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1. Introduction. For x ∈ R with 0 < x ≤ 1 and s ∈ C with Re(s) > 1,
one defines the Hurwitz zeta function as

ζ(s, x) =
∞∑
n=0

1

(n+ x)s
.

For x = 1, note that ζ(s, 1) is the classical Riemann zeta function. Let
q, k > 1 be integers and consider the ϕ(q) numbers

ζ(k, a/q), (a, q) = 1, 1 ≤ a ≤ q.
The Q-linear independence of these numbers, suggested by Chowla and

Milnor, is linked to irrationality of zeta values and has been investigated in
an earlier work [5]. In this work, we attempt to extend our investigation to
linear independence over number fields.

Let F be a number field. Let us define the following F-linear spaces:

Definition 1. Let q > 1 be an integer. For integers k > 1, let Vk(q,F)
be the F-linear space defined by

Vk(q,F) = F-span of {ζ(k, a/q) : 1 ≤ a < q, (a, q) = 1}.
We want to study the dimension of this space. At the outset, we note

that this dimension, for fixed q and k, depends on the number field F. In
other words, the dimension can be different for different choices of the base
field F.

Suppose that F is the qth cyclotomic field Q(ζq). Then we have the
following upper bound.
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Proposition 1.1. The dimension of the space Vk(q,Q(ζq)) is at most
ϕ(q)/2 + 1.

Though we do not have a non-trivial lower bound for the above dimen-
sion, we have the following conditional lower bound.

Proposition 1.2. There exists an integer r > 1 such that for all integers
q > 2 which are co-prime to r and all odd integers k > 1, the dimension of
the space Vk(q,Q(ζq)) is at least 2.

However, for integers k, q > 1 and number fields F such that Q(ζq) ∩ F
= Q, we expect a different answer. More precisely, we expect that the di-
mension of the space Vk(q,F) in this case is equal to ϕ(q). Here, we have
the following lower bound:

Theorem 1.3. Let q > 1 be an integer and F be a number field such
that F ∩Q(ζq) = Q. Then

dimF Vk(q,F) ≥ ϕ(q)/2 for integers k > 1.

Any improvement of the above lower bound would have non-trivial con-
sequences. For instance, we prove the following theorems in Section 5.

Theorem 1.4. Let F be a number field such that F ∩ Q(i) = Q and
k > 1 be an odd integer. Then dimF Vk(4,F) = 2 for all such F implies that
ζ(k)/πk is transcendental.

Theorem 1.5. Let F be a number field such that F ∩ Q(ζ3) = Q and
k > 1 be an odd integer. Then

dimF Vk(3,F) = 2 is equivalent to ζ(k)/
√

3πk 6∈ F.

In this connection, we prove the following theorem.

Theorem 1.6. Let k > 1 be an odd integer and q, r > 2 be two co-prime
integers. Also, let F be a subfield of the real numbers such that F ∩Q(ζq) =
Q = F ∩Q(ζr) and also F(ζq) ∩ F(ζr) = F. Then either

dimF Vk(q,F) ≥ ϕ(q)/2 + 1 or dimF Vk(r,F) ≥ ϕ(r)/2 + 1.

As an immediate corollary, we have for F as above:

Corollary 1.7. Let k be an odd integer. Then either dimF Vk(3,F) = 2
or dimF Vk(4,F) = 2.

The following theorem suggests a recipe for constructing number fields F
of the type alluded to in Theorem 1.6.

Theorem 1.8. Let F be a finite Galois extension of Q with discrim-
inant dF. Also, let (dF, qr) = 1, where q, r > 1 with (q, r) = 1. Then
F(ζq) ∩ F(ζr) = F.
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As we mentioned before, we believe a much stronger statement than
Theorem 1.6 should be true. More precisely:

Conjecture 1. Let q > 1 be an integer and F be a number field such
that F ∩Q(ζq) = Q. Then dimF Vk(q,F) = ϕ(q) for all integers k > 1.

