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§1. Introduction

A classical conjecture of E. Artin predicts the density of primes p for
which a given rational number is a primitive root modulo p. An analo-
gous conjecture for elliptic curves was formulated by Lang and Trotter in
[12]. For the sake of definiteness, let E be an elliptic curve defined over
the rational numbers Q. Let a be a rational point of infinite order. The
problem is to determine the density of primes p for which E(Fp) (the
rational points of the curve E viewed over the finite field IF p) is

generated by a, the reduction of a(modulo p). Such a point is called
primitive for these primes. In [12] it was conjectured the density of primes
p for which a is a primitive point always exists.

The purpose of this paper is to prove this conjecture under the
assumption of a suitable generalized Riemann hypothesis (henceforth
abbreviated GRH) in the case that E has complex multiplication (CM).
For simplicity, we assume that E has CM by the entire ring of integers
(9k of an imaginary quadratic field k. Our method deals only with those
rational primes which split in k, the supersingular primes being intract-
ible by our method.

The assumption of the GRH can be relaxed somewhat and the

situation is analogous to Hooley [6], where the classical conjecture of
Artin was settled under a similar hypothesis.

Let us denote by Na(x), the number of primes p  x, such that p
splits in k and a is a primitive point (mod p ). We shall prove:

THEOREM 1: Let E be an elliptic curve defined over 0 with complex
multiplication by (9k and let a be a rational point of infinite order. Under
the GRH,

1 Supported in part by NSERC grant #U0237.
* This work was done while the authors were visiting the Institute for Advanced Study.
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It would be of interest to determine when CE(a) &#x3E; 0. We are able to

prove:

THEOREM 2 : If 2 and 3 are inert in k or k = Q(-11), then CE(a) &#x3E; 0;
hence, on the GRH,

in these cases.

REMARK: Clearly, CE(a) = 0 if all the 2-division points of E are rational.

In [12], Lang and Trotter formulated a condition for a prime q to
divide the index E(Fp): a|, which we shall denote as i(p). Indeed,
let Eq denote the q-division points of E and consider the extension

These fields are analogous to the splitting fields of x q - a = 0 which
occur in the classical Artin conjecture. The Galois group G. of Tq/Q is a
semidirect product of subgroups of GL2(lFq) and Eq. Therefore, one can
view elements of the Galois group as pairs of certain elements ( y, T ) with
y E GL2(lFq) and T E Eq . For primes p not dividing the discriminant of
T.10, let ap = (-yp, p) be the Frobenius element. It is then easy to show
that q divides i(p) if and only if ap E S., where Sq consists of all pairs
(y, T ) such that

i) 03B3 = 1
or

ii) y has eigenvalue 1, ker((03B3 - 1 ) : Eq ~ Eq) is cyclic, and T E

(y - 1)Eq.
It is easy to see that

in the case that E has complex multiplication and

if E has no complex multiplication. This was the source of difficulties in
[12] in trying to prove the conjecture in line with Hooley’s work for the
Artin case. Our approach is different. We begin by considering the
splitting fields of p in T.. These extensions have degree O(q2) and we
reformulate the above criterion in terms of these extensions. In doing
this, we confine ourselves to primes p which split in k. This situation
then becomes analogous to Hooley [6].
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The case when E has no complex multiplication presents numerous
difficulties. If instead of considering an infinite cyclic group generated by
a, we consider a free subgroup 0393 of rational points then it is indeed true
that the primes p such that the image of 0393(mod p ) generates E(Fp) have
a density, provided that the rank of r is sufficiently large. In fact, this
general situation was also formulated in [12]. 

_

Denote by N0393(x) the number of primes p  x such that E(Fp) = rp ,
where rp is the reduction of r mod p. We shall prove:

THEOREM 3: Suppose that E has no complex multiplication and rank(0393) 
18. Then, under GRH, there is a constant CE(0393) such that

REMARK: At present, no curves are known with rank  13. Nevertheless,
it is believed that there are curves of arbitrary rank. One can also prove
an analogous result in the CM case if rank(0393)  10.

In the case that E has CM, the assumption of GRH can be relaxed
somewhat. A zero free region of Re(s) &#x3E; 1 2 for the zeta functions under
consideration is not necessary. If we assume an a - GRH, that is, a
zero-free region of Re(s ) &#x3E; a, then we can obtain an asymptotic formula
for N0393(x), consisting of those primes contributing to N0393(x) and which
split in k. The rank however has to increase correspondingly with the
assumed zero-free region. The precise relationship is given in

THEOREM 4: Suppose that E has CM by an order in k and that rank of
F = r. Assuming an ( r/r + 1) - GRH, we have

REMARK: An analogous result can be formulated in the non-CM case
also.
We can eliminate the GRH or any modified version of it if we resort

to the lower bound sieve method. This however has the disadvantage that
it does not produce a positive proportion of the primes with the desired
property. Nevertheless, we do obtain an infinitude of such primes.

THEOREM 5: If E has CM, and rank of r  6, then
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Again, if the rank of F is sufficiently large, a similar result holds in
the non-CM case.

The above result has the following curious corollary.

