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BERTRAND’S POSTULATE FOR NUMBER FIELDS

BY

THOMAS A. HULSE (Waterville, ME) and M. RAM MURTY (Kingston, ON)

Abstract. Consider an algebraic number field, K, and its ring of integers, OK . There
exists a smallest BK > 1 such that for any x > 1 we can find a prime ideal, p, in OK

with norm N(p) in the interval [x,BKx]. This is a generalization of Bertrand’s postulate
to number fields, and in this paper we produce bounds on BK in terms of the invariants
of K from an effective prime ideal theorem due to Lagarias and Odlyzko (1977). We also
show that a bound on BK can be obtained from an asymptotic estimate for the number
of ideals in OK with norm less than x.

1. Introduction. Predating the prime number theorem, Bertrand’s
postulate was first put forward by Joseph Bertrand in 1845 and proved
by Chebyshev in 1850. It states that, for any x > 1, a prime number can
be found in the interval [x, 2x]. This is generally considered to be a much
weaker result than the prime number theorem, as one can use the asymptotic
behavior of the prime counting function, π(x), to show that for any A > 1
there exists xA > 1 such that for any x > xA we have π(Ax) − π(x) > 0,
and so there is a prime number in the interval [x,Ax]. Thus, in principle,
one can use the prime number theorem to bound xA from above and find a
lowest possible xA by employing a finite search. Indeed, Betrand’s postulate
itself can be recovered using more precise upper and lower bounds for π(x),
like those due to Dusart [2] which arise from numerical verification of the
Riemann hypothesis for the first 1.5 · 109 zeros.

Apart from historical interest, however, one of the main benefits of Ber-
trand’s postulate is that it gives information about the distribution of primes
when x is small. Furthermore, it accomplishes this without requiring infor-
mation about the zeros of the Riemann zeta function. Indeed, Bertrand’s
postulate benefits from having many short and often elegant, elementary
proofs [1, 9, 6].

One may similarly investigate a variant of Bertrand’s postulate for the
distribution of prime ideals in the ring of integers, OK , of an algebraic
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number field, K. That is, for general K, we ask if we can find B such that
for all x > 1 there exists a prime ideal p in OK with norm N(p) ∈ [x,Bx].
Indeed, if such a B exists for any given number field we can define the
Bertrand constant, BK , to be the best such B,

(1.1) BK := min{B > 1 | ∀x > 1, ∃p ⊆ OK , N(p) ∈ [x,Bx]}.
We can define BK to be a minimum instead of an infimum, for if BK is the
infimum of the non-empty set then for any x > 1 we can find a prime ideal
with norm in [x, (BK + ε)x] for any ε > 0. Since the norms of ideals are
rational integers, we can take ε > 0 small enough so that there must be a
prime ideal with norm in [x,BKx], and thus BK is an element of the above
set.

We know that BK must exist due to the prime ideal theorem, first proven
by Landau in 1903, which states that for x > 1,

(1.2) πK(x) ∼ x

log x
,

where πK(x) counts the number of prime ideals in OK with norm less than x.
Generally, this theorem is given in the more effective form

(1.3) πK(x) = Li(x) +OK(xe−cK
√
log x),

where cK > 0 is dependent on K.
Our BK and other similarly defined constants would allow us to pro-

duce analogues of Bertrand’s postulate for the number field K, and though
questions about the distribution of prime ideals are of great interest, it ap-
pears no attention has been paid to this problem outside of the case where
K = Q. We would like to investigate BK for a non-trivial number field and
the dependence it has on the invariants of the number field.

As with the proof of the prime number theorem, the prime ideal theorem
is obtained by finding a zero-free region of the Dedekind zeta function, ζK(s),
which is defined for <(s) > 1 as

(1.4) ζK(s) :=
∑

a⊆OK
a6=(0)

1

N(a)s
=
∞∑
n=1

cK(n)

ns
,

where a are the ideals in OK , and has a meromorphic continuation to all
s ∈ C. Like the Riemann zeta function, ζK(s) also has a functional equation
and has only one pole at s = 1, which is simple with residue ρK . This residue
is related to the invariants of K by the formula

(1.5) ρK =
2r1(2π)r2hKRK

wK
√
|∆K |

.

