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function fields but rather modifies the classical argument of 
Hadamard and de la Vallée Poussin in their 1896 proof of the 
prime number theorem.
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1. Introduction

In a private conversation with Helmut Hasse on September 12, 1927, Emil Artin 
described his (now famous) conjecture regarding primitive roots. For any natural number 
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a > 1, which is not a perfect square, Artin conjectured that there are infinitely many 
primes p for which a is a primitive root (mod p). This conjecture is still open though 
substantial progress has been made since the time of Artin. For instance, assuming the 
generalized Riemann hypothesis for Dedekind zeta functions of Kummer fields, Hooley 
[8] established the conjecture in 1967 and even derived an asymptotic formula for the 
number of such primes p ≤ x. In 1984, Gupta and Murty [6] showed the existence of 
a set of 13 numbers for which Artin’s conjecture is true for at least one of them. More 
precisely, let a, b, c be three prime numbers, then at least one of the following 13 numbers

{ac2, a3b2, a2b, b3c, b2c, a2c3, ab3, a3bc2, bc3, a2b3c, a3c, ab2c3, abc} (1.1)

is a primitive root modulo p for infinitely many primes p. This was later refined by Heath-
Brown [7] to a set of three mutually coprime numbers greater than one. A readable survey 
of this problem can be found in [13].

By contrast, the function field analogue of Artin’s conjecture is known, but it has a 
curious history. Hasse assigned the classical Artin conjecture as a doctoral thesis prob-
lem to his student Bilharz in 1933. Shortly after Bilharz began working on it, Erdös 
announced that he had solved the problem assuming the generalized Riemann hypoth-
esis for certain Dedekind zeta functions. Though there was no formal paper written by 
Erdös, this seems to have completely disillusioned Bilharz so much, that Hasse felt com-
pelled to write to Erdös on April 5, 1935 that “in case you have already dealt with this 
problem, I obviously have to find as quickly as possible a new PhD subject for Mr. Bil-
harz, who is working on this topic for a year.” This seems to be the genesis of the Artin 
primitive root conjecture for function fields. The details can be found in the appendix 
of [3, Appendix 2].

Bilharz’s thesis and paper [1] were conditional and assumed the analog of the Riemann 
hypothesis for zeta functions of function fields over finite fields. An accurate exposition of 
Bilharz’s paper in the English language can be found in [17, Chapter 10]. The Riemann 
hypothesis for congruence zeta functions was proved much later by Weil [20] in 1948, 
though Weil seems to have made a preliminary announcement in 1945. An excellent 
historical account is available in [16].

The first person, to have observed that the full strength of the Riemann hypothesis 
is not essential to solve the function field version of Artin’s conjecture but rather that a 
“quasi”-generalized Riemann hypothesis is sufficient, seems to be Davenport [4]. Indeed, 
in [4], he shows, among other results, that if χ is a nontrivial multiplicative character of 
the finite field Fq, and f(x) is an irreducible polynomial of degree k, then

∑
x∈Fq

χ(f(x)) = O
(
q1− 3

2(k+4)

)
(1.2)

for k ≥ 4. He obtains slightly better results for k ≤ 3, and remarks that this can be used 
to give a proof of Artin’s conjecture for function fields over finite fields (see page 102 of 
[4]), but he gives no further details.
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Davenport’s estimates like (1.2) are quite impressive since they use only the el-
ementary theory of finite fields and Cauchy’s inequality! They seem to comprise a 
forgotten chapter of mathematics having been superceded by Weil’s theory embracing 
the algebraic-geometric point of view. Now, after almost a century, we have an “elemen-
tary” proof of the Riemann hypothesis for curves. Building on the works of Stepanov 
[19], Schmidt [18], and later Bombieri [2], we have simpler proof of the Riemann hypoth-
esis for curves using a very minimal amount of algebraic geometry in the form of the 
Riemann-Roch theorem.