COROLLARY: There is a finite set S which can be given explicitly, such that
for some a E S, E(Fp) = (à) for infinitely many primes p, provided rank
of E(Q)  6.

§2. Divisibility criterion f or the index

Throughout, we shall suppose that E is an elliptic curve defined over Q,
with complex multiplication by the integers (9k of an imaginary quadratic
field k. In this section, we shall derive a criterion for the index i(p) to be

divisible by a prime q. This is essential for further analysis since

a = E(Fp) if and only if q 1 i(p) for any prime q.
Now suppose that E has good reduction at p and that p  0, where 0

denotes the discriminant of E. Let E be the reduction of E(modulo p ).
We would like to determine a criterion for a prime q to divide 1( p ). First
suppose that q ~ p. If the q-division points E[q] are contained in E(Fp)
then clearly q|i(p), as E[q] is an elementary abelian group of type
(q, q). If the q-division points are not contained in E(Fp), then the
q-primary part of E(Fp) is cyclic. As q divides the index, there is a
b E E(Fp) such that q · b = â. This essentially proves:

LEMMA 1 : Suppose that p + à and q =1= p. Then q 1 i(p) if and only if either
(a) E(Fp) ~ E[q] or -

(b) the q-primary part of E(Fp) is non-trivial and cyclic and there is a
b E E(Fp) such that q · b = à.

If q = p and p|i(p), then ap = 1, for p &#x3E; 5.

PROOF: For the first part of the lemma, the implication follows from the
previous discussion and the converse is clear. For the second part, we
have p + 1 - ap = 0(mod p ) and hence ap ~ 1 (mod p ). But since |ap|
 2p, we must have ap = 1 for p &#x3E; 5. This completes the proof.

REMARK: The prime divisors of à introduce only an error of 0(1) in the
final enumeration. Moreover, if p |i(p), then ap = 1 for p &#x3E; 5 and hence

by Serre [15], the number of such primes is o(x/log x). In fact, as we are
in the complex multiplication case, the contribution is even less. Indeed,
if ap 

= 1, then as 271’p = -ap ± a2p-4p , we must have a p - 4 p = Dn2
for some n. Here D is the discriminant of k. If ap = 1, then p is in a

quadratic progression. Clearly then if p  x we must have n = O(x),
and therefore the contribution from such primes does not exceed O(x).
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It is possible by an elementary sieve method to improve this error term to
O(x/log x).
We now formulate this condition in terms of the Frobenius automor-

phism acting on certain number fields. For a an ideal of k, we let a - la
denote a point b E E(C) such that a · b = a, where a = (a) (recall E is
defined over Q so (9k has class number one). Note that a - la is uniquely
determined only up to translation by an a-division point and, because of
the choice of a, complex multiplication by a unit in (9k. For q a first

degree prime ideal of k, define

where E[q] denotes the q-division points of E. Then Lq is independent
of the choice of q - la and is a normal extension of k. If q is a rational

prime, set

the field obtained from k by adjoining the q-division points of E.
We begin by translating Lemma 1 in terms of fields over 0.

LEMMA 2 : Suppose that p  qà. Then q 1 i(p) if and only if p splits
completely in Q ( E [ q]) or the q-primary part of E(Fp) is a non-trivial cyclic
group and p has a first-degree prime factor in Q(q-1a).

PROOF: The first assertion follows by noting that p splits completely in
Q(E[q]) if and only if the Frobenius endomorphism of E acts trivially
on the q-division points. The second assertion follows by noting that part
(b) of Lemma 1 implies the solvability of

q.x==a(mod p)

and hence, p has a first-degree factor in Q(q-1a).
We now deduce a divisibility criterion in terms of behavior over k.

LEMMA 3: Suppose that p splits in k and p  qà.
(a) If q is inert in k, then q 1 i( p) if and only if p splits completely in Kq.
(b) If q ramifies or splits in k, let q = q1q2 be its factorization in k.

Then q |i(p) if and only if (p) splits completely in La 1 or Lq 2 or
Kq .

(Here i7p is chosen so that p = pp, and multiplication by p gives the
Frobenius endomorphism of E(mod irp).)
PROOF : Let |E(Fp)| = p + 1 - ap. We know that p + 1 - ap = N(-7p - 1)
and hence q|i(p) implies that
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If q is insert, then rp = 1(mod q ) and hence rp acts trivially on the
q-division points. Therefore, 77P splits completely in K.. If q is split and
unramified in k, we find

If both these congruences hold, then p splits completely in k(E[q]),
which is the compositum of k(E[q1]) and k(E[pq]), as q is unramified
in k. If only one of the congruences holds,

then rp splits completely in k(E[q1]). By Lemma 2, p also has a first
degree prime factor in Q(q-1a). Therefore, 7rp has a first degree prime
factor in k(q-11a). Hence, p splits completely in the normal extension
Lq 1. If q is ramified in k, then let us write (q)=q2. The above
congruence implies that p acts trivially on the q-division points. Now,
two possibilities arise: either 7rp acts trivially on the q-division points, in
which case up splits completely in Kq, or 7rp acts trivially only on the
q-division points. But now, as before, 7rp has a first degree prime factor in
k(q-1a) and so p splits completely in Lq . This completes the proof of
the lemma.