Here ∆K is the discriminant of K, hK is its class number, RK is its regulator,
wK is the number of roots of unity contained in K, and r1 and r2 are the
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numbers of real and complex embeddings of K, respectively. Moreover, let
d = [K : Q].

In 1977, Lagarias and Odlyzko [5] were able to state effective versions
of the Chebotarev density theorem, which generalizes the prime ideal theo-
rem to prime ideals whose Frobenius automorphisms lie in fixed conjugacy
classes. This in turn specializes to an effective version of the prime ideal
theorem, which we formulate here:

Theorem 1.1 (Lagarias, Odlyzko [5]). If K is a number field, there
exist effectively computable positive constants c1 and c2, independent of K,
such that if x ≥ exp(10d(log |∆K |)2) then

(1.6) |πK(x)− Li(x) + (−1)εK Li(xβ)| ≤ c1x exp

(
−c2

√
log x

d

)
,

where Li(xβ) only occurs if there exists an exceptional real simple zero, β,
of ζK(s) such that 1− (4 log |∆K |)−1 < β < 1. Also εK = 0 or 1, depending
on K.

If the Generalized Riemann Hypothesis (GRH ) holds for ζK(s) then there
exists an effectively computable positive absolute constant c3 such that for
x > 2,

(1.7) |πK(x)− Li(x)| ≤ c3x1/2 log(|∆K |xd).
By using the above estimates, we can make an effort to determine when

πK(Ax)−πK(x) > 0. The possible exceptional zero complicates what would
otherwise be a fairly straightforward computation, and so we make use of
an upper bound due to Stark [10], which itself depends on whether or not
K is a normal field extension. The proof of the following theorem can be
found in Section 2.

Theorem 1.2. Let K 6= Q be a finite field extension of Q such that
there exists a tower of fields Q = K0 ⊂ K1 ⊂ · · · ⊂ Km = K where each Ki

is a finite normal extension of Ki−1. For any A > 1 there exists cA > 0,
dependent only on A, such that for x > exp(cAd(log |∆K |)2), there is a prime
ideal p in OK with N(p) ∈ [x,Ax].

Now suppose that K 6= Q is a finite extension of Q, but the tower of nor-
mal field extensions does not exist. Let log |∆K | � d(log d)α for α ∈ [0, 1].
For any A > 1 there exists cA > 0, dependent only on A, such that for
x > exp(cAd(log d)2−2α(log |∆K |)2), there is a prime ideal p in OK with
N(p) ∈ [x,Ax].

Finally, suppose only that K 6= Q is a number field. If the GRH holds
then for any A > 0 there exists cA, dependent only on A, such that for

x > cA(log |∆K |+ d)2 log4(log |∆K |+ d)

there is a prime ideal p in OK with N(p) ∈ [x,Ax].
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Remark 1.3. We note from Minkowski’s bound and Stirling’s approxi-
mation that it is always the case that log |∆K | � d. So by specifying that
log |∆K | � d(log d)α for α ∈ [0, 1] we are not excluding any cases.

Since increasing A means that we can decrease cA, we can eventually get
the following corollary extending Bertrand’s postulate to number fields.

Corollary 1.4. There exists an absolute constant c such that for any
number field K 6= Q, we have:

(a) BK ≤ exp(cd(log |∆K |)2) if there exists a tower of fields Q = K0 ⊂
K1 ⊂ · · · ⊂ Km = K where each Ki is a finite normal extension of
Ki−1.

(b BK ≤ exp(cd(log d)2−2α(log |∆K |)2) if the tower of fields does not
exist and when log |∆K | � d(log d)α for α ∈ [0, 1].

(c) BK ≤ c(log |∆K |+ d)2 log4(log |∆K |+ d) if the GRH holds,

The proof of the effective prime ideal theorem is quite technically in-
volved. Since some of our interest in Bertrand’s postulate is due to the
brevity and elegance of the proofs for it, one would hope that in general-
izing Bertrand’s postulate to number fields we could obtain a comparable
result using a less elaborate argument and without requiring information
about the zeros of ζK(s).

