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1 Introduction

The role of the scholar in society is foundational for the growth of human civilization.
In fact, one could argue that without the scholar, civilizations crumble. The trans-
mission of knowledge from generation to generation, to take what is essential from
the past, to transform it into a new shape and arrangement relevant to the present
and to stimulate future students to add to this knowledge is the primary role of the
teacher. Spanning more than four decades, Kumar Murty has been the model teacher
and researcher, working in diverse areas of number theory and arithmetic geometry,
expanding his contributions to meet the challenges of the digital age and training
an army of students and postdoctoral fellows who will teach the future generations.
On top of this, he has also given serious attention to how mathematics and mathe-
matical thought can be applied to dealing with large-scale economic problems and
the emergence of “smart villages”. We will not discuss this latter work here, nor his
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Fig. 1 Kumar in 2016 (Photo Credit: Chris Thomaidis)

other work in the field of Indian philosophy. We will only focus on giving a synoptic
overview of his major contributions to mathematics.

Kumar completed his PhD at Harvard University in 1982 under the direction of
John Tate. After a year at the Institute for Advanced Study in Princeton, and another
year at the Tata Institute for Fundamental Research in Mumbai, India, he accepted
a position at Concordia University in Montreal, Canada. In 1987, he moved to the
University of Toronto as an associate professor and quickly advanced to full pro-
fessor and later as Department Head. He has written more than 100 research papers
and three books and supervised more than a dozen doctoral students and postdoc-
toral fellows. His first book, “Introduction to Abelian Varieties”, published by the
American Mathematical Society in 1993 provides a gentle initiation into the study
of this important topic in arithmetic geometry. His second book, “Non-vanishing
of L-functions and applications” published by Birkhauser and written jointly with
M. Ram Murty, won the 1996 Balaguer Prize. His third book, “The Mathematical
Legacy of Srinivasa Ramanujan” (also written with M. Ram Murty) and published
by Springer, has been praised for its panoramic overview of Ramanujan’s work mak-
ing it accessible to non-specialists even outside of mathematics. In 1991, he was
awarded the Coxeter–James Prize by the Canadian Mathematical Society. In 1995,
he was awarded the E.W.R. Steacie Fellowship by the Natural Sciences and Engi-
neering Research Council of Canada and was elected to the Royal Society of Canada.
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Fig. 2 Touching base with Kung-Fu Panda (Photo Credit: Jasbir Chahal)

He also holds adjunct professorships at various universities in India that allow
him to maintain academic contacts that foster the growth of mathematics there
(Figs. 1 and 2).
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Kumar’s work reflects his broad interests and covers aspects of number theory and
algebraic geometry, as well as applications to problems that arise from information
technology, such as data integrity, privacy and security. We will give a brief overview
of his contributions to each of these areas.

2 Algebraic Cycles

2.1 The Hodge Conjecture

In his thesis work, Kumar became interested in various questions about algebraic
cycles. Let X be a smooth projective algebraic variety defined over the complex
numbers C and consider its singular cohomology H∗(X (C),Q). To any algebraic
subvariety Z of X , one can associate a cohomology class [Z ] ∈ H 2k(X (C),Q)where
k is the codimension dim X − dim Z of Z . By a fundamental theorem of Hodge, the
complexified cohomology

H∗(X (C),C) = H∗(X (C),Q) ⊗ C

has the property that every class in H k(X (C),C) can be represented as a sum of
differential forms which are locally of the form

f (z1, . . . , zn)dzi1 ∧ · · · ∧ dzi p ∧ dz j1 ∧ · · · ∧ dz jq

for local coordinates z1, . . . , zn , aC∞ function f and for some p and q with p + q =
k. This actually induces a decomposition into subspaces

H k(X (C),C) = ⊕p+q=k H p,q

and it is a fact that the cohomology class [Z ] associated with an algebraic subvariety
of codimension k has the property that in the above decomposition, it has a nonzero
component only in H k,k , that is [Z ] ∈ H 2k(X (C),Q) ∩ H k,k . By linearity, the same
is true for algebraic cycles, that is, formal linear combinations of subvarieties Z . The
famous Hodge conjecture asserts that the converse is true. By a well-known theorem
of Lefschetz, this is known to be true for k = 1.