REMARK: It is also possible to prove Lemma 3 by specializing the
Lang-Trotter condition [12] to our situation.

§3. The division polynomial

We begin by recalling certain well-known facts concerning the division
polynomal. If E, given in Weierstrass normal form, has complex multipli-
cation by an order (9 in k and P = (x, y ) is any point on the curve, then
the first-co-ordinate of 03B2P, for 03B2 ~ O is given by

where f03B2 and g/3 are polynomials of degree N(03B2) and N(03B2)-1 respec-
tively. (Here N(03B2) denotes the norm of f3 in k ). The roots of g03B2(x) are
the x-co-ordinates of the non-zero 03B2-division points. Furthermore, we
normalize by letting g/3 have leading coefficient f3 2. Then, fa and g/3
have coefficients in k.

LEMMA 4: For any non-zero 03B2-division point u,
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where p denotes the Weierstrass p-function and the implied constant
depends only on E.

PROOF: Let Q = wo(9 be the lattice associated to E. Then u = awolfl for
some a E O not divisible by /3. The distance from u to Q is

and the result follows easily from the definition of the Weierstrass

p-function.

LEMMA 5: With the above normalization, the coefficients of g03B2(x) are

bounded by exp(CN(f3) log N(03B2)) for some constant C depending only on
E.

PROOF : We have

where the product ranges over the non-zero ,a-division points. Clearly any
coefficient of gp(x) is bounded by

with a similar restriction on the product. The result now follows from
Lemma 4.

§4. Estimâtes f or the degrees

Let a be a squarefree integral ideal in (9 which is only divisible by prime
ideal factors of degree one and let s be a squarefree integer. Define

We note that
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Moreover, as Gal(k(E[a]/k) is a subgroup of «91ct)*, we have that
Gal( La/k ) is a subgroup of

We also set

and also

and denote by n(a, s), d(a, s ) the degree and discriminant of the
extension La,s over k and over Q respectively.

LEMMA 6:

PROOF: Clearly n ( a , s)  n ( a ) m ( s ). It is classical that m ( s )  ~ (sOk),
where ~ denotes the phi function of k. Moreover, from the above
remarks,

The result now follows from this.

LEMMA 7: 

PROOF: It is a result of Hensel (see [15]) that if LIQ is a normal
extension of degree n and ramified only at the primes pl, ..., pm, then

where DLIQ is the discriminant of L/Q. In view of Lemma 6, it suffices
to determine the ramified primes of the extensions Q(F[m], m-1a), as
the extensions under consideration are certainly contained in extensions
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of this type for a suitable m, namely m = N(a)s. It is well-known that
the latter extensions are ramified only at primes dividing m and the
discriminant of E (see [2]). We therefore deduce the result from Hensel’s
bound.

LEMMA 8: If a and s are coprime to 6à, where à is the discriminant of E,
then

where ( a, s) denotes the gcd of a and s.

PROOF: Let D = 1cm(a, s) so that

Since (b, 6à) = 1, the Galois group Gal(k(E[DD/k) is equal to the full
group (O/b)*. This follows for example from the fact (see [2] or [4]) that
for a prime p + 6à, the extension k(E[p])/k is unramified outside of

6w à but totally ramified at p and has Galois group «91p)*. Thus,

Lemma 8 now follows (with c = 1) from the following fact.

LEMMA 9 : Suppose a, b, c are squarefree, a and c are products of
first-degree primes, and that ( a , 6à) = 1, ct 1 b, c 1 v, and ( N( a ), N( c )) =
1. Then

PROOF: The Galois group Gal(k(E[b], a-1c-1a)/k) can be identified
with a subgroup G1 of

and Gal(La/k) with a subgroup G2 of
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The subfields k(E[b], c-1a) and k(E[a]) correspond to subgroups h
and 12 of (9lac and (9la respectively, where

and

We need to show |I1| = I2 I . It will suffice to show that for each

p|N(a), the projections

and

have the same image. Suppose p ~ N( a ), so that ( a, p) = .p with N(p ) = p.
Then Im(~l) = 0 or (91p for i = 1, 2. Note that Im(~i) = 0 if and only if
-1a ~ k(E[b], c - la ) or k(E[a]) for i = 1, 2 respectively. Clearly, if

-1a ~ k(E[a]), then -1a~k(E[b], c - la ). Conversely, if Im(~1) = 0,
then the projection

has trivial image and p -la E k(E[b]). This implies p -la E k ( E [ a ]) since
otherwise the non-abelian extension k(E[a], -1a) would be contained
in the abelian extension k(E[b]). Thus, Im(~1) = Im(~2).
Now suppose p2~N(a) so (a, p) = 12 (say). Since Gal( k-

( E [ p ])/k ) = (O/p)*, we have for any 8 E (O/p)*, some 03B2 ~ «9la ) * and
03B3 ~ (9la with 03B2 = 03B4(mod p ) and

Then for any a e I2 ,

This shows that Im(~2) is an ideal in (91p. Similarly, Im(~1) is an ideal.
Letting ~(j)i be the projection of h on (91p., we have
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for i = 1, 2. Arguing as before shows that Im ~(j)1 = lm ~(j)2 for j = 1, 2
and hence Im(~1) = Im(~2). This completes the proof of Lemmas 8
and 9.

