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1. Introduction

An arithmetical function (of a single variable) is a map f : N → C. In number theory 
and algebra, there is a plethora of such functions. For example, the number of divisors 
of a natural number n (denoted by d(n)), or the Euler totient function φ(n) or the 
von Mangoldt function Λ(n) that occurs in prime number theory, are all instances of 
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such functions. The study of such functions and their associated Dirichlet series forms a 
chapter of number theory often called multiplicative number theory.

A similar theory of arithmetical functions of several variables was initiated by 
Vaidyanathswamy [16] in 1927. Apart from sporadic and isolated results, no formal the-
ory has emerged and it seems timely to delineate such a theory. Several expositions will 
assist us in developing the theory such as the one by Tòth [15]. We will give a synoptic 
introduction to this theory in section 2 below.

In this note, we will derive a generalization of a limit theorem of Carmichael involving 
Ramanujan sums which naturally leads to certain arithmetical functions of several vari-
ables. Then, we apply the general theory to give a heuristic derivation of the Hardy and 
Littlewood prime k-tuple conjecture formulated by them using the more complicated 
circle method. We first recall their conjecture.

In 1923, Hardy and Littlewood [5] generalized the celebrated twin prime conjecture 
and formulated what is now called the prime k-tuple conjecture, which is the following. 
Suppose that d1, ..., dk are distinct integers, and let b(p) be the number of distinct residue 
classes (mod p) represented by the di. If b(p) < p for every prime p, the prime k-tuple 
conjecture asserts that the number of n ≤ x such that all the k numbers n+di are prime 
for 1 ≤ i ≤ k is asymptotic to

S(d1, ..., dk)
x 

(log x)k ,

where

S(d1, ..., dk) =
∏
p 

(
1 − b(p)

p 

)(
1 − 1 

p

)−k

, (1)

and the product is over all primes p. Hardy and Littlewood formulated their conjecture 
using the intuition provided by the circle method and essentially ignoring the contribu-
tion from the so-called minor arcs emanating from the technique and focusing only on 
the major arcs. Though the idea is simple, the analysis of the major arcs was compli-
cated and delicate. In 1999, Gadiyar and Padma [3] discovered an elementary heuristic 
to derive the case k = 2 (or the generalized twin prime conjecture) using a simple or-
thogonality principle for Ramanujan sums originally discovered by Carmichael [1]. In 
a recent paper, the authors along with Chaubey [2] have generalized the approach of 
Gadiyar and Padma and gave a heuristic derivation in the case k = 3. This led to the 
discovery of some new variants of Ramanujan sums that are of independent interest. 
Unfortunately, the generalization of this approach for the case when k > 3 leads to a 
calculation of exponential sums of several variables, which is not easy to solve. Therefore, 
in this paper, we adopt a different method which naturally leads to the study of certain 
arithmetical functions of several variables.
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First, let us recall the Ramanujan sum:

cq(n) =
∑

(a,q)=1

e2πian/q,

originally defined by Ramanujan in [10] in 1918. One can easily find a ‘closed’ formula 
for cq(n) using the Möbius function. Indeed, we have

cq(n) =
∑
d|q
d|n

dμ(q/d). (2)

We refer to [6,8] and [10] for the general properties of Ramanujan sums. Ramanujan [10] 
obtained the trigonometric series representations of normalized arithmetical functions of 
n in the form of an infinite series

∞ ∑
q=1 

aqcq(n). (3)

These series are now called the Ramanujan-Fourier series. The existence and convergence 
properties of these series are subjects that generate significant interest. A comprehensive 
review paper by Lucht [7] discusses the Ramanujan expansion of arithmetical functions. 
Moreover, notable monographs in this direction include the works of [11] and [14].

2. A synoptic view of arithmetical functions of several variables

An arithmetical function of several variables is a map f : Nk → C. We will use vector 
notation as much as possible. Thus n will denote the k-tuple (n1, · · · , nk). We will say 
the vector d divides n (and write d|n) if di|ni for 1 ≤ i ≤ k. The constant function 1
is simply the function that assigns the value 1 for every k-tuple. We will write n/d to 
mean the vector (n1/d1, ..., nk/dk).

We define the Möbius function μ by

μ(n) := μ(n1) · · ·μ(nk),

where μ is the classical Möbius function. We then have the generalization of the Möbius 
inversion formula:

f(n) =
∑
d|n

g(d) ⇐⇒ g(n) =
∑
d|n

μ(d)f(n/d).