The purpose of this paper is to show that the Riemann hypothesis for congruence 
zeta functions is not needed at all (nor a “quasi” Riemann hypothesis) to resolve Artin’s 
conjecture for function fields over finite fields. In fact, all that is needed is the analog of 
the zero-free region obtained by de la Vallée Poussin and Hadamard in their proof of the 
prime number theorem proved in 1896.

2. Preliminaries

Our strategy of proof is inspired by Jensen and Murty [10]. We will combine this with 
the perspective of Davenport [4]. Throughout the paper, we denote

∑′
and

∏′

to indicate that the sum or product is taken over monic polynomials.
Davenport [4] considers the finite field Fq along with distinct irreducible monic poly-

nomials

f1(x), f2(x), . . . , fr(x)

with degrees k1, k2, . . . , kr respectively. We set

K = k1 + k2 + · · · + kr.

If we denote by X = (χ1, χ2, . . . , χr) an r-tuple of multiplicative characters in Fq, and 
F = (f1, f2, . . . , fr) the r-tuple of given irreducible monic polynomials, define the char-
acter sum

S(F ,X ) =
∑
x∈Fq

χ1(f1(x)) · · · χr(fr(x)), (2.1)

as in [4]. With any such character sum, we can associate an L-function L(f, X, s) as 
follows: for any polynomial g ∈ Fq[x], we define the resultant

(f, g) =
∏

f(θ), (2.2)

θ
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where the product is over the zeros of g in Fq. Using the resultant, we define a multi-
plicative character X in Fq[x] by

X(g) = χ1((f1, g))χ2((f2, g)) · · · χr((fr, g)), g ∈ Fq[x]. (2.3)

Note that X is a well-defined Dirichlet character since f1, . . . , fr are monic. Accordingly, 
we define Dirichlet L-series

L(F , X, s) =
∑′

g

X(g)
|g|s , (2.4)

where |g| = qdeg(g). The sum is over all monic polynomials of Fq[x]. Since the character 
X is multiplicative, L(F , X, s) has an Euler product

L(F , X, s) =
∏′

v

(
1 − X(v)

|v|s
)−1

, (2.5)

where the product is over monic irreducible polynomials v in Fq[x]. The “zeta function” 
of Fq[x] is well-known to be

ζ(s) = 1
1 − q1−s

=
∑′

g

1
|g|s =

∏′

v

(
1 − 1

|v|s
)−1

, (2.6)

where the sum is over all monic g in Fq[x], and the last equality is valid for Re(s) > 1. 
Note that ζ(s) has no zeros, but only poles at

s = 1 + 2πin
log q , n ∈ Z. (2.7)

This is in sharp contrast with the classical Riemann zeta function which only has a 
pole at s = 1 and at no other points of the complex plane.

Using elementary properties of finite fields (nowadays taught in an undergraduate 
course in algebra), Davenport shows that L(F , X, s) is a polynomial in q−s of degree 
K − 1 (see Theorem 1 of [4]). That is to say, with zeros s1, . . . sK−1, we have

L(F , X, s) = (1 − qs1−s)(1 − qs2−s) · · · (1 − qsK−1−s). (2.8)

The analogous result is known for any Dirichlet character in Fq[x], and a more precise 
account can be found in [17, Proposition 4.3]. The Euler product for ζ(s) and L(F , X, s)
combined with the classical argument of Hadamard and de la Vallée Poussin shows that 
L(F , X, s) �= 0 for Re(s) = 1, but more is true and we can derive a nontrivial zero free 
region following the classical method.
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Lemma 1. Following the notations above, we have the following inequality: for any char-
acter X, we have for σ > 1,

0 ≤ −Re
{

3L
′

L
(F , X0, σ) + 4L

′

L
(F , X, σ + it) + L′

L
(F , X2, σ + 2it)

}
, (2.9)

where X0 denotes the trivial character.

