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In this note, we consider the special values of q-analogues of Dirichlet L-functions,
namely, the values of the functions

Lq(s, χ) =
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at positive integers s, where χ is a primitive Dirichlet character and q = e2πiτ is a com-
plex number such that |q| < 1. We prove that if χ(−1) = (−1)k and q is algebraic, then
Lq(k, χ) is transcendental. We also prove that if χ(−1) = (−1)k and j(τ) is algebraic,
then there exists a transcendental number ωτ which depends only on τ and is Q-linearly

independent with π such that (π/ωτ )k(L(1− k, χ)+2Lq(k, χ)) is algebraic. These results
can be viewed as an analogue of the classical result of Hecke on the arithmetic nature of
the special values L(k, χ) for χ(−1) = (−1)k .
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1. Introduction and Statement of the Main Result

Let N be a positive integer, and let χ be a primitive Dirichlet character modulo N .
We define the q-analogue of a Dirichlet L-function as

Lq(s, χ) =
∞∑
n=1


∑
d|n

χ
(n
d

)
ds−1


 qn.

It would seem more natural to define the q-analogue of a Dirichlet L-function
L(s, χ) by

Zq(s, χ) =
∞∑
n=1

χ(n)qn

(1 − qn)s
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since one immediately sees that limq→1(1 − q)sZq(s, χ) = L(s, χ) for �(s) > 1. In
what follows, we justify that the values Lq(s, χ) for integers s > 1, as normalized
above, can also be considered as q-analogues of the values of the classical Dirichlet
L-function L(s, χ). To this end, we need to recall the definition of the Stirling
numbers of the second kind, S(s, j), where s and j are positive integers such that
j ≤ s:

ms =
s∑
j=1

S(s, j)m(m− 1) · · · (m− (j − 1)).

We have

Lq(s, χ) =
∞∑
n=1

χ(n)
∞∑
m=1

ms−1qnm

=
∞∑
n=1

χ(n)
∞∑
m=0

(m+ 1)s−1qn(m+1)

=
s−1∑
j=1

(−1)s−1−jS(s− 1, j)j!
∞∑
n=1

χ(n)
∞∑
m=0

(
m+ j

j

)
qn(m+1)

=
s−1∑
j=1

(−1)s−1−jS(s− 1, j)j!
∞∑
n=1

χ(n)
qn

(1 − qn)j+1

=
s−1∑
j=1

(−1)s−1−jS(s− 1, j)j!Zq(j + 1, χ),

which clearly implies that limq→1(1 − q)sLq(s, χ) = (s − 1)!L(s, χ). We mention
here that this line of argument is used in [6, 10] where q-analogues of the values of
the Riemann zeta function are considered.

We are interested in the special values Lq(k, χ) when k is a positive integer. It
turns out that much like the case with the classical Dirichlet L-functions, the study
of these special values depends on whether χ(−1) = (−1)k or not. In this note, we
consider the case when χ and k have the same parity, and we obtain the following
results.

Theorem 1.1. Let N and k be positive integers, and let χ be a primitive Dirichlet
character of conductor N such that χ(−1) = (−1)k. If q is an algebraic number
with |q| < 1, then Lq(k, χ) is transcendental.

Theorem 1.2. Let N and k be positive integers. If k = 2, we assume that N �= 1.
Let χ be a primitive Dirichlet character of conductor N such that χ(−1) = (−1)k.
If q = e2πiτ and j(τ) ∈ Q, then there exists a transcendental number ωτ which
depends only on τ and is Q-linearly independent with π such that (π/ωτ )k(L(1 −
k, χ) + 2Lq(k, χ)) is algebraic.
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The point of departure in this work is the fact that Lq(k, χ) is essentially modular
of level N and weight k whenever χ and k share the same parity. In fact, the
arguments used to prove Theorems 1.1 and 1.2 could be easily modified to obtain
similar results for all modular forms of level N and weight k (see Theorem 3.1,
Corollary 3.3 and Theorem 4.3).

Much like the classical case, the problem becomes more challenging when χ and
k are not of the same parity in which case a more analytic approach is needed. This
topic is the subject of an ongoing project of the authors.

Throughout the paper, H denotes the upper half plane and Q is a fixed algebraic
closure of Q embedded into C. An element τ ∈ H is a CM point if Kτ := Q(τ) is
an imaginary quadratic field.

2. Notation and Preliminaries

In this section, we recall some definitions and collect some standard results that are
fundamental to the proof of Theorems 1.1 and 1.2.

For an even integer k > 2, the Eisenstein series of weight k is defined as

Gk(τ) :=
∑

(c,d)∈Z2

(c,d) �=(0,0)

1
(cτ + d)k

, τ ∈ H.

