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The iterates of maps f : N → N given as a func-
tion of the digits of the number written in a fixed
base b are dealt with here. For such maps, the it-
erates end up in a finite collection of cycles. The
number and length of such cycles have arithmetic
significance.

1. Introduction

In preparing to write a congratulatory note to John
Meisel on his 89th birthday, one of the authors looked
at the volume The Penguin Dictionary of Curious and
Interesting Numbers by D Wells (1998) that Meisel had
given her earlier. For the number 89, it was noted that
among other properties, ‘Add the squares of the digits
of any number: repeat this process, and eventually the
number [sequence] either sticks to 1, or goes round this
cycle: 89-145-42-20-4-16-37-58-89 ... .’ It was this prop-
erty that set the authors on the study that resulted in
this article.

The first appearance of this intriguing phenomenon is
in an old problem of Steinhaus [1] which asks the fol-
lowing. Take any natural number and add the square of
its digits (in base 10). Iterating this procedure with the
new numbers obtained, show that either this procedure
leads to the number 1 or it will lead to the following
recurrent cycle:

89, 145, 42, 20, 4, 16, 37, 58, 89, ....

This problem is not difficult to solve. However, the
problem can be placed in a wider context, as we do,
and then new questions arise about the iterates of such
maps and some of these questions are still unsolved.
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It is conjectured that

about 1/7 of the set

of natural numbers

are `happy' though it

is not clear if such

numbers even have

a density.

El-Sedy and Siksek

showed that there

exist sequences of

consecutive happy

numbers of arbitrary

length.

What is fascinating is that something from recreational
mathematics can lead to some profound questions in dy-
namical systems of natural numbers. We explore this
here.

It is unlikely that the problem originates from Stein-
haus. It is equally unlikely that it comes from Reg Al-
lenby’s daughter as described on page 234 of [2] who
describes numbers that terminate at 1 as “happy num-
bers”. It is conjectured that about 1/7 of the set of
natural numbers are ‘happy’ though it is not clear if
such numbers even have a density. Can one obtain es-
timates for upper and lower densities? Seemingly, more
conjectures abound. What about the occurrence of con-
secutive happy numbers? Are there infinitely many such
pairs? How large are the gaps between happy numbers?
El-Sedy and Siksek [3] showed that there exist sequences
of consecutive happy numbers of arbitrary length. This
was subsequently generalized by Pan [4] who studied
the analogous question replacing base 10 with base b.
Any number theorist knows that such questions can be
asked ad infinitum but the value of these questions em-
anates from its fecundity to generate new mathematical
concepts and reveal interconnections with other parts of
mathematics.

The novelty of the question given here is its relation to
dynamical systems and number theory. This topic seems
to have been re-discovered many times before by many
authors as the listing of our references reveals. There
are at least five papers by Grundman and Teeple [5–9]
on this problem.

Let N be the set of natural numbers and f : N ∪ {0} →
N ∪ {0} be an arbitrary map. For each natural number
n written in base b:

n = a0 + a1b + · · · + ak−1b
k−1
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with k digits (in base b), define the map

φ(n) = f(a0) + f(a1) + · · · + f(ak−1).

Our first result is:

Theorem 1. There is a finite set S such that for every
natural number n, there is an r such that the rth iterate
φr(n) lies in S.

Remark. Here φr = φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸
r

times.

Proof. Since 0 ≤ ai ≤ b − 1, we can set

M = max
0≤a<b

f(a).

Then, φ(n) ≤ kM . Now,

k − 1 ≤ log n

log b
< k

so that

k =

[
log n

log b

]
+ 1.