Proof. From the Euler product of L(F , X, s), we get

logL(F , X, s) = −
∑
v

log
(

1 − X(v)
|v|s

)
=

∑
v

∞∑
n=1

X(v)n

|v|snn , Re(s) > 1. (2.10)

Define the von Mangoldt function

Λ(g) =
{

log |v| if g = vk for some irreducible v;
0 otherwise

Logarithmic differentiation of the Euler product formula gives

−L′

L
(F , X, s) =

∑
v

∞∑
n=1

X(v)n|v|−sn log |v| =
∑
g

Λ(g)X(g)|g|−s

=
∑
g

Λ(g)X(g)|g|−σe−it log |g|, (2.11)

where the sum is over all monic g in Fq[x] and s = σ + it. Recall the celebrated Mertens 
inequality

3 + 4 cos θ + cos 2θ ≥ 0. (2.12)

As we express the real part of X(g)e−it log |g| in (2.11) by cos θ for some θ, the corre-
sponding cos 2θ in (2.12) can be obtained by replacing X by X2 and t by 2t. Hence, we 
get the desired inequality. �

Let us remark that (2.9) has the following consequences. We have

1 ≤
∣∣L(F , X0, σ)3L(F , X, σ + it)4L(F , X2, σ + 2it)

∣∣ , (2.13)

for σ > 1. If X2 is nontrivial, then L(F , X2, s) is analytic and the classical argument 
now shows that L(F , X, 1 + it) �= 0 for all t ∈ R. Indeed, if L(F , X, 1 + it) = 0, then 
the above inequality introduces a zero of order 4, which cancels the pole of order 3, and 
we get a contradiction if σ → 1+. If X2 is trivial, then the usual proof proceeds in two 
steps. First, one shows L(F , X, 1) �= 0 (see [17] for more details). Then, as L(F , X, s) is 
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periodic, with period 2πi
log q , we consider L(F , X, σ + it) with t �= 0 and |t| < π

log q . With 
this understanding, we now apply (2.13), and deduce that if L(F , X, 1 + it) = 0 and X2

is trivial, then L(F , X2, 1 + 2it) is bounded, since |t| < π
log q and L(F , X2, s) is analytic 

for t �= 0, |t| < π
log q . So, (2.13) gives a contradiction if we let σ → 1+. We record the 

discussion in the following lemma.

Lemma 2. Following the notations from Lemma 1, L(F , X, s) �= 0 for Re(s) = 1.

3. An elementary proof of Artin’s conjecture over function fields

Let p be a prime and let Fq be a finite field with q = pk elements. Consider a poly-
nomial a(x) ∈ Fq[x]. If a(x) is to be a primitive root modulo p(x) for infinitely many 
irreducible polynomials p(x), then it is clearly necessary that a(x) not be a perfect dth 
power for any d > 1 such that for some i ≥ 1, d | qi − 1. We will show the condition is 
also sufficient. Artin’s primitive root conjecture over function fields concerns the number 
of irreducible polynomials p(x) ∈ Fq[x] such that a(x) generates (Fq[x]/p(x))∗. Note that 
we have an isomorphism

Fq[x]/p(x) ∼= Fqn , where n = deg p(x)

which is given as follows: For g(x) ∈ Fq[x], we have

g(x) = p(x)q(x) + r(x), where r(x) = 0 or 0 ≤ deg r(x) < n.

Let θ ∈ Fqn be a root of p(x). Then Fqn is generated by 1, θ, θ2, . . . , θn−1 over Fq. 
Since p(x) has n roots, we obtain the following description of relevant sets: for a fixed 
a(x) ∈ Fq[x],

# {p(x) ∈ Fq[x] : p(x) : irreducible, deg p(x) = n, a(x) generates (Fq[x]/p(x))∗}
(3.1)

= 1
n

#
{
θ ∈ Fqn : deg θ = n, a(θ) generates F∗

qn
}
. (3.2)

This suggests that it may be more convenient to count each irreducible polynomial 
v(x) with weight w(v) := deg v whenever a(x) generates (Fq[x]/p(x))∗ and zero other-
wise. This remark will be used in the next section.