Let

(1.8) f1(x,K) :=
∑
n≤x

cK(n)− ρKx,

where, as above, cK(n) are the coefficients of ζK(s), and ρK is the residue of
ζK(s) at s = 1. That is, f1(x,K) is the error term for the number of ideals in
OK with norm less than x. Information about f1(x,K) alone is sufficient to
obtain a generalized Bertrand postulate for a finite field extension K of Q.
We prove the following result in Section 3.

Theorem 1.5. Let K be a number field, as above. Suppose for fixed
0 < α < 1 that there exists some CK > 0, determined by the invariants of
K, such that

(1.9) |f1(x,K)| ≤ CKxα

for all x ≥ 1. Then for any x > 1, there exists a prime ideal p in OK such
that N(p) ∈ [x,Ax] whenever

(1.10) logA� CK
ρK

d+ 2

1− α
+ d.

Remark 1.6. It is common notation that f(x) � g(x) indicates that
|f(x)| ≤ Cg(x) for particular values of x for some independent constant C.
Throughout this work, however, we will say f � g if there exists some
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constant C, which can be chosen independently of any of the variables or
invariants that may define f and g, such that |f | ≤ C|g|, unless otherwise
specified. We say that f �d g if C has some dependence on d, and similarly
for other variables. Our big-O notation reflects this as well. For example, we
say f = g +Od(x) if (f − g)�d x.

In 1972, by effectivizing Landau’s theorem, Sunley [11] was able to derive
a completely effective bound for |f1(x,K)|.

Theorem 1.7 (Sunley [11]). For f1(x,K) as in (1.8), we have

(1.11) |f1(x,K)|<e56d+5(d+1)5(d+1)/2|∆K |1/(d+1)(logd |∆K |)x(d−1)/(d+1).

Combining this with Theorem 1.5, and employing a theorem due to
Friedman [3] which implies that

(1.12)
RK
wK
≥ 9

100

for all number fields K, we are able to produce the following corollary as a
proof of concept.

Corollary 1.8. Let K be a number field with Bertrand constant BK .
Then

(1.13) logBK �
e

5
2
(d+9/5) log(d+1)+(56−log 2)d

hK
|∆K |1/2+1/(d+1) logd |∆K |+ d,

where the implied constant is absolute.

This result is significantly worse than Corollary 1.4, but it has an advan-
tage that the absolute constant is much easier to compute from the proof
of Theorem 1.5. Indeed, we can do better than Sunley if we restrict our
attention to just growth in the |∆K | aspect rather than attempting a hybrid
bound in all the invariants of K.

With this in mind, we consider the following proposition.

Proposition 1.9. For all x ≥ 1 and small δ > 0 such that 1/(3d) > δ
we have

(1.14)
∑
n≤x

cK(n) = ρKx+Od,δ
(
(ζK(1 + δ/2)|∆K |δ + 1)x1−δ/2

)
.

This asymptotic is obtained almost directly from the work of Kuo and
Murty [4], albeit in such a way that the contribution from the discriminant
is mitigated at the expense of growth in x. The proof of it can be found
in the Appendix. While we know that ζK(1 + δ/2) ≤ ζd(1 + δ/2) and so
ζK(1 + δ/2) can be absorbed into the implied constant, we also know that

(1.15) lim
δ→0

δ

2
ζK

(
1 +

δ

2

)
→ ρK ,
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though it is not obvious how small δ needs to be relative to the invariants
of K for this to be a good approximation. Still, we heuristically expect
ζK(1 + δ/2) to cancel the ρK in (1.10) in exchange for a large contribution
due to δ, so we keep track of it. The obstacle to understanding the bound
in the δ and d aspects is finding a good effective estimate for the implied
constants for the bound cK(n)�δ,d n

δ.
Inputting (1.14) into (1.10), and again employing a theorem due to Fried-

man [3], we are able to produce the following corollary.

Corollary 1.10. Let K be a number field with Bertrand constant BK .
Then

(1.16) BK ≤ exp

(
Md,δ

(
ζK(1 + δ/2)|∆K |δ

ρK
+
|∆K |1/2

hK

))
for some constant Mδ,d > 0 depending on d and δ where 1/(3d) > δ > 0.

