. 

\‘ 
p< log.,log~x A,,(x) % (log; x)‘. 

ProoJ The number of n < x/pq which are not divisible by any prime 
= 1 (modp) 6 (x/pq) exp(-(log, x)/(p - l)), by Brun’s sieve. Therefore, 
summing over p in the stated range gives by Lemma 3.2, 

as desired. 

LEMMA 5.7. Let p < (log, x)‘-‘. Then the number of n <x, n = 0 
(mod p), having no prime divisor = 1 (modp) is o(x/(log, x)‘) uniform[y in p. 

Proof. See Erdos [l, p. 771. 

THEOREM 5.8. 

ProoJ Lemmas 5.5 and 5.6 show that we can assume 

log, x 
1% x 

< p < (log x). 

Moreover, by Lemma 5.7, we can assume that those integers satisfying (ii) 
have all their prime factors >(log, x)‘-~. By Brun’s sieve, the number of 
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integers n < x divisible by p and having all their prime factors > (log, x)’ ’ 
is @x/p log, x. Summing over p in the range, 

log2 x 
- < p < log, x, 
log, x 

we deduce 

y’ Ap,(X) G y 
x log, x 

P p p 1;, x < (log, x)’ ’ 

where the dash on the sum indicates p is in the stated range. Here we have 
used the well-known formula, 

\‘ L = log log x + B + 0 
pyx P 

Again, by a sieve argument it is seen that the number of n < x divisible by 
pq and having all the prime factors >(log, x)’ ’ is <(x/pq) . (l/log, x). 
Hence, 

\‘ A&> & y 
x log, x 

log2*<p<lo!g.~ p>log~l p2 log, x + (log1 x)2. 

This completes the proof. 

6. CONCLUDING REMARKS 

An examination on the proof of the upper bound for F2(.x) reveals that the 
main contribution is coming from those primes p satisfying 

(log, x)’ -E < p < log, x. 

This should not be the case, though we are unable to show it. Ignoring the 
primes in this range, our proof can be modified to show 

Conjecture 6.1. 

F(x)= (1 +o(l))xem’ 
2 

uog, xl2 . 

The corresponding question for k = 3 is more difficult. An arithmetical 
description of those n such that G(n) = k becomes more complicated as k 
increases. OneIcan show (though not easily), 

F3(x)= 0 -5- 
i 1 log, x 
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It would be important to have asymptotic formulas for both F, and F,. In 
the general case, we conclude by stating the following: 

Problem. Determine an asymptotic formula for FJx). 
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