3.1. Sifting function and Artin’s conjecture

For estimating (3.2), we introduce the sifting function which, for instance, can be 
found in the works of Landau [11, Satz 496], who ascribes it to I. M. Vinogradov:
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Lemma 3. Let G be a cyclic group of order m, and let ϕ be the Euler phi function. Define 
the sifting function S:

S(g) = ϕ(m)
m

⎧⎪⎪⎨
⎪⎪⎩1 +

∑
d|m
d>1

μ(d)
ϕ(d)

∑
ordχ=d

χ(g)

⎫⎪⎪⎬
⎪⎪⎭ , (3.3)

where the rightmost sum is defined over characters χ of G which are of order d. Then, 
we have

S(g) =
{

1 if g generates G;
0 otherwise.

Let now S denote the sifting function for F∗
qn , and define S(0) = 0. Then, by our 

earlier remark,

∑
v: deg v|n

w(v) =
∑

θ∈F∗
qn

S(a(θ)),

since non-zero elements of F∗
qn are precisely elements θ whose degree divides n.

Using the sifting function S in Lemma 3, to count the number of generators of F∗
qn , 

which is a cyclic group of order qn − 1, we obtain the following:

#
{
θ ∈ Fqn : deg θ | n, a(θ) generates F∗

qn
}

=
∑

θ∈Fqn

S(a(θ)). (3.4)

Thus, we have

∑
θ∈Fqn

S(a(θ)) =
∑

θ∈Fqn

ϕ(qn − 1)
qn − 1

⎧⎪⎪⎨
⎪⎪⎩1 +

∑
d|qn−1
d>1

μ(d)
ϕ(d)

∑
ordχ=d

χ(a(θ))

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

=

⎧⎨
⎩

∑
θ∈Fqn

ϕ(qn − 1)
qn − 1

⎫⎬
⎭ +

⎧⎪⎪⎨
⎪⎪⎩

∑
θ∈Fqn

ϕ(qn − 1)
qn − 1

∑
d|qn−1
d>1

μ(d)
ϕ(d)

∑
ordχ=d

χ(a(θ))

⎫⎪⎪⎬
⎪⎪⎭

(3.6)

= ϕ(qn − 1)
(qn − 1)

⎧⎪⎪⎨
⎪⎪⎩(qn − 1) +

∑
d|qn−1
d>1

μ(d)
ϕ(d)

∑
ordχ=d

∑
θ∈Fqn

χ(a(θ))

⎫⎪⎪⎬
⎪⎪⎭ . (3.7)
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From now on, we are estimating the rightmost character sum
∑

θ∈Fqn

χ(a(θ)),

for a polynomial a(x) ∈ Fq[x].
These character sums were the focus of Davenport’s work [4]. However, in some special 

cases, it is possible to use Gauss sums to estimate these sums. For instance, in the paper 
of Jensen and Murty [10] they established Artin’s conjecture for Fq[x] for polynomials 
of the form a(x) = xm + c, for any m and c using such a technique. More precisely, for 
these polynomials, we have

∣∣∣∣∣∣
∑

θ∈Fqn

χ(a(θ))

∣∣∣∣∣∣ ≤ mq
n
2 (3.8)

using elementary Gauss sum calculations. This shows the sum in (3.7) is an error term 
with contribution O(q n

2 d(qn − 1)). Recall that for any ε > 0, the number of divisors of 
qn − 1 is O(qnε), and because

ϕ(qn − 1) � qn

log log qn ,

we see that the first term dominates as n tends to infinity. This gives Artin’s conjecture 
in this special case. Hence, the first summand dominates the sum (3.7) as n tends to ∞, 
which gives Artin’s conjecture in this special case.