This conjecture can be thought of as a generalization of a conjecture of
P. Chowla and S. Chowla [3] for k = 2 and its further generalization by
Milnor [8] for all k > 1 (see [5] for further details).

We note that the linear independence of the Hurwitz zeta values ζ(k, a/q)
for k > 1 is related to the non-vanishing of the L-series

L(s, f) :=
∞∑
n=1

f(n)

ns
, <(s) > 1,

at s = k, where f is a periodic function with period q. This link is established
through the following identity:

L(s, f) =
1

qs

q∑
a=1

f(a)ζ(s, a/q), <(s) > 1.

The question of non-vanishing of L(1, f) when f is rational-valued was raised
by Chowla. The work of Baker, Birch and Wirsing [1] gave a satisfactory
answer to Chowla’s question. In conformity with the generalization envis-
aged here for k > 1, we extend their investigation to more general number
fields. More precisely, we derive the following generalization of the Baker–
Birch–Wirsing Theorem in the penultimate section.

Theorem 1.9. For an integer q > 1, let f be a periodic function with
period q taking values in a number field F. Further, f(a) = 0 whenever
1 < (a, q) < q. Also, let K = F ∩ Q(ζq) and H = Gal(Q(ζq)/K) ⊆ (Z/qZ)∗.
Assume that supp(f), the support of f in Z/qZ, is contained in H ∪ {q}.
Then L(1, f) = 0 if and only if f ≡ 0.

If K = Q, this is the original Baker–Birch–Wirsing theorem. We also
apply this to derive linear independence of certain L-values associated to
Dirichlet characters.

In the final section, we link the linear independence of the Hurwitz zeta
values ζ(k, a/q) to the Polylog Conjecture formulated in [5]. Let us recall
the definition of polylogs.

Definition 2. For an integer k ≥ 2 and complex numbers z ∈ C with
|z| ≤ 1, the polylogarithm function Lik(z) is defined by

Lik(z) =

∞∑
n=1

zn

nk
.
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For k = 1, the series is − log(1 − z) provided |z| ≤ 1, z 6= 1. Analogous
to Baker’s theorem on linear forms in logarithms, the following conjecture
about polylogarithms was formulated in [5].

Polylog Conjecture. Suppose that α1, . . . , αn are algebraic numbers
with absolute values |αi| ≤ 1 such that Lik(α1), . . . ,Lik(αn) are linearly in-
dependent over Q. Then they are linearly independent over the field of al-
gebraic numbers Q.

Apart from the case k = 1, which is a special case of Baker’s theorem, al-
most nothing is known about the above conjecture. We deduce the following
theorem:

Theorem 1.10. Assume that the Polylog Conjecture is true. Then Con-
jecture 1 is true.

2. The case F = Q(ζq)

Proof of Proposition 1.1. We have the following identity (see [10], for
instance):

(1) ζ(k, a/q) + (−1)kζ(k, 1− a/q) =
(−1)k−1

(k − 1)!

dk−1

dzk−1
(π cotπz)

∣∣∣∣
z=a/q

.

Note that

dk−1

dzk−1
(π cotπz) = πk

∑
r,s≥0
r+2s=k

βr,s cotr πz (1 + cot2 πz)s,

where βr,s ∈ Q. Since i cot πaq ∈ Q(ζq), we see that

ζ(k, a/q) + (−1)kζ(k, 1− a/q) = ikπkαa,q

where αa,q ∈ Q(ζq). This proves Proposition 1.1.

Proof of Proposition 1.2. For co-prime integers qj , j = 1, 2, and k odd,
by the above observations we see that

ζ(k, a/qj)− ζ(k, 1− a/qj) = iπkαa,qj

where αa,qj ∈ Q(ζqj ). If the dimension of both the spaces Vk(qj ,Q(ζqj )) is 1,
then

ζ(k)

iπk
∈ Q(ζq1) ∩Q(ζq2) = Q, since (q1, q2) = 1.

This is a contradiction since ζ(k)/iπk is a purely imaginary complex number.