It is well known that Gk is a modular form of weight k for SL2(Z). Upon dividing
Gk(τ) by 2ζ(k), the leading coefficient in its Fourier expansion, one obtains the
(normalized) Eisenstein series

Ek(τ) := 1 − 2k
Bk

∞∑
n=1

σk−1(n)qn,

where q = e2πiτ , σk−1(n) =
∑

d|n
d>0

dk−1 and Bk is the kth Bernoulli number. We

note that

E2(τ) = 1 − 24
∞∑
n=1

σ1(n)qn

is not a modular form; rather it is a quasi-modular form of weight 2 for SL2(Z) (see
[5]). Nonetheless, we refer to E2 as the Eisenstein series of weight 2.

Let us now recall Nesterenko’s theorem on the algebraic independence of values
of the Eisenstein series,

E2(τ) = 1 − 24
∞∑
n=1

σ1(n)qn,

E4(τ) = 1 + 240
∞∑
n=1

σ3(n)qn,

E6(τ) = 1 − 504
∞∑
n=1

σ5(n)qn.
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The reader is referred to [9, Chap. 3] for a proof of this result.

Theorem 2.1. For any τ ∈ H, the transcendence degree of the field

Q(e2πiτ , E2(τ), E4(τ), E6(τ))

is at least 3. In particular, if q = e2πiτ is algebraic, then E2(τ), E4(τ) and E6(τ)
are algebraically independent.

Essential to our work are the Ramanujan cusp form ∆(τ) and the modular
invariant j(τ) given by

∆(τ) =
E4(τ)3 − E6(τ)2

1728

and

j(τ) =
E4(τ)3

∆(τ)
.

It is very well known that ∆ is a cusp form of weight 12 for the full modular group
and j is a weight zero modular function for the full modular group as well.

An immediate consequence of Theorem 2.1 is the following result which was
originally conjectured by Mahler in 1969 and first proved by Barré-Sirieix et al. [1].

Theorem 2.2. For any τ ∈ H, at least one of the two numbers e2πiτ and j(τ) is
transcendental.

Next, we present the formulae for the values of E2, E4 and E6 at the points
τ ∈ H with j(τ) ∈ Q. To this end, we adapt the discussion in [2, Sec. 2.1] leading
to Theorem 2.1 therein.

The Eisenstein series generalize to functions of a variable lattice L ⊂ C,

Gk(L) =
∑
ω∈L
ω �=0

1
ωk
, k > 2 even,

so that Gk(Lτ ) = Gk(τ) for Lτ := Z⊕ τZ and τ ∈ H. The elliptic curve corre-
sponding to a lattice L ⊂ C is given by the Weierstrass equation

EL : y2 = 4x3 − g2(L)x− g3(L),

where g2(L) = 60G4(L) and g3(L) = 140G6(L).
Given τ ∈ H such that j(τ) is algebraic, there exists a unique (up to an alge-

braic multiple) non-zero complex number ωτ for which g2(ωτLτ ) and g3(ωτLτ ) are
algebraic numbers. We have the formulae

E2(τ) = 3
ωτ
π

η(ωτ )
π

, (2.1)

E4(τ) =
3
4

(ωτ
π

)4

g2(ωτLτ ), E6(τ) =
27
8

(ωτ
π

)6

g3(ωτLτ ). (2.2)
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Notice that ωτ is a non-zero period of the elliptic curve Eτ := EωτLτ which is
defined over the algebraic numbers with j-invariant j(τ). If η denotes the quasi-
period function associated to Eτ , it follows by a fundamental theorem of Schneider
[12] (see also [11, Corollary 12.4]) that ωτ and η(ωτ ) are transcendental. Moreover, a
theorem of Chudnovsky [3] asserts that the numbers ωτ

π and η(ωτ )
π are algebraically

independent.
In what follows, we state two standard results pertaining to the structure of the

field of modular functions at level N . For proofs and an elaborate discussion on this
topic, the reader is referred to [4, Chap. 7; 13 Chap. 6].

Proposition 2.3. (a) The field of all modular functions of level N with Fourier
coefficients (with respect to e

2πiτ
N ) in Q(e

2πi
N ) is a finite Galois extension of Q(j).

(b) The field of all modular functions of level N with algebraic Fourier coefficients
(with respect to e

2πiτ
N ) is a finite Galois extension of Q(j).

Proposition 2.4. The field of all modular functions of level N is C(j, f0, f1), where

f0(τ) =
9E4(τ)

2π2E6(τ)
℘τ

( τ
N

)
, f1(τ) =

9E4(τ)
2π2E6(τ)

℘τ

(
1
N

)
.

The function ℘τ (z) that appears above is the Weierstrass ℘-function attached
to the lattice Lτ . More precisely,

℘τ (z) =
1
z2

+
∑

(m,n)∈Z2\{(0,0)}

(
1

(z +mτ + n)2
− 1

(mτ + n)2

)
, z ∈ C, z /∈ Lτ .