§5. The asymptotic formula

Denote by N(x, y ) the number of primes of k which are of first degree
and norm  x which do not split completely in any L qor Kq for q  y
and N(q)y. It is then clear that

If 7rp splits completely in L,, or Kq, then as q|(p + 1 - ap), we must
have q  2 p  2x. Letting M( yl, y2 ) denote the number of primes p  x
such that p splits completely in Lq or Kq for some q or q satisfying
y1  q  y2, y1  N( q )  y2, we find that

Hence

We choose y = 112 log x and let (x, a, s ) denote the number of first
degree primes of k of norm  x which split completely in La,s. By the
inclusion-exclusion principle,

where the dash on the summation indicates that any prime ideal factor of
a has norm  y and any prime factor of s is  y. If we assume that the
Dedekind zeta function of La,s satisfies the Riemann hypothesis, then
one can give an asymptotic formula for (x, a, s) with a good error
term.

LEMMA 10: Lagarias-Odlyzko [19]). Let L/K be a normal extension of
degree n, and discriminant d = disc(L/0). Let C(x, L) be the number of
prime ideals of first degree of K whose Frobenius automorphism lies in a
given conjugacy class C of Gal(L/K). If the Dedekind zeta function of L
satisfies the Riemann hypothesis, then
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where the implies constant depends only on K and

(li x is as usual the logarithmic integral of x.)

We apply this in the case K = k, L = La,s and C = (11. Then,

where 8 ( a , s) = n ( a, s ) -1 log|1 d(a, s)|. By Lemma 7, the error is

Any ideal a in the range of summation above satisfies

and hence

A similar estimate holds true for log s. The number of pairs ( a , s)
occuring in the sum is at most 23Y by an elementary computation. The
error term is therefore,

for any E &#x3E; 0 for the choice y = £log x. This proves that

We shall show that if the above series is allowed to run over all such a, s,
then the series is absolutely convergent. Indeed, by Lemma 8,

where the summation is over all squarefree numbers s and squarefree
ideals a of (9k composed only of first degree prime ideals. The constant
implied above depends on the number of divisors of 6à and we have
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accordingly decomposed the initial sum according to the gcd( a, s, 6à) so
that there are only finitely many such sums. As ~(a, s ) is a multiplica-
tive function in s for fixed a, we find

Since the product

converges, the above sum is

where t, ( a ) denotes the number of prime ideal factors of a. The latter
series clearly converges, as 2v(a) = O(N(a)~) and n(a)  N(a)3/2 for all
N( a ) sufficiently large.
We therefore set

where the sum is now unrestricted. Note that

the double dash in the sum indicating that either N(a)  y or s  y. By
an analysis similar to the above, we find

Utilising elementary estimates for the ~-function, we find
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for our choice of y. This yields

It now remains to estimate M( y, 2x).

§6. Estimation of M(y, 2x)

Clearly,

Utilising Lemma 10, we find (on the GRH) that,

where the summation over q and q are in the restricted ranges stipulated
by M( y, x1/2/log2x). We therefore find that

as m(q)  q2 and n(q)  N(q)2.
We are therefore left with estimating M(XI/2/log2x, 2x). We write

To estimate M(XI/2/log2x, XI/2 log2x), we utilise the analogue of the
Brun-Titchmarsh theorem for number fields, easily proved by an ap-
propriate generalisation of the large sieve (see for example, Schaal [16]).
For any ideal q, the number of primes 77P with N(p)  x satisfying
p --- 1(mod q) is

provided N( q )  x. In our case, N( q )  x1/2 log2x and hence
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As in [13], we easily find

Therefore,

As usual, in the above sum N(q) satisfies

Since we know

for a suitable constant c, we find that the above sum is

It therefore remains to deal with M(XI/2 log2x, 2x).
It is impossible for a prime -7p to split completely in Kq for q in the

above range as q2|(p + 1 - ap) implies q  2Fx. We therefore need to
consider only those primes 7rp which split completely in La, for N(q) in
the given range. If p splits completely in La, then

and hence

where 03B2 generates q. Therefore,

for x = (p-1)/03B2. We note that

Therefore, M(x1/2 log2x, 2x) is bounded by the number of prime fac-
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tors in the numerator of

The total number of prime factors is bounded by

by Lemma 5. This completes the estimation.
We have therefore proved that

It remains to determine the nature of à and this we take up in the next
section.

§7. Calculation of the density

In view of Lemma 8, we should be able to decompose 8 as an infinite
product from which it will become apparent that under certain condi-
tions, 8 &#x3E; 0. We need the following fact.