The size of |∆K |1/2/hK depends on the existence of a Siegel zero, but
in the case of totally complex number fields it is heuristically likely to grow
like log |∆K |. If we could indeed let ζK(1 + δ)/ρK = Oδ(1) then we would
be left with the |∆K |δ term as a main term. So if we hope to match the
result in Corollary 1.10 in the ∆K aspect in any case, we would need to let
δ = 2 log(log |∆K |)/log |∆K |, but then we would be limited by the lack of
effectiveness in the δ aspect.

Though the result of Theorem 1.5 and our current bounds for |f1(x,K)|
are apparently worse than those that can be obtained from careful analysis
of the effective prime ideal theorem, one would hope that they might be put
to better use in certain special cases, such as for quadratic fields. This has
some overlap with the older problem of Bertrand’s postulate for primes in
arithmetic progressions, and may be an avenue for further research. A thor-
ough treatment of this topic can be found in Moree [7].

2. Bertrand’s postulate from the prime ideal theorem

Proof of Theorem 1.2. First suppose that no exceptional zero exists. By
Theorem 1.1 we only have to show that for any A > 1 there exists cA,
independent of |∆K | and d, such that

(2.1) π(Ax)− π(x) > Li(Ax)− Li(x)− 2c1Ax exp

(
−c2

√
log x

d

)
> 0

for x ≥ exp(cAd(log |∆K |)2). This is also the case if an exceptional zero
exists and εK = 1 since Li(x) is an increasing function for x > 2. From
partial integration we have

(2.2) Li(Ax)− Li(x) =
Ax

logAx
− x

log x
+

Ax�

x

dt

(log t)2
,
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so it suffices to show that

(2.3) A
log x

logAx
> 1 + 2Ac1(log x) exp

(
−c2

√
log x

d

)
.

Since only A determines how large x needs to be for A log x/logAx to be
larger than 1, we need only show that we can make the exponential term
sufficiently small by controlling the size of cA independently of d and ∆K .
Indeed, let x = exp(cAd(log |∆K |)2). Then

(2.4) 2Ac1(log x) exp

(
−c2

√
log x

d

)
= 2Ac1(cAd(log |∆K |)2)|∆K |−c2

√
cA .

Taking advantage of Minkowski’s bound and Stirling’s approximation we
can say that

(2.5) d|∆K |−1 ≤
(

4

π

)d (d!)2

d2d−1
∼ 2π

(
4

πe2

)d
as d gets large. Thus the exponential term in (2.4) will decrease as cA in-
creases past a point that can be chosen independently of K, and so we can
say that for x > exp(cAd(log |∆K |)2),

(2.6) (log x) exp

(
−c2

√
log x

d

)
≤ cAd(log |∆K |)2|∆K |−c2

√
cA .

We see the upper bound can be made uniform in K and also vanishes as
cA →∞, giving the proposition in this case.

For the case of the General Riemann Hypothesis, we follow the same
reasoning but replace (1.7) with (1.6). So when

x > cA(log |∆K |+ d)2 log4(log |∆K |+ d),

it suffices to observe, via substitution, that the term

(2.7)
log x

x
x1/2 log(|∆K |xd)

can be made arbitrarily small by increasing cA independently of K.
Now suppose an exceptional zero exists with β > 1− (4 log |∆|K)−1 and

εK = 0. Then we need to show that

(2.8) Li(Ax)−Li(x)−
(
Li((Ax)β)−Li(xβ)

)
−2c1Ax exp

(
−c2

√
log x

d

)
> 0

for x > exp(cAd(log |∆K |)2). We deduce from Stark [10] that, if K is a
normal extension, we can assume

(2.9) 1− (4 log |∆|K)−1 < β < 1− c4|∆K |−1/d,
if β exists, for some effectively computable positive constant c4. Differenti-
ation shows us that Li((Ax)β) − Li(xβ) increases as β increases, so we can
just let β = 1− c4|∆K |−1/d.
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Thus we can deduce from (2.8) and partial integration that, for A > 1
and x > exp(10d(log |∆K |)2), we have πK(Ax) > πK(x) if

(2.10)
βAx− (Ax)β

β logAx
+

Ax�

(Ax)β

dt

(log t)2

>
βx− xβ

β log x
+

x�

xβ

dt

(log t)2
+ 2c1Ax exp

(
−c2

√
log x

d

)
.