There is a vast literature on the Hodge conjecture and all the tools that people have
developed to study it, but it still remains largely mysterious and was listed as one of
the millennium problems of the Clay Foundation. In his thesis (also the article [30]),
Kumar studied this problem for a class of Abelian varieties, including the Jacobians
ofmodular curves and their quotients. He showed for these varieties that everyHodge
class could be expressed in terms of Hodge classes in H 2, and therefore, the Hodge
conjecture follows from Lefschetz’s theorem.



Overview of the Work of Kumar Murty 5

He then defined [31] what he called the Lefschetz group (generalizing two special
cases that had been studied by Ribet [55]), which is the largest connected subgroup of
GL(H 1(A(C),Q))) which commutes with the endomorphisms of A. He computed
this group explicitly and showed that its tensor invariants (in other words, the classes
in the cohomology of all powers of A which it leaves fixed) are all in the subring
of Hodge classes generated by those of type (1, 1) except if A has a so-called factor
of type III. If A did have a factor of type III, he found that the Lefschetz group
leaves invariant a Hodge class which is not known to be algebraic, but which has the
property that its square can be shown to be algebraic. This gave the first evidence
of a question posed by Weil [60] whether “imposing a Hodge class” on an Abelian
variety could be shown to “impose an algebraic class on some power of A”.

The introduction of the Lefschetz group byKumar has led tomany insights, and in
particular, Milne [40] has defined a more abstract version of the Lefschetz group and
subsequently used it to relate the Hodge and Tate conjectures for Abelian varieties.

2.2 The Tate Conjecture

The �-adic analogue of theHodge conjecture is due toTate andwas formulated by him
in the early sixties. In this case, one replaces the singular cohomology of the Hodge
conjecture, with �-adic (étale) cohomology H∗

� (X) which is a finite-dimensional
vector space over Q�. Here, X is now a variety defined over a global field K (for
example, K could be a number field or a finite extension of F(T ) for some finite
field F) and X is the base change of K to an algebraic closure K of K . (In fact, Tate
works with the more general case of a field that is finitely generated over its prime
subfield, but we will mainly discuss the case of a number field.)

The �-adic cohomology has the additional structure of a Galois action. Thus, there
is a representation

Gal(K/K ) −→ GL(H k
� (X))

for each prime �. There is a finite set S of primes of K so that for prime ideals p of
K not in S, the characteristic polynomial of Frobenius Frobp has coefficients in the
rational integers and is independent of �. Moreover, by the Weil conjectures proved
by Deligne, the eigenvalues of Frobp have complex absolute value (Np)k/2. We can,
therefore, consider the “twist” H 2k

� (X)(k) in which essentially the Galois action has
been normalized so that the eigenvalues of Frobenius have absolute value 1. Then
the �-adic cycle class map associates with each subvariety Z of X of codimension k
which is defined over K , a class

c�(Z) ∈ H 2k
� (X)(k)Gal(K/K ).

The Tate conjecture asserts that every element on the right-hand side arises in this
way, namely as a linear combination of classes of subvarieties with a representative
defined over K .
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In the case that X is an Abelian variety, Faltings proved it for k = 1. But unlike the
Hodge conjecture, for general X , this is open even for k = 1. Kumar’s thesis work
also proves the Tate conjecture (in all codimensions) for a large class of Abelian
varieties (including those that are quotients of the Jacobians of modular curves),
assuming that we know it for k = 1 (and as stated above, Faltings’ result assures us
that we do know it in that case).