In the general case, we will obtain a non-trivial estimate for the character sum which 
will not be a power saving. However, there is a good estimate for the divisor function 
due to Ramanujan that we can use. Let d(n) be the number of positive divisors of n. 
Ramanujan showed that

d(n) < 2
log n

log logn+O
(

log n

(log logn)2

)
.

We do not need such a fine result. It suffices to know that for some constant c > 0,

d(n) < exp
(

c log n
log log n

)
.

A proof of this weaker result can be found in [9, p. 345]. This implies

d(qn − 1) < exp
(
cn log q
log n

)
= qcn/ logn.

Comparing these estimates with the main term, we see that all we need is a modest im-
provement over the trivial estimate on the character sum. This will be deduced following 



S. Kim, M. Ram Murty / Finite Fields and Their Applications 67 (2020) 101713 9
the classical method of Hadamard and de la Vallée Poussin. In the following section, we 
are going to give a nontrivial estimation of the character sum (3.8) for any k and any 
form of polynomial in order to obtain Artin’s conjecture for function fields in its full 
generality.

4. The main theorem

In this section, we will prove:

Theorem 4. Let F = (f1, f2, . . . , fr) be an r-tuple of irreducible monic polynomials in 
Fq[x]. There is an absolute constant c > 0 such that

L(F , X, s) �= 0, for Re(s) > 1 − c

(K − 1) log q , (4.1)

where X is a nontrivial multiplicative character defined as in (2.3) and satisfying 
X2 �= X0.

Proof of Theorem 4. Recall that L(F , X, s) is a polynomial in q−s of degree K− 1 with 
zeros s1, . . . , sK−1 as in (2.8):

L(F , X, s) =
K−1∏
j=1

(1 − qsj−s) = q−(K−1)s
K−1∏
j=1

(qs − qsj ). (4.2)

Then the logarithmic derivative gives

−L′

L
(F , X, s) = (K − 1) log q −

K−1∑
j=1

qs log q
qs − qsj

. (4.3)

Now, we examine the function

F (s) := qs

qs − qsj
. (4.4)

The singularities of F (s) are at

s = sj + 2πin
log q , n ∈ Z. (4.5)

These are all simple poles with residue 1
log q . Thus F (s) has the “partial fraction” de-

composition:

qs

qs − qsj
= 1

log q
∑ 1

s− ρn,j
, where ρn,j = sj + 2πin

log q , (4.6)

n∈Z
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which combines with (4.3) to give

−L′

L
(F , X, s) = (K − 1) log q −

K−1∑
j=1

∑
n∈Z

1
s− ρn,j

. (4.7)

Observe that

Re
(

1
s− ρn,j

)
= Re

(
s− ρn,j

|s− ρn,j |2
)

> 0, (4.8)

if Re(s) > 1. From now on, we follow idea of the classical proof of the prime number 
theorem by Hadamard and de la Vallée Poussin. From (4.8), since X2 �= X0, by omitting 
the summation over poles in (4.7) we have

Re
(
−L′

L
(F , X2, σ + 2it)

)
≤ (K − 1) log q, (4.9)

for any choice of σ and t. For estimating L(F , X, σ + it), we let β + iγ be any zero of 
L(F , X, s). By dropping all zeros but β+iγ in the equality (4.7), we obtain the following:

Re
(
−L′

L
(F , X, σ + iγ)

)
≤ (K − 1) log q − 1

σ − β
, (4.10)

for any σ > 1. Moreover, since ζ(s) has simple poles at

s = 1 + 2πin
log q , n ∈ Z, (4.11)

the function f(s) = (s − 1)ζ(s) is a regular and nonvanishing near s = 1, and thus

f ′(s)
f(s) = 1

s− 1 + ζ ′(s)
ζ(s) , (4.12)

is also regular near s = 1, and bounded for 1 < σ ≤ 2. For any such σ, we have

−L′

L
(F , X0, σ) =

∑
g

Λ(g)X0(g)|g|−σ ≤ −ζ ′

ζ
(σ) < 1

σ − 1 + A1, (4.13)

for some positive absolute constant A1. Then combining (4.9), (4.10), and inequality 
(2.12), we obtain