LEMMA 11: Let a = al Ú, s = s1b where (a1,60394) = (s1,60394)=1 and b,
b|60394. Then

PROOF: It suffices to show that

Recall that for [lcm(a1, sl ), k(E[p]) is an extension of k in which p
ramifies totally and primes not dividing 60394 do not ramify. Since p does
not ramify in La,b (see [2]), it follows that

where b = lcm( a , s ) and c = lcm( a 1, sl ). Moreover, by Lemma 9, we
have

and Lemma 11 follows from this.
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As the Môbius function is multiplicative and since a, s are squarefree,
we find that

utilising Lemma 11. In the above sum, a1, s1 are coprime to 6à, b runs
through the divisors formed from the first degree prime ideal factors of
(60394) and b runs through the positive divisors of 6à. We therefore obtain

Using Lemma 8, the second sum can be decomposed into an infinite
product. Indeed,

where the product ranges over the first degree prime ideals of (9 coprime
to 6à. As ~(q, sl ) = 1 except when q 1 sl, we find

It will also be observed the density of primes not splitting in the fields
attached to the prime q is the q-factor appearing in the above product.
Here, we have assumed that a ~ qb for any b ~ E(O) and q which splits
in k. In general, the q-factor above for finitely many split q needs to be
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replaced by (1 - ( q - 1)-1)2. The , prime factors which are ramified in k
do not occur in 81 as they divide’6à, and so we find that 03B41 ~ 0.

It remains to analyse 80. We first note that 8o represents the density of
primes p which do not split completely in any Lb,b, where b, b range
over certain divisors of (60394) and 6à respectively. If 0 represents the
density of primes 7rp not splitting completely in any of K q (if q is second
degree in k ) or k(E[q]), (if q is of first degree), then clearly, we have

We shall show that if 2 and 3 are inert in k (and hence k ~Q(i) or
Q(0)), then 03B8  0.

The fields obtained by adjoining the q-division points to k are
well-known to contain ray class fields. If a is any ideal of k, then the ray
class field k( a ) has degree ~(a)/w(a) where w( a ) denotes the number
of inequivalent units mod a. We consider the fields

where the product ranges over all prime ideal divisors of a. As the fields
k() are disjoint as p varies over the prime ideal divisors of a, we find
Ta has degree (over k )

Hence

In our situation, w(p) = 2 except in the case  = 2, in which case

w() = 1. It is now easily seen that if 2 and 3 are inert in k, then 0 &#x3E; 0.

This proves 80 &#x3E; 0 at least in these cases. That is, in the cases k =

Q(-19), ID(-43), Q(-67), and Q(-163), we have shown 80 &#x3E; 0.
The case k = Q(-11) requires a litte more effort since 3 splits, say

as 12, and the corresponding ray class fields are trivial. Instead of
these class fields, consider instead the fields k(E[1]) and k(E[2]).
Since one is the complex conjugate of the other and

k(E[1]) and k(E[2]) are quadratic extensions of k in which 1 or 2
ramify. This implies that the fields k[E[3]), k() are disjoint as p ranges
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over the prime divisors of 60 other than p 1 and P 2. As before, we then
see that 80 &#x3E; 0 in this case as well.

In case k = Q(-7) and E has CM by the maximal order, we see
that 2 splits and hence the 2-division points are contained in k. There-
fore, if p splits in k, E(Fp) contains the 2-division points. Hence 8. = 0
in this case.
We can also make some remarks in the case k = Q(-2). These

remarks are based on

LEMMA 12: Let Ki, i E I, be a finite number of non-trivial disjoint normal
extensions of k, and let L/k be normal of prime degree. Then

(1) either L  03A0l~ Ki or there is a unique minimal subset IL of I such
that L ~ 03A0i~ILKi.

(2) the density of first degree prime ideals which do not split completely
in L or any Kl is zero if and only if L c IK,, [L : k] = 2, 1 IL 
is even, and for each i E IL, [ K,: k ] = 2.

PROOF: For a subset J of I, let Kj = 03A0i~JKl. Since the Kl are disjoint, if
L c Kj and L c Kj,, then L c KJ~J’, whence (1) follows. For (2), first
note that if L e K,, then as [L: k] is prime, L is disjoint from the Kl’s
so we have a positive density. Suppose therefore that L c Kl. Then the
density of primes not splitting completely in L or any KI is

where p = [L : k]. Re-write this density as

and note that

and
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Therefore, the density is zero if and only if

and (2) follows.
We now apply this to the case k = Q(-2). Here, 3 splits as 12 say

and 2 ramifies; the associated ray class fields are trivial. Nevertheless,
k(E[2])=k((-2)2) (the ray class field mod (0)2) is a quadratic
extension of k, and proceeding as for Q(-11 ), we see that the fields
k(E[2]), k(E[3]), and k(), where p ranges over the prime divisors of
60 other than 1, 2, and (-2), are non-trivial disjoint extensions of k.
We let the KI in Lemma 12 range over the fields k(E[1]), k(E[2]),
k(E[2]), k(),  as above. Note that the only quadratic extensions of k
in this list are the first three.
Now let L = k((-2)-1a). Then L = k exactly when there is some

b~E(k) with a = 2 b, and in this case 80 = 0. Otherwise, L is a

quadratic extension of k. Suppose moreover that pl 1 and 2 do not

ramify in L. In this case, it is readily checked that if

then L = k(E[2]). Using Lemma 12, we then deduce that 80 &#x3E; 0.