3. The case F ∩ Q(ζq) = Q and proofs of Theorems 1.3 and 1.6.
We need the following theorem of Okada [11] (see also [4] and [10]).
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Lemma 3.1. Let k and q be positive integers with k > 0 and q > 2. Let
T be a set of ϕ(q)/2 representatives mod q such that the union T ∪ (−T)
constitutes a complete set of co-prime residue classes mod q. Let F be a
number field such that F ∩Q(ζq) = Q. Then the set of real numbers

dk−1

dzk−1
cotπz

∣∣∣∣
z=a/q

, a ∈ T,

is linearly independent over F.

The polylogarithm function Lik(z) defined in the introduction for inte-
gers k ≥ 2 and complex z with |z| ≤ 1 can be extended for all integers k
and for all z in C− [1,∞). We refer to the paper of Milnor ([8, p. 285]) for
details. Let, for real x 6= 0, lik(x) := Lik(e

2πix). Then, since (see [8])

d

dx
lik(x) = 2πi lik−1(x) and li0(x) =

−1 + i cotπx

2
,

Lemma 3.1 is an instance of linear independence of polylog values (for neg-
ative values of k) over certain number fields.

Proof of Theorem 1.3. Note that the space Vk(q,F) is spanned by the
following set of real numbers:

{ζ(k, a/q)± ζ(k, 1− a/q) : (a, q) = 1, 1 ≤ a < q/2}.
Identity (1) along with Okada’s result completes the proof.

Proof of Theorem 1.6. For the proof, we need a more refined analysis of
the terms appearing on the right hand side of (1). A periodic function with
period q is called odd if f(a) = −f(q − a) for 1 ≤ a ≤ q. Given any a with
(a, q) = 1, let δa be the odd q-periodic function which takes the value 1 at
a and is supported in {a, q − a}. Then

L(k, δa) =
1

qk

q∑
b=1

δa(b)ζ(k, b/q) =
1

qk
[ζ(k, a/q)− ζ(k, 1− a/q)].

On the other hand,

2L(k, δa) =
(2πi)k

k!

q∑
b=1

δ̂a(b)Bk(b/q),

where

Bk(x) =
−k!

(2πi)k

∞∑
n=−∞
n6=0

e2πinx

nk

is the kth periodic Bernoulli polynomial and

δ̂a(n) =
1

q

q∑
b=1

δa(b)e
2iπbn/q =

1

q
[ζanq − ζ−anq ] with ζq = e2πi/q.
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Thus, we have

ζ(k, a/q)− ζ(k, 1− a/q)
(2πi)k

=
qk−1

2k!

q∑
b=1

(ζabq − ζ−abq )Bk(b/q) ∈ Q(ζq) ⊆ F(ζq).

Now, let q and r be two co-prime integers. Suppose that

dimF Vk(q,F) = ϕ(q)/2.

Since k is odd, the numbers

ζ(k, a/q)− ζ(k, 1− a/q), where (a, q) = 1, 1 ≤ a < q/2,

generate Vk(q,F). Hence

ζ(k)

iπk
=

∑
(a,q)=1
1≤a<q/2

λa
(ζ(k, a/q)− ζ(k, 1− a/q))

(2iπ)k
∈ F(ζq), where λa ∈ F.

Similarly, if dimF Vk(r,F) = ϕ(r)/2, then ζ(k)/iπk ∈ F(ζr). Hence

ζ(k)

iπk
∈ F(ζq) ∩ F(ζr) = F

as q and r are co-prime. This is a contradiction as F ⊂ R. Thus

dimF Vk(q,F) ≥ ϕ(q)/2 + 1 or dimF Vk(r,F) ≥ ϕ(r)/2 + 1.

4. Proof of Theorem 1.8. Let F be a finite Galois extension of Q
with discriminant dF. Suppose that for integers q, r > 1, (dF, qr) = 1. Hence
F ∩Q(ζq) = Q and F ∩Q(ζr) = Q. Consider the diagram

F(ζn)

Q(ζn) F

Q(ζn) ∩ F = Q

where n = q or r. Since Q(ζn)/Q is Galois, also F(ζn)/F is Galois and (for
details, see [6, p. 266])

Gal(F(ζn)/F) ' Gal(Q(ζn)/Q).