Finally, we recall some Eisenstein series of level N , weight k and character χ. If
k = 2, we assume that N > 1. We denote the trivial character modulo 1 by 1.
For any two primitive Dirichlet characters ψ modulo u and φ modulo v such that
uv = N and (ψφ)(−1) = (−1)k, we have the Eisenstein series

Eψ,φk (τ) = δ(ψ)L(1 − k, φ) + 2
∞∑
n=1

σψ,φk−1(n)e2πinτ ∈Mk(N,ψφ),

where δ(ψ) is 1 if ψ = 1 and 0 otherwise, and σψ,φk−1(n) =
∑

m|n φ( nm )ψ(m)mk−1 (see
[4, Theorems 4.5.1 and 4.5.2]). Here, we denote by Mk(N,ψφ) the space of weight
k modular forms of level N and nebentypus ψφ. Let χ be a primitive Dirichlet
character modulo N such that χ(−1)=(−1)k. Upon substituting ψ=1 and φ = χ,
we get

E1,χ
k (τ) = L(1 − k, χ) + 2Lq(k, χ),

where q = e2πiτ . For ease of notation, we shall henceforth write Ek,χ instead of
E1,χ
k . It is known that L(1 − k, χ) is algebraic for all k ≥ 1. In fact, we have

L(1 − k, χ) = −Bk,χ
k

= −N
k−1

k

N−1∑
c=0

χ(c)Bk(c/N),

where Bk(x) is the kth Bernoulli polynomial (see [4, §4.7]).
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3. Proof of Theorem 1.1

Let τ ∈ H be such that q = e2πiτ is algebraic. First, notice that

Lq(2,1) =
1 − E2(τ)

24
,

and so it follows immediately from Theorem 2.1 that Lq(2,1) is transcendental.
We may henceforth assume that N > 1 if k = 2. In view of the above discussion,
we see that Lq(k, χ) is transcendental if and only if Ek,χ(τ) is transcendental. We
proceed to show that if τ ∈ H is such that q = e2πiτ is algebraic, then Ek,χ(τ) is
transcendental.

Consider the function
E12

k,χ

∆k ; this is a weight zero modular function of level N
with Fourier coefficients in Q(e

2πi
N ). It follows from Proposition 2.3(a) that there

exists a non-zero polynomial

P (x) =
m∑
r=0

ar(j)xr ∈ Q[j][x]

such that P (Ek,χ(τ)12

∆(τ)k ) = 0 for any τ ∈ H. Here, we express the polynomial ar(y) ∈
Q[y] as

ar(y) =
dr∑
s=0

ar,sy
s.

For any positive integer l and any τ ∈ H, we have

0 = ∆(τ)lP
(
Ek,χ(τ)12

∆(τ)k

)

=
m∑
r=0

ar(j)Ek,χ(τ)12r∆(τ)l−kr

=
m∑
r=0

dr∑
s=0

ar,sj(τ)sEk,χ(τ)12r∆(τ)l−kr

=
m∑
r=0

dr∑
s=0

ar,sE4(τ)3sEk,χ(τ)12r∆(τ)l−kr−s.

If we choose l ≥ km + max(d0, d1, . . . , dm) so that only positive powers of ∆(τ)
appear in the above equations, then we get the following relation:

0 =
m∑
r=0

dr∑
s=0

l−kr−s∑
t=0

(−1)tar,s
1728l−kr−s

(
l − kr − s

t

)
Ek,χ(τ)12rE4(τ)3(l−kr−t)E6(τ)2t.

(3.1)

Now let τ ∈ H such that q = e2πiτ is algebraic. Notice that Ek,χ(τ) �= 0, for oth-
erwise a0(j(τ)) = 0 which would imply that j(τ) is algebraic contradicting Corol-
lary 2.2. If Ek,χ(τ) is algebraic, then Eq. (3.1) is an algebraic dependence relation
between E4(τ) and E6(τ). This yields a contradiction to Theorem 2.1.
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Using Proposition 2.3(b), the above proof is easily modified to obtain the fol-
lowing more general result.

Theorem 3.1. Let f be a non-zero modular form of level N and weight k with
algebraic Fourier coefficients. If τ ∈ H is such that e2πiτ is algebraic, then f(τ) is
transcendental.

A complementary result to Theorem 3.1 is shown by Chang [2]. More precisely,
this result [2, Corollary 2.3], in parts, states the following.

Theorem 3.2. Let Γ ⊂ SL2(Z) be a congruence subgroup and k be a positive
integer. Suppose that f is holomorphic on H so that f2 becomes a modular form of
weight k for Γ with algebraic Fourier coefficients. Then for any τ ∈ H such that
j(τ) is algebraic, f(τ) is transcendental unless f(τ) = 0.