Taking derivatives, for fixed β we see that
	x
xβ dt/(log t)2 is increasing in x

for x > 4 when β > 1/2. Thus we can drop the integral terms from both sides
of (2.10) to get an inequality that still yields πK(Ax) > πK(x). Rewriting
this, we get

β − (Ax)β−1

β − xβ−1
log x

logAx
>

1

A
+

2βc1 log x

β − xβ−1
exp

(
−c2

√
log x

d

)
.(2.11)

We see the left hand side is larger than log x/logAx for any A > 1, and
furthermore log x/logAx − 1/A > 0 as x gets large. Thus again we just
need to show that there exists cA, independent of d and |∆K |, such that
when x > exp(cAd(log |∆K |)2) we can make the remaining exponential term
arbitrarily small. Let cA > 10 and c2

√
cA > 5/2. If x > exp(cAd(log |∆K |)2),

we can choose cA to be large enough independently of d and |∆K | such that

2βc1 log x

β − xβ−1
exp

(
−c2

√
log x

d

)
<

2βc1cAd(log |∆K |)2|∆K |−c2
√
cA

β − exp(cAd(log |∆K |)2(β − 1))
.(2.12)

Letting β = 1− c4|∆K |−1/d, we have

(2.13)
2βc1 log x

β − xβ−1
e−c2
√

(log x)/d

<
2c1cAd(log |∆K |)2|∆K |1/d−c2

√
cA

|∆K |1/d
(
1− exp(−c4cAd(log |∆K |)2|∆K |−1/d)

)
− c4

.

It is not difficult to see that the denominator of this upper bound is bounded
below and positive for sufficiently large cA, independent of |∆K | and d. So
in this case we get

(2.14)
2βc1 log x

β − xβ−1
e−c2
√

(log x)/d � cAd(log |∆K |)2|∆K |1/d−c2
√
cA ,

where the implied constant can be made independent of cA, d and |∆K |
provided that cA is sufficiently large. From (2.5) we see that we can make
(2.14) independent of |∆K | and d provided c2

√
cA > 5/2, and further we see

that this bound goes to zero as cA →∞.
If the extension is not normal but there exists a tower of fields Q ⊂ K1 ⊂

K2 ⊂ · · · ⊂ Km = K such that Ki is normal over Ki−1, then Stark’s bound
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allows for the possibility that

(2.15) 1− c4|∆K |−1/d < β < 1− (16 log |∆K |)−1

if 16c4 log |∆K | > |∆K |1/d. When this occurs, (2.13) becomes

(2.16)
2βc1 log x

β − xβ−1
e−c2
√

(log x)/d <
32c1cAd(log |∆K |)3|∆K |−c2

√
cA

16(log |∆K |)
(
1− exp

(
− 1

16cAd(log |∆K |)
))
− 1

,

and again we see that this bound uniformly goes to zero as cA →∞.
Finally, if the extension is not normal, nor does there exist a tower of

field extensions as above, then Stark’s bound allows for the possibility that

(2.17) 1− c4|∆K |−1/d < β < 1− (4d! log |∆K |)−1

if 4c4d! log |∆K | > |∆K |1/d. When this occurs, (2.13) becomes

(2.18)
2βc1 log x

β − xβ−1
e−c2
√

(log x)/d

<
8c1cAd(log |∆K |)3|∆K |−c2

√
cAd!

4d!(log |∆K |)
(
1− exp

(
−1

4cAd(log |∆K |)/d!
))
− 1

.

This bound still decays as cA → ∞, and is uniform in |∆K | but not neces-
sarily in d. We see from (2.5) and Stirling’s approximation that if we take
x > exp(cAd(log d)2(log |∆K |)2) instead, effectively replacing each occur-
rence of cA in (2.18) with cA(log d)2, this bound can be made uniform in d.
Indeed, it is enough that we take x > exp(cAd(log d)2−2α(log |∆K |)2) so long
as log |∆K | � d(log d)α.

3. Bertrand’s postulate from counting ideals

Proof of Theorem 1.5. For an ideal a in OK , let ΛK(a) := logN(p) when
a = pk and zero otherwise, where p denotes a prime ideal in OK above a
prime ideal (p) ⊂ Z. This is the natural extension of the von Mangoldt
function to K, where

(3.1) −
ζ ′K(s)

ζK(s)
=
∑

a⊆OK

ΛK(a)

N(a)s
=
∞∑
n=1

Λ#
K(n)

ns
.