There are several ways to generalize the notion of a multiplicative function of a single 
variable to the several variable context. In 1931, Vaidyanathaswamy [16] was the first to 
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give the definition that is suitable for our purposes. Selberg [13] seems to have rediscov-
ered this definition much later in 1977 in his paper dealing with extensions of the large 
sieve.

We say a function f is multiplicative if

f(m1, ...,mk)f(n1, ..., nk) = f(m1n1, ...,mknk)

provided (m1 · · ·mk, n1 · · ·nk) = 1. With this definition, it is not true that if we fix 
one component, n1 (say), then f(n1, ..., nk) is a multiplicative function in the remaining 
variables n2, ..., nk. (Selberg says otherwise on pages 233-234 in his paper [13] and as he 
does not use this, the results of his paper are unaffected.) For instance, the Ramanu-
jan sum cq(n) is a multiplicative function of q for fixed n but is not a multiplicative 
function of n for fixed q. However, cq(n) is a multiplicative function of two variables 
q, n as we have defined it above using Vaidyanathaswamy’s definition. In particular, μ is 
multiplicative and generally, a multiplicative function f is completely determined by its 
values f(pv1 , ..., pvk) for every prime p and every tuple (v1, ..., vk) ∈ Nk.

It is not hard to see that if f and g are multiplicative, then so is their Dirichet 
convolution f � g defined as

(f � g)(n) =
∑
d|n

f(d)g(n/d).

For multiplicative functions f , we can introduce a formal Dirichlet series of several 
variables along with an Euler product:

∞ ∑
n=1

f(n1, ..., nk)
ns1

1 · · ·nsk
k

=
∏
p 

( ∞ ∑
v1,...,vk=0

f(pv1 , ..., pvk)
pv1s1 · · · pvksk

)
.

3. Generalized Chinese remainder theorem

We will use the following variant of the classical Chinese remainder theorem. The 
familiar version is often stated when the d1, ..., dk are pairwise coprime. It is a simple 
exercise to derive this general version from the classical version (see for example, the 
inductive proof on page 155 of [12]).

Lemma 3.1. For a fixed set T = {a1, · · · , ak} and d1, · · · , dk ∈ Z, the system

x ≡ a1 mod d1
...

x ≡ ak mod dk

(4)

has a solution if and only if (di, dj)|(ai − aj) for all 1 ≤ i, j ≤ k. When the solution 
exists, it is unique modulo [d1, · · · , dk].
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Proof. Our proof is direct and more conceptual than the one in [12]. For a prime p, 
let vp(n) be the largest power of p dividing n. Then, the system of congruences (4) is 
equivalent to x ≡ ai (mod pvp(di)) for 1 ≤ i ≤ k and all primes p dividing the lcm 
[d1, ..., dk]. It therefore suffices to prove the theorem when all the di are the powers of a 
single prime p. The result is now self-evident since the existence of a solution implies that 
(di, dj)|(ai−aj) for all 1 ≤ i, j ≤ k. For the converse, the condition that (di, dj)|(ai−aj)
for all 1 ≤ i, j ≤ k implies the compatibility of the ai. That is, if vp(di) ≤ vp(dj), then 
aj is indeed a “lift” (mod dj) of ai as required. �

From now on, we will fix T and define a function

g(d1, . . . , dk) :=
{

1 if (4) has a solution, 
0 otherwise.

(5)

4. Higher convolutions of Ramanujan sums

In 1932, Carmichael [1] discovered the following ‘orthogonality’ property of Ramanu-
jan sums: for h �= 0,

lim
x→∞

1 
x

∑
n≤x

cr(n)cs(n + h) =
{
cr(h) if r = s

0 otherwise.
(6)

We will generalize this limit theorem in the following way. Let T = {a1, a2, ..., ak} be a 
given multiset of integers. Then, the limit

f(q1, ..., qk) := lim
x→∞

1 
x

∑
n≤x

cq1(n + a1) · · · cqk(n + ak),

exists and can be evaluated as follows. From (2), we have

f(q1, ..., qk) = lim
x→∞

1 
x

∑
d1|q1,...,dk|qk

d1μ

(
q1
d1

)
· · · dkμ

(
qk
dk

) ∑
n≤x

d1|a1+n,··· ,dk|ak+n

1.

Therefore, from (5) we have

f(q1, ..., qk) :=
∑

d1|q1,...,dk|qk

d1μ

(
q1
d1

)
· · · dkμ

(
qk
dk

)
g(d1, ..., dk)
[d1, ..., dk] 

. (7)

Since g(d1, ..., dk) is multiplicative, we see that f(n1, ..., nk) is multiplicative. This 
proves the following generalization of Carmichael’s theorem.
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Theorem 4.1. For fixed integers a1, · · · , ak and q1, · · · , qk, we have

lim
x→∞

1 
x

∑
n≤x

cq1(n+a1) · · · cqk(n+ak) =
∑

d1|q1,...,dk|qk

d1μ

(
q1
d1

)
· · · dkμ

(
qk
dk

)
g(d1, ..., dk)
[d1, ..., dk] 

.