Combining Theorems 3.2 and 2.2 with Theorem 3.1, one deduces the following
result.

Corollary 3.3. Let f be a non-zero modular form of level N and weight k with
algebraic Fourier coefficients. For any τ ∈ H such that f(τ) �= 0, at least two of

e2πiτ , j(τ), f(τ)

are transcendental.

4. Proof of Theorem 1.2

Let τ ∈ H be such that j(τ) is algebraic. Applying Eq. (3.1) and formula (2.1), we
get

0 =
∑
r,s,t

br,s,tg
l−kr−t
2 g2t

3 ((π/ωτ )kEk,χ(τ))12r ,

for some rational coefficients br,s,t. Hence, (π/ωτ )kEk,χ(τ) is an algebraic number
since it satisfies a non-trivial polynomial equation with algebraic coefficients. This
concludes the proof of Theorem 1.2.

Remark 4.1. If k = 2 and N = 1, then Lq(2,1) = 1−E2(τ)
24 . In view of formula

(2.1), π2

ωτη(ωτ ) (ζ(−1) + Lq(2,1)) is algebraic.

The proof of Theorem 1.2 is easily modified to prove a similar result for all
modular forms of level N (Theorem 4.3(a)). An additional result (Theorem 4.3(b))
is obtained upon specializing to the case of complex multiplication.

Lemma 4.2. Let τ ∈ H be a CM point. Then, f0(τ) and f1(τ) belong to the ray
class field of Kτ of conductor N .

Proof. Recall that f0(τ) = 9E4(τ)
2π2E6(τ)

℘τ ( τN ) and f1(τ) = 9E4(τ)
2π2E6(τ)

℘τ ( 1
N ). The first

Weber function wτ (z) is obtained by normalizing the Weierstrass ℘-function ℘τ (z)
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to be homogeneous of degree zero with respect to Lτ . More precisely, we have

wτ (z) = − 3
π2

E4(τ)E6(τ)
∆(τ)

℘τ (z).

It is a classical result that for a CM point τ ∈ H, the value of wτ at a non-trivial
N -division point of Lτ is algebraic, and together with j(τ) generate the ray class
field of Kτ of conductor N (see [7, Secs. 1 and 2, Chap. 10]). Using formula (2.2),
an easy calculation shows that f0(τ) = δwτ ( τN ) and f1(τ) = δwτ ( 1

N ) for some
algebraic number δ in Q(j(τ)). Hence, f0(τ) and f1(τ) belong to the ray class field
of Kτ of conductor N as desired.

Theorem 4.3. Let f be a non-zero modular form of level N and weight k with
algebraic Fourier coefficients. Let τ ∈ H be such that j(τ) is algebraic.

(a) There exists a transcendental number ωτ which depends only on τ and is
Q-linearly independent with π such that (π/ωτ )kf(τ) is algebraic.

(b) If τ is a CM point, let HN
τ be the ray class field of Kτ of conductor N . Then for

any automorphism σ ∈ Gal(Q/HN
τ ), we have ((π/ωτ )kf(τ))σ = (π/ωτ )kfσ(τ).

Proof. Consider the function g = f12

∆k which is clearly a modular function of level
N . To prove part (b), let τ ∈ H be a CM point. By Proposition 2.4, we have

g(τ) = P (j(τ), f0(τ), f1(τ))

for some polynomial P (x, y, z) =
∑

l,m,n am,n,lx
lymzl with algebraic coefficients. It

follows that

(π/ωτ )12kf12(τ) = β
∑
l,m,n

al,m,nj
l(τ)fm0 (τ)fn1 (τ),

for some algebraic number β in Q(j(τ)). Using Lemma 4.2, we see that for a Galois
automorphism σ ∈ Gal(Q/HN

τ ), we have

((π/ωτ )12kf12(τ))σ = β
∑
l,m,n

(al,m,n)σjl(τ)fm0 (τ)fn1 (τ).

Therefore, we get ((π/ωτ )kf(τ))σ = (π/ωτ )kfσ(τ).

As a side remark, we note that if τ is a CM point, then ωτ and π are algebraically
independent (see e.g., [11, Corollary 17.11]).

Corollary 4.4. Let N and k be positive integers. If k = 2, we assume that N �= 1.
Let χ be a primitive Dirichlet character of conductor N such that χ(−1) = (−1)k.
If q = e2πiτ and τ is a CM point, then for any automorphism σ ∈ Gal(Q/HN

τ ), we
have ((π/ωτ )k(L(1 − k, χ) + 2Lq(k, χ)))σ = (π/ωτ )k(L(1 − k, χσ) + 2Lq(k, χσ)).

Finally, we note that Theorem 4.3 is a generalization to higher levels of the main
theorem in [8]. Similar results for full level modular forms have been discussed in
[14] as well.
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