If the point a corresponds to the point (xo, yo ) (where xo is rational
but yo need not be) on the canonical curve with CM by Q(-2),

then L/k is obtained by solving

The discriminant of the resulting quadratic is 8(2xô - 4xo - 7), and
hence L = k if and only if - (2xô - 4xo - 7) is a square. Moreover, p 1
and P 2 do not ramify in L if xo W 1(mod 3). Thus, we have 03B40 &#x3E; 0 most
of the time, when k = Q(-2).

§8. The higher rank case

We begin by considering the following situation. Suppose we have a free
subgroup F of rational points. Let rp be the reduction of r(mod p).
Suppose that q|(E(Fp): 0393p), and that q &#x3E; z.

For primes p  x, this means that
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Therefore, if z is large, the image of F(mod p ) is small. If we can show
that the number of primes for which 1 fp 1 satisfies the above inequality is
small, then for almost all primes, the prime divisors of the index are  z.
This is basically our strategy.

To begin with, let Pl, ... , Pr be r independent generators of F,
where r = rank of r. We will make use of the canonical height pairing of
Néron and Tate. 

_

Recall, that this is a positive semidefinite, bilinear pairing on E(Q)
with the property that (P, P) = 0 if and only if P is a torsion point. In
fact, this height pairing is related to the naive height in the following way.
If P = ( a, b) ~ E (Q) then writing a = r/s, r and s coprime, we define
the a-height as

If we let H(P) = P, P, then for P E E(Q),

where the implied constant depends only on E.

LEMMA 13 : The number of r-tuples of integers ( n 1, ... , nr) satisfying

is

where

PROOF: We want to determine the integer solutions of

which is the same as

This corresponds to counting lattice points in the r-dimensional ellipsoid
determined by the above quadratic form. It is well known that the
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number of lattice points is given by the above expression. (See [17].)
The following is of interest in its own right.

LEMMA 14: The number of primes p satisfying

PROOF: Consider the set S of all r-tuples of integers (n1, ... , nr)
satisfying

where C is any constant chosen so that

Since the number of elements of S is &#x3E; y, by Lemma 13, and 1 fp 1  y,
we must have for two distinct r-tuples (n1, ... , nr) and (m1, ... , mr)
that

Therefore, the denominator of the non-zero point

is divisible by p. The number of such primes is clearly bounded by ha((Q)
as any integer n has at most log n prime factors. Moreover, Q is not a
torsion point as Pl, ..., Pr are independent. Therefore

Moreover, H(Q)  2Cy2/r, and therefore, the number of such Q ’s is by
Lemma 13, O( y ). As each Q gives rise to only O(y2/r) prime factors, we
get that the total number of prime factors satisfying |0393p1  y is

O(y1+2/r), as desired.
These lemmas will be utilised in the proof of Theorem 3.

§9. Proof of Theorem 3

We shall now consider the extensions
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These are normal extensions over Q and the Galois group over 0 is a

subgroup of the semi-direct product

Ribet [14] has shown that for q sufficiently large, Gal(Mq/Q(E[q])) is in
fact isomorphic to E[q]r given by

where (a1, ..., ar) ~ E[q]r.
We may view every element a = (y, ) of Gal(Mq/Q) as above, with

03B3 ~ GL2(lFq) and T E E[q]r. Then every element a determines a homo-
morphism

Clearly T(r) is the subgroup of E[q] generated by al, ... , ar.
As before, we shall view y as an element of GL2(F,,) operating on

E[q]. Then Lang and Trotter proved in [12], the following criterion for
the divisibility of the index (E(Fp): rp ) by q.

LEMMA 15: Let Sq consist of elements a = ( y, T ) of Gal( Mq/Q) such that

or

(ii) ker( y - 1) is a non-trivial cyclic group and (0393) c Im( y - 1). For
p  q0394, we have q 1 (E(Fp): rp ) if and only if 03C3p ~ Sq ( where op denotes the
Frobenius element of p in Gal(M.10».

REMARK: The primes dividing à are only finite in number and hence
they introduce an error of O(1) in the enumeration, so that we may
ignore these. If p = q and 1 (E (Fp)’ . rp ) then p + 1-ap = 0(mod p ) so
that ap 

= 1 for p &#x3E; 5, as before. It can be shown that the number of such

primes p  x is o(x/log x). (See Serre [15].)
The number of elements in Sq satisfying condition (i) in the above

lemma is clearly qr+1 + qr - q. The number of y such that ker(y - 1) is
cyclic is q + 0(1) in the CM case and q3 + O(q2) in the non-CM case.
Hence, the number of elements satisfying (ii) is

in the CM case and

in the non-CM case.
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For each squarefree number s, we set

and note that, as usual

where N0393(x, y) denotes the number of primes p  x such that

03C3p(Mq/Q) ~ Sq for all q  y, and M0393(y, 2x) denotes the number of
those primes p satisfying 03C3p(Mq/Q) ~ Sq for some y  q  2x.