4
σ − β

≤ 3
σ − 1 + A(K − 1) log q, (4.14)

for some positive absolute constant A. Writing σ = 1 + δ , we get
log q
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β ≤ 1 + δ

log q − 4δ
(3 + δA(K − 1)) log q . (4.15)

Hence, choosing a suitable positive δ, we get the desired result that

β < 1 − c

(K − 1) log q . � (4.16)

We remark that if 0 < c1 < c, then our theorem holds with c replaced by c1. This 
remark will be used later. In the rest of the section, we are going to present the application 
of Theorem 4 in Artin’s conjecture and character sums over function fields. Let h be any 
positive integer so that Fqh is a finite extension of the field Fq, hence any character χ in 
Fq induces a character χ(h) in Fqh satisfying

χ(h)(ξ) = χ(NF
qh

/Fq
(ξ)), (4.17)

where NF
qh

/Fq
(ξ) is the norm of ξ ∈ Fqh defined by its conjugates over Fq. In connection 

with the character sum (2.1): Let f1(x), . . . , fr(x) be irreducible monic polynomials with 
degree k1, . . . , kr. Let us denote by X = (χ1, χ2, . . . , χr) an r-tuple of multiplicative 
characters of Fq, and by F = (f1, f2, . . . , fr) the r-tuple of irreducible monic polynomials. 
We define

S(F ,X ) =
∑
x∈Fq

χ1(f1(x)) · · · χr(fr(x)). (4.18)

In connection with S(F , X ), we define a character sum in Fqh :

S(h)(F ,X ) =
∑

ξ∈F
qh

χ
(h)
1 (f1(ξ)) · · · χ(h)

r (fr(ξ)). (4.19)

Denote K = k1 + · · · + kr. We have the following result of Davenport [4] which relates 
the above character sums to the zeros of L(F , X, s):

Theorem 5. Let s1, . . . , sK−1 be distinct zeros of L(F , X, s), viewed as a polynomial in 
q−s as in (2.8), ignoring the period 2πi

log q . Then

−S(h)(F ,X ) = qhs1 + · · · + qhsK−1 . (4.20)

In particular, when h = 1,

−S(F ,X ) = qs1 + · · · + qsK−1 .

Corollary 6. Let χ be a nontrivial character defined over Fqn , which is not quadratic, 
i.e., χ2 �= χ0, and let f be an irreducible polynomial of degree K in Fq[x]. Then
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∑
x∈Fqn

χ(f(x)) = O(qne−cn/(K−1)), (4.21)

where the implied constant is absolute.

Corollary 7. Let χ be a nontrivial quadratic character defined over Fqn, and let f be an 
irreducible polynomial of degree K in Fq[x]. Then

∑
x∈Fqn

χ(f(x)) = O(qnB), (4.22)

where B < 1 is a fixed constant, and the implied constant is absolute.

Corollary 8. Artin’s conjecture over function fields holds for irreducible polynomials in 
Fq[x].

Proof of Corollary 6. Following Theorem 5, and with notations as in (2.8), we have the 
equality:

∑
x∈Fqn

χ(f(x)) = −qns1 − qns2 − · · · − qnsK−1 , (4.23)

where s1, s2, . . . , sK−1 are zeros of (by abuse of notation) L(f, χ, s), viewed as a polyno-
mial in q−s as in (2.8), ignoring period. Hence, when χ2 �= χ0, Theorem 4 implies

∣∣∣∣∣∣
∑

x∈Fqn

χ(f(x))

∣∣∣∣∣∣ = O
(
qne−cn/(K−1)

)
. � (4.24)

Proof of Corollary 7. When χ2 = χ0, since L(f, χ, s) is a polynomial in q−s of degree 
K − 1, we write the zeros of the polynomial as qs1 , qs2 , . . . , qsK−1 . Let

B = max{Re(s1),Re(s2), . . . ,Re(sK−1)}.