Hence [F(ζn) : F] = ϕ(n) for n = q, r. Now set ∆ = F(ζr) ∩ F(ζq). We want
to show that ∆ = F. To do this, we just need to compare degrees. Clearly,

[F(ζr) : F] ≥ [F(ζr) : ∆].
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But we have

F(ζr, ζq)

F(ζr) F(ζq)

∆

F

All these extensions are Galois extensions and we have

Gal(F(ζr)/∆) ' Gal(F(ζr, ζq)/F(ζq))

so that

[F(ζr) : ∆] = [F(ζr, ζq) : F(ζq)].(2)

Since (dF, qr) = 1 = (q, r) and every non-trivial extension of Q is ramified,
we have Q(ζr) ∩ F(ζq) = Q by ramification considerations. Now, from the
diagram

F(ζr, ζq)

Q(ζr) F(ζq)

Q

it follows that [F(ζr, ζq) : F(ζq)] = [Q(ζr) : Q] = ϕ(r). Thus, returning to (2)
with this information we have

[F(ζr) : ∆] = [F(ζr, ζq) : F(ζq)] = ϕ(r).

But [F(ζr) : F] = ϕ(r). Hence ∆ = F. This completes the proof of the
theorem.

5. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Let F be a number field such that F ∩Q(i) = Q.
Since k > 1 is an odd integer, by equation (1), we have

ζ(k, 1/4)− ζ(k, 3/4) =
1

(k − 1)!

dk−1

dzk−1
(π cotπz)|z=1/4,

where dk−1

dzk−1 (π cotπz)
∣∣
z=1/4

is a rational multiple of πk. Also,

ζ(k, 1/4) + ζ(k, 3/4) = (4k − 2k)ζ(k).

Hence by Lemma 3.1, dimF Vk(4,F) = 2 is equivalent to ζ(k)/πk 6∈ F.
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Proof of Theorem 1.5. Let F be a number field such that F∩Q(ζ3) = Q.
Since k > 1 is an odd integer, by equation (1), we have

ζ(k, 1/3)− ζ(k, 2/3) =
1

(k − 1)!

dk−1

dzk−1
(π cotπz)

∣∣∣∣
z=1/3

,

where dk−1

dzk−1 (π cotπz)
∣∣
z=1/3

is a rational multiple of
√

3 and πk. Also,

ζ(k, 1/3) + ζ(k, 2/3) = (3k − 1k)ζ(k).

Hence by Lemma 3.1, dimF Vk(3,F) = 2 is equivalent to ζ(k)/
√

3πk 6∈ F.

6. Proof of Theorem 1.9 and applications. For the proof of Theo-
rem 1.9, we shall need the following lemma (see [6, p. 548]).

Lemma 6.1. Let G be a finite abelian group of order n and F : G→ C
be a complex-valued function on G. Also, let B be the Dedekind matrix
(F (xy−1))n×n. Then

det(B) =
∏
χ

(∑
x∈G

χ(x)F (x)
)
,

where the product is over all characters χ of G.

Proof of Theorem 1.9. Recall that the digamma function ψ(z) for z 6=
−n, where n ∈ N, is the logarithmic derivative of the Γ -function and is given
by

−ψ(z) = γ +
1

z
+
∑
n≥1

(
1

n+ z
− 1

n

)
.

As shown in [9], if
∑

a∈H∪{q} f(a) = 0 then L(1, f) exists and

L(1, f) =
∞∑
n=1

f(n)

n
=
−1

q

∑
a∈H

f(a)(ψ(a/q) + γ).