The Sq’s for q|s determine a conjugacy class SS in Gal(Ms/Q) and we
let (x, s ) be the number of primes p  x such that 03C3p(Ms/Q) ~ SS . Let
Gs = Gal(Ms/Q) and we set

The usual inclusion-exlusion principle yields that

where the dash on the summation indicates that q 1 s implies q  y. We
choose

Invoking Lemma 10, we have on the GRH,

by any easy calculation similar to the one carried out in §5. As 03B4(s) =
O(s-r-1), we find that

is absolutely convergent. Therefore,

We now handle M0393(y, 2x). Setting
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we find that if 03C3p(Mq/Q) ~ Sq then ap restricted to Vq(l) must satisfy the
Lang-Trotter criterion of §1 for all i = 1, 2, ..., r. The image of Sq
restricted to V(l)q is therefore 0(q2) for all i, if E has CM and 0( q4) in
the non-CM case. With obvious notation

by Lemma 10. Here, we have set g = 2 if E has CM and g = 4 in

non-CM case. The first term above is clearly o(x/log x) for our choice
of y. The error term is

We choose x03B1(g+1) = x1/2/log2x, so that for this choice of a, we have

It remains to consider
 2x, where A shall be suitably chosen later, then

Hence, by Lemma 14,

A simple calculation reveals that if r  4g + 2 and A is sufficiently large,
then

The remaining interval is handled as in §5. Indeed,

and this latter quantity is easily estimated by utilising the Brun-Titch-
mersh theorem. We find,

This proves that if r  4g + 2, then

This completes the proof of Theorem 3.
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§ 10. Higher rank in the CM case

We suppose in this section that E has complex multiplication by an
order O in k. We will establish the higher rank analogue of Theorem 1
for such curves assuming only a modified Riemann hypothesis.
We begin with a result analogous to Lemma 13.

LEMMA 16: The number of r-tuples of algebraic integers (03B11,..., ar),
al E O satisfying

is

where the implies constant depends only on E.

PROOF: For the sake of simplicity, we shall take (9 to be the full ring of
integers of k, the general case being analogous. Moreover, as we are
interested in a lower bound only, we may count only those a of the form
m + n-D, where D is squarefree and k = Q(-D). We therefore find,
for such a, = m, + nl-D , that

where

This is a quadratic form in 2 r variables corresponding to the symmetric
matrix

Hence, by a well-known fact (see [17]), the number of lattice points is
given by

for some constant CR depending on Rand r. This completes the proof.
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We also have the analogue of Lemma 14. To this end, we denote by f
the (9-module generated by r. If p is a prime which splits in k, we can
then consider the image fp of f(mod p).

LEMMA 17: Suppose E has complex multiplication by an order in k. The
number of primes p which split in k and for which

is

PROOF: The proof is entirely analogous to Lemma 14 except that now we
make use of Lemma 16 instead of Lemma 13. We therefore omit the

details.
For a prime p which splits in k, we let up = cp + dp03C9, where l, w are a

Z-basis for (9, be such that N(p) = p and 77P corresponds to the

Frobenius element mod p.

LEMMA 18: Let p split in k and suppose that q is a prime dividing the index

(0393p: l’p). Then dp 0(mod q).

PROOF: rp = rp +,wlrp for all odd primes p splitting in k. But we know
that p fixes 0393p, and hence dp(03C90393p) ~ 0393p. Therefore, the index ( rp : fp)
divides d p, so that q 1 dp, as desired.

We can now prove Theorem 4.

PROOF oF THEOREM 4: As in the rank one case, we consider the

analogous fields:

the latter fields being defined for any first degree prime ideal q of k. For
a rational prime p which splits in k, we have E(Fp) = rp if 77P does not

split completely in any K q or Lq . This is used to handle error terms in the
proof.

The method of derivation is entirely analogous to the case r = 1 except
for some small variations. We shall therefore be brief in our outline of
the proof except for the estimation of the M( y, x ) term, where the
situation is different.

With obvious notation, we have
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where we choose y = (1/6(r + 1)) log x. Assuming an (r/(r + 1)) - GRH,
we easily find for the above choice of y,

and so it remains to estimate Mr(Y, 2x). Again on the (r/(r + 1)) -
GRH, we find

Utilising the Brun-Titchmarsh theorem as in §6, we find

Now, if for N() or q satisfying

N IV

q|(E(Fp): 0393p), then either q|(E(Fp): rp ) or q|(p, rp ). In the former
case, we find

and so by Lemma 17, the number of such primes is

In the latter case, we have q|(0393p : rp ) and so by Lemma 18, dp ~
0(mod q). Hence, p ~ 1(mod q). Therefore, up splits completely in K,,.
The number of such primes is easily seen to be O(x/q2) by an elemen-
tary estimation (see for example [13]). Hence, the number of primes
arising in the latter case is

We therefore find,

as desired. This completes the proof of Theorem 4.

§ 11. A lower bound f or Nr ( x )

If the rank of r is  6, we derive a lower bound for N0393(x) in the CM
case.
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For the sake of simplicity, let us first suppose that all the 2-division
points of E are rational and that Q(1 20393) is a proper extension of Q. Note
that it is necessarily abelian because of our assumption. We consider the
supersingular primes and so ap = 0. The following lemma is a familiar
consequence of the lower bound sieve method.