Note that B < 1 from Lemma 2. From Theorem 5, for any n,
∣∣∣∣∣∣
∑

x∈Fqn

χ(f(x))

∣∣∣∣∣∣ = |−qns1 − qns2 − · · · − qnsK−1 | = O(qnB). � (4.25)

Proof of Corollary 8. From Corollary 6 and Corollary 7, we choose small enough c > 0
satisfying c < (K − 1)(1 − B) log q (recall that Theorem (4) still holds with c replaced 
by smaller positive constant) so that we have

∑
χ(f(x)) = O(qne−cn/(K−1)), (4.26)
x∈Fqn
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for any nontrivial character χ. We use (4.26) to obtain the infinitude of the following 
sum in (3.7):

ϕ(qn − 1)
qn − 1

⎧⎪⎪⎨
⎪⎪⎩(qn − 1) +

∑
d|qn−1
d>1

μ(d)
ϕ(d)

∑
ordχ=d

∑
θ∈Fqn

χ(a(θ))

⎫⎪⎪⎬
⎪⎪⎭

to estimate the number of generators of F∗
qn . For any η > 0, and denote by d(n) the num-

ber of divisors of n. Then we have the following inequality by Ramanujan [12, Exercise 
1.3.3]:

d(n) < 2(1+η) logn/ log logn,

for all n sufficiently large. Therefore, along with (4.26), we have the following:

∑
d|qn−1
d>1

μ(d)
ϕ(d)

∑
ordχ=d

∑
θ∈Fqn

χ(a(θ)) = O(qne−cn/(K−1) · d(qn − 1)) (4.27)

= O(qne−cn/(K−1)2log q(1+η)n/ logn), (4.28)

for any choice of η > 0, which is dominated by qn as n tends to ∞. Hence, we have the 
infinitude of the following set from (3.1):

#
{
θ ∈ Fqn : deg θ | n, a(θ) generates F∗

qn
}
, (4.29)

which implies that Artin’s conjecture over function fields holds for irreducible polynomi-
als in Fq[X]. �

One can argue similarly to the proof of Corollary 6 to prove Artin’s conjecture over 
function fields for reducible polynomials in Fq[x]. When f(x) ∈ Fq[x] is reducible, the 
character sum (4.21) can be expressed using the factorization of f(x) into irreducible 
polynomials:

∑
x∈Fqn

χ(f(x)) =
∑

x∈Fqn

χ(f1(x))χ(f2(x)) · · · χ(fr(x)), (4.30)

where f1(x), . . . , fr(x) are all irreducible. Thus, following (4.20), we consider instead a 
induced character and can repeat the same procedure as in the proof of Corollary 6.

5. Concluding remarks

It is clear that the method works for relative extensions as well. Essentially, the 
problem is then how to find primitive roots along curves. Artin’s conjecture over general 
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function fields was studied by Pappalardi and Shparlinski [15]. In their work, they make 
fundamental use of a result of Perelmuter [14] who generalized the work of Weil by 
considering exponential sums along curves. But what this amounts to is really the analog 
of the prime number theorem for relative extensions. As our method shows that in general 
the zeta function of any function field over a finite field does not vanish on the line 
Re(s) = 1 and even provides a zero free region, the proof in this paper easily extends to 
provide a simple proof in the general case also.

More generally, one can study the distribution of primitive roots along varieties over 
finite fields. This would now require the study of zeta functions of varieties. It may be 
possible by a fibering technique to extend the elementary nature of this paper to the 
setting of varieties without appealing to the deep work of Pierre Deligne on the resolution 
of the Weil conjectures [5]. We relegate this to future work.
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