We easily see that

φ(n) ≤ kM =

([
log n

log b

]
+ 1

)
M < n

if n ≥ n0 (say). Thus, for n sufficiently large, φ(n) < n.
In particular, there is a k0 such that if n has more than
k0 digits, then n ≥ n0 so that φ(n) < n. Let

S = {n : nhas ≤ k0 digits in base b} ∪ {φ(n) : n ≤ n0}.
Then, it is easily seen that S satisfies the requirements
of the theorem. �

2. The Herzberg Maps

For each natural number m, we consider the map

φm(n) = am
0 + am

1 + · · · + am
k−1.
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For these maps (first brought to the attention of the
second author by the first author, and hence the name),
termed Herzberg maps, more precise inequalities and
descriptions of S can be derived. Clearly,

φm(n) ≤ (b − 1)mk.

We begin with the following lemma.

Lemma 2. If k ≥ m + 2, then

(b− 1)mk ≤ bk−1 .

Proof. Consider the function

F (x) = bx−1 − x(b − 1)m.

Note that

F ′(x) = (log b)bx−1 − (b − 1)m > 0

if x ≥ m + 1. In other words, F (x) is increasing for
x ≥ m + 1. Thus,

F (x) ≥ F (m + 2) = bm+1 − (m + 2)(b − 1)m > 0

since

bm+1 = (b − 1 + 1)m+1

= (b − 1)m+1 + (m + 1)(b − 1)m + · · ·
> (b − 1)m+1 + (m + 1)(b − 1)m

= (m + 2)(b − 1)m.

In other words, (b − 1)mk ≤ bk−1 if k ≥ m + 2, as
claimed. This proves:

Theorem 2. If k ≥ m + 2, then

φm(n) < n,

that is, if n has more than m+2 digits, then φm(n) < n.
Thus, for the Herzberg maps, φm, we can take S = Sm
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to be the set of numbers with less than or equal to m+1
digits.

Remark. Theorem 2 reduces the determination of the
possible values of the iterations of φm to a finite calcula-
tion. In the special case b = 10 and m = 2, correspond-
ing to the original Steinhaus problem, we only need to
calculate the orbits of φ2 for all numbers less than 1000.

If b is small (e.g., b = 2 or 3), this is manageable since
we need to check in general b3 numbers. Thus, for b = 2,
we need to check the orbits of

1, 10, 11, 100, 101, 110, 111

and in each case we see that the iterations terminate at
1. In fact, for b = 2, we have a strengthening of Theorem
2.

Theorem 3. If b = 2, then φj
m(n) = 1 for all n and j

sufficiently large (depending on n and m).

Proof. In base 2, any digit is either 0 or 1. Thus, if

φm(n) =
∑

i

am
i

with
n =

∑
i

ai2
i,

then
φm(n) =

∑
i

ai <
∑

i

ai2
i = n

for n > 1 so that the iterates form a descending sequence
which eventually terminates at 1.

For b = 3 and m = 2, this is also manageable. We need
to check 27 numbers. A quick check shows that only two
possibilities arise: φ2 has 1, 5, and 8 as fixed points and
the cycle {2, 4} are the only possible terminal points of
the iterates. Now

n =
∑

i ai3
i ≡ ∑

i ai(mod 2)
≡ ∑

i a
2
i = φ2(n)(mod 2)
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For a base b

congruent to 1

modulo a prime p,

then the density of

numbers with 1 as

the terminal

number is at the

most 1/p.

because a2 ≡ a(mod 2). Thus, iterating we get,

φk
2(n) ≡ n(mod 2)

so that we deduce:

Theorem 4. If b = 3, then φ2(n) ≡ n(mod 2). In
particular, the terminal point is odd if and only if n is
odd.

The previous argument works for any odd base b. In-
deed, am ≡ a(mod 2) and we have

φm(n) =
∑

i

am
i ≡

∑
i

ai ≡
∑

i

aib
i(mod 2).

In other words, φm(n) and n have the same parity. This
leads to:

Theorem 5. Let the base b be odd. If the terminal point
of the iterates of φm(n) is 1, then n is odd. In other
words, the density of numbers with 1 as the terminal
point is at most 1/2.

This theorem can be extended to give the following.

Theorem 6. Let p be a prime number and suppose that
b ≡ 1 (mod p). If m is a power of p, then,

n ≡ φm(n)(mod p).