We similarly define the Chebyshev function for K,

(3.2) ψK(x) :=
∑

N(a)≤x

ΛK(a) =
∑
n≤x

Λ#
K(n).

Lemma 3.1. For x ≥ 1,

(3.3)
∑
n≤x

Λ#
K(n)

n
=

∑
N(p)≤x

logN(p)

N(p)
+O(d),

where the above right-hand sum is over norms of prime ideals.
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For 1 > α > 0,

(3.4)
∑
n≤x

Λ#
K(n)

nα
� d

x1−α − α
1− α

.

Proof. Let

(3.5) φ(x) :=
∑
n≤x

Λ#
K(n)

n
−

∑
N(p)≤x

logN(p)

N(p)
.

We see that

|φ(x)| ≤
∑

N(p)≤x

∞∑
n=2

logN(p)

N(p)n
≤
∑
p≤x

∑
p∩Z=(p)

∞∑
n=2

logN(p)

pn
(3.6)

≤
∑
p≤x

∞∑
n=2

d log p

pn
≤ d

∑
p≤x

log p

p2 − p
≤ d

∞∑
m=2

2 logm

m2
= O(d),

which gives (3.3). To get (3.4) we can use Abel’s partial summation formula
to deduce that

(3.7)
∑
n≤x

Λ#
K(n)

nα
= ψK(x)x−α + α

x�

1

ψK(u)u−α−1 du.

Since Λ#
K(n) ≤ dΛ(n), where Λ(n) := ΛQ(n) is the classical von Mangoldt

function, we find that ψK(x) ≤ dψ(x) for all x ≥ 1, where ψ(x) := ψQ(x)
is the classical Chebyshev function. It is easily shown that ψ(x) � x, so
ψK(x)� dx. Putting this into (3.7) we get

(3.8)
∑
n≤x

Λ#
K(n)

nα
� d

(
x1−α +

α

1− α
(x1−α − 1)

)
,

which is a restatement of (3.4).

We see that, by the unique prime factorization of ideals in the ring of
integers of a number field, we have

(3.9)
∑
n≤x

cK(n) log n =
∑

N(a)≤x

logN(a) =
∑

N(a)≤x

∑
b|a

ΛK(b)

=
∑

N(b)≤x

ΛK(b)
∑

N(a)≤x/N(b)

1 =
∑
n≤x

Λ#
K(n)

∑
m≤x/n

cK(m).

Letting

(3.10) f2(x,K) :=
∑
n≤x

cK(n) log n− ρK(x log x− x+ 1),
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we see that (3.9) becomes

(3.11) ρK(x log x−x+ 1) + f2(x,K) =
∑
n≤x

Λ#
K(n)(ρKx/n+ f1(x/n,K)).

Thus by (3.3) we have

(3.12)∑
N(p)≤x

logN(p)

N(p)
= log x+

1

xρK

(
f2(x,K)−

∑
n≤x

Λ#
K(n)f1(x/n,K)

)
+O(d).

Now combining (1.9) and (3.4) leads to∑
n≤x

Λ#
K(n)f1(x/n,K)� dCK

x− αxα

1− α
.(3.13)

To bound f2(x,K) we make use of the following lemma.

Lemma 3.2. If for 0 < α < 1 and x ≥ 1,

(3.14) |f1(x,K)| ≤ CKxα

for some CK > 0, then

(3.15) |f2(x,K)| ≤ CKxα
(

log x+
1− x−α

α

)
.

Proof. This follows from the bound in (1.9) by another application of
Abel’s summation formula. Indeed,

(3.16)
∑
n≤x

cK(n) log n =
(∑
n≤x

cK(n)
)

log x−
x�

1

(∑
n≤u

cK(n)
) du
u

so we have

(3.17)
∑
n≤x

cK(n) log n

= (ρKx+ f1(x,K)) log x−
x�

1

(ρKu+ f1(u,K))
du

u

= ρK(x log x− x+ 1) + f1(x,K) log x−
x�

1

f1(u,K)
du

u
,

and (3.15) follows.