LEMMA 19: Let Sa(x) denote the number of primes p  x which are inert in
k, do not split in Q(1 20393), and are such that q |( p + 1), q prime, implies

PROOF: As the proof is standard, we only indicate the highlights. Indeed,
the fact that p does not split in k or Q(1 20393) just imposes additional
congruence conditions on p. Then utilising the lower bound sieve as
developed either by Bombieri [1], or Iwaniec [9] yields a lower bound
with an appropriate a. The key ingredient in both derivations is the

Bombieri-Vinogradov theorem for primes in arithmetic progression. The
former method yields our result for a = 6 - E while the latter gives it for
a = 1 4 - ~. The recent result of Fouvry-Iwaniec [3], where a variant of the
Bombieri-Vinogradov theorem is proved for an extended range, enables
us to deduce the lower bound for S03B1 for a = 4 + E.

REMARK: The simplest derivation of the lower bound sieve is given in
Bombieri [1]. Utilising a "twisted" version of the Bombieri-Vinogradov
theorem, one can remove the restriction that all the 2-division points be
rational. That is, if we impose certain non-abelian conditions corre-
sponding to a fixed extension of k, this results in twisting the Dirichlet
characters by appropriate non-abelian characters of k. Then, a

Bombieri-Vinogradov theorem can still be established for these " twisted"
progressions.

PROOF OF THEOREM 5: With a = 1 4 + ~, we find from Lemma 19, that
each prime p enumerated by S03B1(x) has the property that if

then q &#x3E; x" and hence 1 fp  xl -". By Lemma 14, the number of such
primes is
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for r  6. Hence, apart from O(x1-~) primes enumerated by S03B1(x), we
have that E(Fp) = 0393p. Therefore, if rank(0393)  6, then

It is possible to show a corresponding result for primes which split in
k. Indeed, the method is analogous to Bombieri [1] where we invoke the
analogous theorems for number fields. In particular, the Bombieri-

Vinogradov theorem for k as proved in Huxley [8] and the k-analogue of
Theorem 18 in [1] suffice to yield: for rank(0393)  6,

whenever 2 and 3 are inert in k. The log3x-term comes from the fact that
we consider the ray class fields k(q) in place of the cyclotomic extensions
and these have degree

which yields a corresponding factor of

in the lower bound sieve. We omit the details as it is entirely analogous to
[1] where a similar result is proved for a = 1 6 - ~. Certainly, an analogue
of the Fouvry-Iwaniec theorem in k would yield a corresponding result
for rk(0393)  4.

The interest in these results lies in the fact that they are the first
unconditional statements concerning N0393(x). They also stress the impor-
tance of the sieve method in problems of this kind. Indeed, the lack of
the analogue of the Bombieri-Vinogradov theorem is the main obstackle
in obtaining a lower bound in the non-CM case.

PROOF OF THE COROLLARY: We consider the primes enumerated by
S03B1(x), by Lemma 19, with a = 1 4 + ~. We have shown above that apart
from O(x1-~) primes of S03B1(x), E(Fp) is generated by rp provided rank
of 0393  6. Moreover, if E(Fp) is not cyclic for these primes, then it
contains a ( q, q ) group, where q &#x3E; x(1/4)+~. The number of such primes
is clearly



43

as q2|(p + 1). Hence, apart from O(x1-~) primes enumerated by S03B1(x),
we have that E(Fp) is cyclic and generated by fp, when rank of r  6.
Let F = f Pl, ... , P6}. We want to produce a single generator

with 0  ni  A . Let Q be a generator of E(Fp) and let us write

P, = alQ(mod p). As rp generates E(Fp), we must have

gcd(al, ... , a6, P + 1) = 1. The total number of possibilities for

(nI’ ... , n6) is (A + 1)6. Of these, the number satisfying

it is most ( A + 2)( A + 1)5/2. As p + 1 has odd prime divisors ql, q2, q3
&#x3E; X(1/4)+B we find that for each of these, there at most (A + 1)5 6-tuples
(n1, ... , n6) satisfying

because of the coprime condition.
Therefore, if

we can find (n1, ...,n6) such that 03A36l=1nlal is coprime to ( p + 1) which
serves to produce the single generator P of E(Fp). We find that A = 7
gives the desired result.

REMARK: The analogue of this result in the classical case is new and is of
interest in its own right. We therefore treat it in [5].

§12. Concluding remarks

Our first remark concerns the use of GRH in Theorem 1. It is well-known
that to treat the N(x, y ) term, we do not need GRH provided y is
chosen as a sufficiently small function of x tending to infinity as x - oo .
The GRH is not necessary to deduce N0393(x) ~ oo . A zero free region of
Re( s ) &#x3E; 5 allows us to deduce this result in line with Hooley’s remark in
the classical case [7]. This is effected by invoking a " twisted" Bombieri-
Vinogradov theorem in the place of the GRH.

The use of the GRH in handling the M( y, xi/2 ) term can be
eliminated if we had an analogue of the Brun-Titchmarsh theorem for
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non-abelian extensions. As such a theorem exists for the extensions Kq,
the GRH need not be applied to handle the error term arising from these
fields. In the case of Lq, such an upper bound seems to be very difficult
to establish unconditionally.
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