In particular, the density of numbers with 1 as the ter-
minal point is at most 1/p.

Proof. Since b ≡ 1(mod p),

n ≡
∑

i

ai(mod p).

On the other hand, by Fermat’s little theorem, we have
ap ≡ a (mod p) and by induction, apr ≡ a (mod p) for
any r ≥ 1. so that

φm(n) =
∑

i

am
i ≡

∑
i

ai ≡
∑

i

aib
i ≡ n(mod p),
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which completes the proof since the final assertion fol-
lows immediately on noting that the density of numbers
≡ 1 (mod p) is equal to 1/p. �

3. Fixed Points of φ2

The eventual cycles of numbers and their lengths for the
Herzberg maps seem to be of some interest. Cycles of
length 1 correspond to fixed points of these maps. In
the case of φ2, the fixed points are easily determined as
follows. We will show that if φ2(n) = n, then n < b2.
This helps us to reduce the search for fixed points.

Theorem 7. If φ2(n) = n, then n < b2.

Proof. Write

n = akb
k+ak−1b

k−1+· · ·+a1b+a0 = a2
k+a2

k−1+· · ·+a2
1+a2

0

so that

ak(b
k − ak) + · · · a1(b − a1) = a2

0 − a0.

The left-hand side is a sum of non-negative terms as
b > ai and so it is greater than or equal to ak(b

k − ak)
as ak �= 0. But a2

0 − a0 = a0(a0 − 1) < b(b− 1) = b2 − b.
Also,

ak(b
k − ak) ≥ bk − ak ≥ b2 − (b − 1) = b2 − b + 1

which is a contradiction. Thus, any fixed point n satis-
fies n < b2. �

This last result allows us to connect this problem to
the classical number theoretic problem of representing a
number as a sum of two squares. Indeed, from Theorem
7, if we want to determine the fixed points of φ2, we
need only consider numbers with two digits. Thus, n =
a0 + a1b and φ2(n) = n, if and only if

a2
0 + a2

1 = a0 + a1b .
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In other words, to

find the fixed

points of φ2, we

need only find all

the representations

of 1+b2 as a sum

of two squares and

from these

representations

determine

the fixed points.

This is equivalent to

a2
0 − a0 + a2

1 − a1b = 0

which means

(
a0 − 1

2

)2

+ (a1 − b2)
2

=
1

4
+

b2

4
,

that is, if and only if

(2a0 − 1)2 + (2a1 − b)2 = 1 + b2.

In other words, to find the fixed points of φ2, we need
only find all the representations of 1 + b2 as a sum of
two squares and from these representations determine
the fixed points. For example, if 1 + b2 = p is prime,
then as there is only one way to write a prime congruent
to 1 (mod 4) as a sum of two positive squares, we must
have a0 = 1 and a1 = 0 (since a1 = b is ruled out because
the digits are less than b) and this corresponds to n = 1
as being the only fixed point. In particular, for b = 10,
1 is the only fixed point since 101 = 1 + 102 is a prime.

This pretty result has been re-discovered by many. For
example, Beardon [10] showed this in 1998, although
there were others before him who also discovered it.

4. The Case k = 3

Iseki [11, 12] obtained the complete list of cycles for the
case k = 3 and b = 10. The cycles are of length 3
starting with 55 or 160, or length 2 starting with 136
or 919 or length 1 with 1, 153, 370 or 407. This was
obtained through extensive computer calculations.

5. Open Questions

As can be seen from the case k = 3, the questions of
how many cycles there are and what their lengths are,
are not transparent. However, even for k = 2 and b =
10, there seem to be several unresolved aspects. These
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questions have also risen in several later studies [13, 14].
For instance, for k = 2, (as noted earlier), Guy [2] calls
numbers that terminate at 1 ‘happy numbers’ and asks
“what is the density of such numbers”. It is unclear if
the density exists, though there have been some recent
papers in this context (see for example [4]).