Substituting (3.13) and (3.15) back into (3.12) we get

(3.18)
∑

N(p)≤x

logN(p)

N(p)

= log x+O

(
CK
ρK

(
d(1− αxα−1)

1− α
+ xα−1 log x+

xα−1 − x−1

α

)
+ d

)
.
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And so finally, for any A ≥ 1,

(3.19)
∑

N(p)≤Ax

logN(p)

N(p)
−

∑
N(p)≤x

logN(p)

N(p)
= logA+O

(
CK
ρK

d+ 2

1− α
+ d

)
.

Thus, for any x > 1, a prime ideal, p, exists in OK such that N(p) ∈ [x,Ax],
so long as

(3.20) logA� CK
ρK

d+ 2

1− α
+ d,

which proves Theorem 1.5.

Appendix. Ideal counting. The proof of Proposition 1.9 proceeds
with only subtle variation from the proof of the main theorem due to Kuo
and Murty in their relevant work [4]. Changes are made to account for the
presence of the simple pole at s = 1 and that our goal is to minimize growth
in the |∆K | aspect, possibly at the expense of growth in the x aspect.

First we use the following result due to Rademacher [8], arising from the
sharper version of the Phragmén–Lindelöf theorem, to obtain the convexity
bound for ζK(s) in the critical strip.

Theorem A.1 (Rademacher [8]). For σ, η, t ∈ R such that 3/2 ≥ σ > 1
and 1− σ < η < σ, we have

(A.1) ζK(η + it) ≤ 3

(
|∆K |

(
|1 + η + it|

2π

)d)(σ−η)/2 |1 + η + it|
|η − 1 + it|

ζK(σ).

Proof of Proposition 1.9. Henceforth we will use the following notation:

(A.2)
�

(c,T )

f(s) ds :=
1

2πi

c+iT�

c−iT
f(s) ds.

Let T ≥ 1, 2 > c > 1 and, unless stated otherwise, let x ∈ N + 1/2. By
Perron’s formula, we have

(A.3)
∑
n≤x

cK(n)

=
�

(c,T )

ζK(s)
xs

s
ds+O

( ∞∑
n=1

(
x

n

)c
cK(n) min

(
1,

1

T |log(x/n)|

))
.

Thus by Cauchy’s residue theorem, for 0 < η < 1,

(A.4)
∑
n≤x

cK(n) = ρKx+ E1 + E2 + E3
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where

E1 :=
�

(η,T )

ζK(s)
xs

s
ds(A.5)

E2 :=
1

2πi

(c+iT�
η+iT

ζK(s)
xs

s
ds−

c−iT�

η−iT
ζK(s)

xs

s
ds

)
(A.6)

E3 := O

( ∞∑
n=1

(
x

n

)c
cK(n) min

(
1,

1

T |log(x/n)|

))
.(A.7)

We will now use Theorem A.1 to bound E1 + E2 + E3. Since 1 + t2/η2 �
(1 + |t|)2, we have

|E1| �
∣∣∣∣ �

(η,T )

ζK(s)
xs

s
ds

∣∣∣∣(A.8)

�d |∆K |(c−η)/2ζK(c)xη
T�

−T

(1 + |t|)d(c−η)/2+1

|η − 1 + it| |η + it|
dt

�d
1

η(1− η)
|∆K |(c−η)/2ζK(c)xη

T�

0

(1 + t)d(c−η)/2−1 dt

�d
1

η(1− η)2
|∆K |(c−η)/2ζK(c)xη(1 + T )d(c−η)/2.

Similarly,

(A.9) |E2| �
(∣∣∣∣c+iT�

η+iT

ζK(s)
xs

s
ds

∣∣∣∣+
∣∣∣c−iT�
η−iT

ζK(s)
xs

s
ds
∣∣∣)

�d ζK(c)(1 + T )

c�

η

(|∆K |(1 + T )d)(c−λ)/2xλ|λ+ iT |−1|1− λ+ iT |−1 dλ.