Since the function on the right-hand side of the above theorem is a multiplicative 
function, it suffices to determine the values f(pv1 , ..., pvk) for a fixed prime p. For our 
application, we need this when all the vi are less than or equal to 1. We will derive the 
required formula in the next section.

It is worth remarking that in the case k = 2, our Theorem 4.1 agrees with Carmichael’s 
theorem. Indeed, to verify this, we need to compute explicitly f(q1, q2) and ascertain its 
identity with Carmichael’s limit. That is, we must check f(q1, q2) = 0 if q1 �= q2 and 
cq(h) when q1 = q2 = q. By multiplicativity, it suffices to determine f(pa, pb) for a fixed 
prime p. Without any loss of generality, we may suppose that a ≤ b. The sum (7) has 
only four terms corresponding to d1 = pa or pa−1 and d2 = pb or pb−1. In the case 
a ≤ b− 1, the summation is easily checked to be zero. In the case a = b, the summation 
is pa − pa−1 = cpa(h) since pa|h by the compatibility condition of Lemma 3.1 to ensure 
a solution.

5. Explicit evaluation of f(pv1 , ..., pvk)

We define an equivalence relation on {1, 2, ..., k} using T . We say i ∼ j if and only if 
ai ≡ aj (mod p). This partitions T into equivalence classes Ci. Let b(p) be the number 
of equivalence classes. Note that this induces an equivalence relation on any subset S of 
{1, 2, ..., k} and the corresponding equivalence classes for S are simply S ∩ Ci (some of 
which can be empty).

Lemma 5.1. For 0 ≤ vi ≤ 1 for 1 ≤ i ≤ k, we have

f(pv1 , ..., pvk) = (−1)|S| + (−1)|S|

p 

∑
Ci

[(1 − p)|Ci∩S| − 1]

where S = {i : vi = 1}.

Proof. As remarked earlier, the equivalence relation on T induces an equivalence relation 
on S. From (7), we see that in the sum for f(pv1, ..., pvk), the contribution from d1 =
d2 = · · · = dk = 1 is (−1)|S|. For the remaining tuples of divisors (d1, ..., dk), we must 
have di = p for some i ∈ S. If dj = p for some other j �= i, then we must have j equivalent 
to i by the definition of our equivalence relation. In other words, the remaining sum can 
be re-written as

∑
Ci

|Ci∩S|∑
j=1 

(
|Ci ∩ S|

j

)
pj−1(−1)|S|−j = (−1)|S|

p 

∑
Ci

[(1 − p)|Ci∩S| − 1]
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which completes the proof. �
Theorem 5.2. Let T (mod p) have size b(p). Then,

∑
v1,...,vk≥0

μ(pv1) · · ·μ(pvk)
φ(pv1) · · ·φ(pvk) f(pv1 , ..., pvk) =

(
1 − b(p)

p 

)(
1 − 1 

p

)−k

Proof. To evaluate the sum on the left hand side, we need only consider the terms with 
vi ≤ 1 for all 1 ≤ i ≤ k because the Möbius function vanishes otherwise. We insert our 
formula for f(pv1 , ..., pvk) from Lemma 5.1 into the sum to get

∑
v1,...,vk≥0

μ(pv1) · · ·μ(pvk)
φ(pv1) · · ·φ(pvk) 

{
(−1)|S| + (−1)|S|

p 

∑
Ci

[(1 − p)|Ci∩S| − 1]
}
,

where S = {i : vi = 1} (as before). The first part of the sum is easily evaluated:

∑
v1,...,vk≥0

μ(pv1) · · ·μ(pvk)
φ(pv1) · · ·φ(pvk) (−1)|S| =

k∑
j=0 

(
k

j

)
1 

(p− 1)j =
(

1 + 1 
p− 1

)k

. (8)

The second part of the sum is a bit more delicate. Let [k] denote the set {1, 2, ..., k}. 
Since the product of the Möbius functions is (−1)|S| and the product of the φ functions 
is (p− 1)|S|, we get

1 
p

∑
∅�=S⊆[k]

1 
(p− 1)|S|

∑
Ci

[(1 − p)|Ci∩S| − 1].