Here we have used the fact that f(q) = −
∑

a∈H f(a) and that ψ(1) = −γ.
Also

L(1, f) = −
q−1∑
a=1

f̂(a) log(1− ζaq ),

where

f̂(a) =
1

q

q∑
n=1

f(n)ζ−anq

is the Fourier transform of f . Let

log(1− ζα1
q ), . . . , log(1− ζαt

q )

be a maximal F-linearly independent subset of

{log(1− ζaq ) : 1 ≤ a ≤ q − 1}.
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Write

log(1− ζaq ) =

t∑
b=1

Aab log(1− ζαb
q ),

where Aab ∈ F. Then by the given hypothesis L(1, f) = 0, we have

β1 log(1− ζα1
q ) + · · ·+ βt log(1− ζαt

q ) = 0

where

βb =

q−1∑
a=1

f̂(a)Aab.

Since f takes values in F, f̂ is algebraic-valued. Thus by Baker’s theorem
on linear forms in logarithms, we have

βb =

q−1∑
a=1

f̂(a)Aab = 0, 1 ≤ b ≤ t.

Then for any automorphism σ ∈ Gal(F(ζq)/F), we have

q−1∑
a=1

σ(f̂(a))Aab = 0, 1 ≤ b ≤ t,

and hence
q−1∑
a=1

σ(f̂(a)) log(1− ζaq ) = 0.

Since Gal(F(ζq)/F) ' H by means of the restriction map, for h ∈ H, let
σh ∈ Gal(F(ζq)/F) be such that

σh(ζq) = ζhq .

Define fh(n) := f(nh−1) for h ∈ H. Then we have∑
a∈H

fh(a) = −fh(q) = −f(q) and σh(f̂(n)) = f̂h(n).

Hence

L(1, fh) =

∞∑
n=1

fh(n)

n
= −

q−1∑
a=1

f̂h(a) log(1− ζaq )

= −
q−1∑
a=1

σh(f̂(a)) log(1− ζaq ) = 0

for all h ∈ H. This gives

−1

q

∑
a∈H

fh(a)(ψ(a/q) + γ) = L(1, fh) = 0.
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Hence by making a change of variable, we have

(3)
∑
a∈H

f(a)(ψ(ah/q) + γ) = 0,

where we use the notation ah to indicate the reduced residue class b (mod q)
satisfying

ah ≡ b (mod q).

Now
A := (ψ(ah/q) + γ)a,h∈H

is a Dedekind matrix and its determinant is given by∏
χ∈Ĥ

(∑
h∈H

χ(h)(ψ(h/q) + γ)
)
.

By Pontryagin duality, there is a unique subgroup V ⊆ (Z/qZ)∗ such that

Ĥ ' (Z/qZ)∗/V.

See [12, Chapter 3] for details. Thus, there is a unique extension MV/Q such
that

Q ⊆ MV ⊆ Q(ζq) and Gal(MV/Q) ' H.

Now the characters χ of Gal(MV/Q) extend to Gal(Q(ζq)/Q) and so we may
identify, for non-principal characters χ,∑

h∈H
χ(h)(ψ(h/q) + γ) = −qL(1, χ)

since the extended characters are Dirichlet characters in the classical sense.
(This is a special case of a general property of Artin L-series; see for example,
property L3 on p. 233 in [7].) Since L(1, χ) 6= 0 for χ 6= 1, we need only
verify that ∑

h∈H
(ψ(h/q) + γ) 6= 0.

Since ψ(x) is an increasing function and ψ(1) = −γ, we have the above
identity. This completes the proof of Theorem 1.9.

Corollary 6.2. Let K = Q(ζq) ∩ Q(ζφ(q)). Put N = Gal(K/Q).
Then every character of N extends to a Dirichlet character of (Z/qZ)∗ '
Gal(Q(ζq)/Q). Let χ1, . . . , χr be the Dirichlet characters of N̂. Choose rep-

resentatives X1, . . . , Xt of ̂(Z/qZ)∗/N̂. Let Vi =
∑r

j=1Xiχj and consider
the values

L(1,Vi) =

r∑
j=1

L(1, Xiχj), 1 ≤ i ≤ t, Xiχj 6= 1.

Then these values are linearly independent over K.