Since for T ≥ 1 we have |λ+ iT | |1− λ+ iT | � (1 + T )2, it follows that

|E2| �d ζK(c)|∆K |c/2(1 + T )dc/2−1
c�

η

(
x√

|∆K | (1 + T )d/2

)λ
dλ(A.10)

�d ζK(c)|∆K |c/2(1 + T )dc/2−1
∣∣∣∣log

x√
|∆K | (1 + T )d/2

∣∣∣∣−1
×
∣∣∣∣( x√

|∆K | (1 + T )d/2

)c
−
(

x√
|∆K | (1 + T )d/2

)η∣∣∣∣.
So when

(A.11)

∣∣∣∣log
x√

|∆K | (1 + T )d/2

∣∣∣∣ ≥ log(3/2),
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we have

|E2| �d ζK(c)

(
xc

1 + T
+ xη|∆K |(c−η)/2(1 + T )d(c−η)/2−1

)
.(A.12)

When

(A.13)

∣∣∣∣log
x√

|∆K | (1 + T )d/2

∣∣∣∣ ≤ log(3/2),

we note that (yc − yη)/log y is bounded uniformly for y ∈ [2/3, 3/2] and
all specified values of c and η. So we can just say (yc − yη)/log y � yc in
this range. Thus the bound on E2 given in (A.12) holds regardless of the
relationship between x and

√
|∆K | (1 + T )d/2.

Finally, recalling that x ∈ N + 1/2 and that |log(1 − x)| � |x| for x ∈
[−1, 1/2), we have

(A.14)

E3 : = xc
∞∑
n=1

cK(n)

nc
min

(
1,

1

T |log(x/n)|

)
≤ xc

∞∑
n=1

cK(n)

nc
1

T |log(x/n)|

� xc

T
ζK(c) +

∑
x/2<n≤2x

(
x

n

)c
cK(n)

1

T |log(x/n)|

� xc

T
ζK(c) +

1

T

∑
x/2<n≤2x

cK(n)
n

|x− n|

� xc

T
ζK(c) +

Cd,εx
1+ε

T

∑
x/2≤n≤2x

1

|x− n|

for small ε > 0, where Cd,ε is a constant such that

(A.15) cK(n) ≤ Cd,εnε

for all n ∈ N. Now since

(A.16)
∑

x/2≤n≤2x

1

|n− x|
≤ 2

x−1/2∑
j=0

1

j + 1/2
� log(1 + x),

if we let ε = (c− 1)/2, then for T ≥ 1 we find that (A.14) becomes

|E3| �δ
xc

1 + T
ζK(c) +

C
(2)
d,(c−1)/2x

(c+1)/2

1 + T
.(A.17)

where the implicit constant Cd,(c−1)/2 is changed to C
(2)
d,(c−1)/2 to account for

the implied constant in the bound log x �ε x
ε. We remark that we do not

bother measuring the contribution of the degree d, nor that of δ = c− 1, in

our main theorem as C
(2)
d,δ/2 is likely much worse than reality. It is unclear

at present how to remove the dependence on this term.
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Combining (A.8), (A.12), and (A.17) we get

(A.18) |E1|+ |E2|+ |E3|

�d ζK(c)

(
xη(|∆K |(1 + T )d)(c−η)/2

η(1− η)2
+

xc

1 + T

)
+
C

(2)
d,(c−1)/2x

(c+1)/2

1 + T
.

For some small δ > 0 such that 1/(3d) > δ, let c = 1 + δ and η = 1− δ, then
let

(A.19) 1 + T = x2δ/(1+dδ).

From this, (A.18) becomes∑
n≤x

cK(n) = ρKx+Od,δ
(
(ζK(1 + δ)|∆K |δ + 1)x1−δ/2

)
(A.20)

when x ∈ N + 1/2, and since T ≥ 1, we also have the constraint x ≥ Q
due to (A.19), where Q is a constant dependent on δ and d. For x < Q we
can just let T = 1 in (A.18), and since xc ≤ xηQ2δ in this range we can
say (A.20) holds for all x ∈ N + 1/2 and x ≥ 1.

For x /∈ N+1/2 we can replace x with bxc+1/2 in
∑

n≤x cK(n)−ρ(x) and
note the difference will be on the order of ρK at most. Since ζK(1+δ) ∼ ρK/δ
we can replace ζK(1 + δ) with ζK(1 + δ/2) to supersede that ρK term, and
thus get (A.20) for all x and complete the proof of the proposition.
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