We interchange the sums to get

1 
p

∑
Ci

∑
∅�=S⊆[k]

1 
(p− 1)|S| [(1 − p)|Ci∩S| − 1].

We examine the inner sum. Writing A = Ci∩S we see that S = A�B (where � denotes 
disjoint union) and B ⊆ [k]\Ci. Since |S| = |A| + |B|, the sum becomes

1 
p

∑
Ci

∑
A⊆Ci

(1 − p)|A| − 1
(p− 1)|A|

∑
B⊆[k]\Ci

1 
(p− 1)|B| .

The innermost sum is equal to

(
1 + 1 

p− 1

)k−|Ci|
.

Now
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∑
A⊆Ci

(1 − p)|A| − 1
(p− 1)|A| = −

(
1 + 1 

p− 1

)|Ci|
,

because

∑
A⊆Ci

(1 − p)|A|

(p− 1)|A| =
∑
A⊆Ci

(−1)|A| = 0.

Putting everything together gives

−1 
p

∑
Ci

(
1 + 1 

p− 1

)|Ci| (
1 + 1 

p− 1

)k−|Ci|
= −b(p)

p 

(
1 + 1 

p− 1

)k

.

Combining this with the first part (8) gives the desired result:

(
1 + 1 

p− 1

)k (
1 − b(p)

p 

)
=

(
1 − b(p)

p 

)(
1 − 1 

p

)−k

. �

6. A heuristic derivation of the Hardy-Littlewood k-tuple conjecture

We can now combine the above discussion and give the promised heuristic derivation 
of the Hardy-Littlewood prime k-tuple conjecture. By partial summation, the conjecture 
is easily seen to be equivalent to

∑
n≤x

Λ(n + a1) · · ·Λ(n + ak) ∼ x
∏
p 

(
1 − b(p)

p 

)(
1 − 1 

p

)−k

, (9)

where b(p) is the size of the image of T mod p.
Our objective is to present a heuristic proof of (9) by employing the convolution of 

Ramanujan sums. First, we observe that

Υ :=
∑
n≤x

Λ(n + a1) · · ·Λ(n + ak) ∼
∑
n≤x

φ(n + a1)
n + a1

· · · φ(n + ak)
n + ak

Λ(n + a1) · · ·Λ(n + ak).

To see this, we need only note that the sum on the left hand side is negligible if n ≤ x1−ε

for any ε > 0. Indeed,
∑

n≤x1−ε

Λ(n + a1) · · ·Λ(n + ak)  x1−ε(log x)k  x1−ε′ ,

for any ε′ with 0 < ε′ < ε < 1. Similarly, the sum on the right hand side can also be 
restricted to x1−ε ≤ n ≤ x and in this interval, we have

φ(n + ai)
n + ai

Λ(n + ai) ∼ Λ(n + ai).
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This modification enables us to use Hardy’s formula (see for example, [9]):

φ(n)Λ(n)
n 

=
∞ ∑
q=1 

μ(q)
φ(q) cq(n), (10)

where the summation is over squarefree q. Next, inserting the Ramanujan-Fourier series 
of Hardy from equation (10) and ignoring issues of convergence, we have upon using 
Theorem 4.1,

Υ
x 

∼
∞ ∑

q1,··· ,qk=1

μ(q1) · · ·μ(qk)
φ(q1) · · ·φ(qk) 

f(q1, · · · , qk).

Therefore, the Hardy-Littlewood constant is equal to

∞ ∑
q1,...,qk=1

μ(q1) · · ·μ(qk)
φ(q1) · · ·φ(qk) 

f(q1, ..., qk). (11)

We want to show that this agrees with the classical evaluation of this constant as

∏
p 

(
1 − b(p)

p 

)(
1 − 1 

p

)−k

,

where b(p) is the size of the image of T (mod p).
By multiplicativity, the series in (11) can be written as the Euler product:

∏
p 

⎛
⎝ ∑

v1,...,vk≥0

μ(pv1) · · ·μ(pvk)
φ(pv1) · · ·φ(pvk) f(pv1 , ..., pvk)

⎞
⎠ .

We now examine the p-Euler factor and evaluate explicitly f(pv1 , ..., pvk) for 0 ≤ vi ≤ 1
for 1 ≤ i ≤ k. Let us henceforth fix p, then from Theorem 5.2, we obtain the required 
result.

7. Concluding remarks

It would be of some value to develop a theory of truncated Ramanujan expansions in 
the multi-variable context. This was initiated in [4] in the single variable case. Such a 
line of research will have applications in the study of general convolution sums, perhaps 
not immediately to convolutions of the von Mangoldt function as it occurs in the prime 
k-tuple conjecture.
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