Linear independence of Hurwitz zeta values 307

Remark. In the case K = Q, we retrieve the theorem of Baker–Birch–
Wirsing that L(1, χ) as χ varies over all non-trivial Dirichlet characters are
linearly independent over Q when (q, φ(q)) = 1.

Proof of Corollary 6.2. Assume that

(4)

t∑
i=1

ciL(1,Vi) = 0

with ci ∈ K. Put

f =
t∑
i=1

ciXi

r∑
j=1

χj .

Then equation (4) says that L(1, f) = 0. Since Xi, χj are Dirichlet characters
mod q, they take values in Q(ζφ(q)). We first show that

(5) supp(f) ⊆ H

where H = Gal(Q(ζq)/K). Observe that N ' (Z/qZ)∗/H. In other words,
characters of N are Dirichlet characters mod q which are trivial on H. We
need to show that f(a) = 0 if a 6∈ H. By the orthogonality relations,

χ1(a) + · · ·+ χr(a) =

{
|N|, a ∈ H,

0, a 6∈ H,

for the group N ' (Z/qZ)∗/H. Thus,

f(a) =
t∑
i=1

ciXi(a)
r∑
j=1

χj(a)

and the inner sum is zero unless a ∈ H. This proves assertion (5).

So we can apply our theorem to deduce f ≡ 0. In other words,

r∑
j=1

t∑
i=1

ciXiχj ≡ 0.

One needs to observe that Xiχj , 1 ≤ j ≤ r, 1 ≤ i ≤ t, are distinct Dirichlet
characters mod q. By the linear independence of characters, we see that
ci = 0 for all i. This proves the corollary.

7. Proof of Theorem 1.10. We shall now give a proof of Theorem 1.10
following the methodology employed in [1].

Proof of Theorem 1.10. Let k, q > 1 be integers and F be a number
field such that F ∩ Q(ζq) = Q. Note that Conjecture 1 is equivalent to the
assertion that L(k, f) 6= 0, where f : Z/qZ → F with f(a) = 0 whenever
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1 < (a, q) ≤ q and f 6≡ 0. This is again because of the identity

L(k, f) =
1

qk

q∑
a=1

f(a)ζ(k, a/q).

For simplicity, we prove Theorem 1.10 when q = p is a prime. The proof
of the general case is identical.

For an F-valued periodic function f with prime period p and f(p) = 0,
suppose that L(k, f) = 0. Then

L(k, f) =
∞∑
n=1

f(n)

nk
=
∞∑
n=1

1

nk

p∑
a=1

f̂(a)ζanp =

p∑
a=1

f̂(a) Lik(ζ
a
p ) = 0,

where f̂ is the Fourier inversion of f . Then choosing a maximal F-linearly
independent subset of the above polylogarithms and arguing exactly as in
the proof of Theorem 1.9, we deduce that for any automorphism σ in the
Galois group of F(ζp) over F,

p∑
a=1

σ(f̂(a)) Lik(ζ
a
p ) = 0.

For 1 ≤ h ≤ p− 1, let σh ∈ Gal(F(ζp)/F) be such that

σh(ζp) = ζhp .

Define fh(n) := f(nh−1) for 1 ≤ h ≤ p− 1. Then we have

σh(f̂(n)) = f̂h(n).

Hence

L(k, fh) =

∞∑
n=1

fh(n)

nk
= p−k

p−1∑
a=1

fh(a)ζ(k, a/p) = 0.

A change of variable gives

(6) L(k, fh) = p−k
p−1∑
a=1

f(a)ζ(k, ah/p) = 0

for all 1 ≤ h ≤ p − 1. We treat this as a matrix equation with coefficient
matrix B being the (p− 1)× (p− 1) matrix whose (a, h)th entry is given by
ζ(k, ah/p). Then we have, by Lemma 6.1,

Det(B) = ±
∏
χ

pkL(k, χ) 6= 0.

Thus the matrix B is invertible and hence by equation (6) we have f ≡ 0.
This completes the proof in the case when q = p is a prime. The proof for
an arbitrary modulus q is identical, the final determinant being associated
to the group (Z/qZ)×.
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