2.3 Shimura Varieties and Period Relations

A few years later, Kumar started to collaborate with Dinakar Ramakrishnan on the
Tate conjecture for some Shimura varieties. In particular, they considered the case
of Hilbert modular surfaces. This had been studied by Oda [44] and by Harder,
Langlands and Rapaport [17]. Thus, they were considering surfaces X which are
obtained by taking a smooth compactification of quotients of the product of two
upper half planes by a congruence subgroup of SL2(O) where O is the ring of
integers of a real quadratic field. Their work left open the case of so-called complex
multiplication cycles. Dinakar and Kumar were able to settle this case [26] using
period relations. It was also independently settled by Klingenberg using a different
method involving L-indistinguishability. The approach of Kumar and Dinakar seems
to be capable of proving the Tate conjecture in many other cases, and we believe they
are working on this project now.

2.4 Reduction in Tate Cycles Modulo a Prime

In 2008, with his then doctoral student V. Patankar (currently a faculty member at
Jawaharlal Nehru University, New Delhi), Kumar formulated a conjecture [24] for
a simple or absolutely simple Abelian variety over a number field to remain simple
when reduced modulo a density one set of primes (or a set of primes of positive
density). This question of reductions of simple Abelian varieties is a very natural one,
but it seems not to have been considered before this paper. It can be viewed as the
geometric analogue of the classical problem of how often an irreducible polynomial
with integer coefficients remains irreducible modulo a prime p, which of course is
the foundational question of algebraic number theory. This question can actually
be interpreted in terms of the appearance of “extra” cycles on reduction modulo a
prime, and in paper [25], Kumar and Patankar raised a related and more general
question about Tate cycles on Abelian varieties, namely whether there is a set of
primes of density one for which the ring of Tate cycles does not grow when the
Abelian variety is reduced modulo a prime. In [25], they prove that this is the case
for Abelian varieties with complex multiplication. And in [27, 28] with postdoctoral
fellow Y. Zong (currently at Shantou University in China), they related the original
problem to one about monodromy and roots and weights.
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3 L-Functions

Another theme that Kumar has been very active in is various aspects of L-functions.
These objects occupy a central position in number theory and seem to play the role
of gatekeepers to secret knowledge.

3.1 Sato–Tate Conjecture

As graduate students, both Kumar and Ram were interested in the Sato–Tate con-
jecture. In its original form, it was a conjecture about the “angles of Frobenius”
associated to an elliptic curve over the rationals. To such a curve E and for any
prime p where E has good reduction, one can count the number of points in E(Fp)

and show that it has the form p + 1 − (αp + αp) where αp is a complex number of
absolute value p

1
2 . Thus, we can write

αp = p
1
2 eiθp

for some angle θp ∈ [0,π]. The Sato–Tate conjecture predicted how the angles θp

are distributed in the interval [0,π]. In particular, if E does not have complex mul-
tiplication, then the conjecture stated that for an interval [a, b] ⊆ [0,π], we have

#{p ≤ x, a ≤ θp ≤ b} ∼
(∫ b

a

2

π
sin2 θdθ

)
π(x).

Interestingly, Tate arrived at this prediction as a result of his conjectures on algebraic
cycles. Serre considered the family of L-functions {Lk} given by an Euler product

Lk(s) =
∏

p

Lk,p(s)

which for all but a finite number of p is given by

L p,k(s) =
k∏

j=0

(
1 − ei(2 j−k)θp

ps

)−1

.

Then the Lk (for 0 ≤ k ∈ Z) are defined, analytic and nonzero for 
(s) > 1. Serre
showed [57] that if all of the Lk have an analytic continuation as entire functions for
all s (apart possibly for a pole at s = 1 for L0(s)) and are non-vanishing on the line

(s) = 1, then the Sato–Tate conjecture follows. Kumar and Ramwere fascinated by
this because it was a new kind of prime number theoremwhich depended on the non-
vanishing of infinitely many L-functions, unlike the classical prime number theorem
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which was essentially equivalent to the non-vanishing of the (single) Riemann zeta
function on the line 
(s) = 1.

Serre’s result was later refined by Ogg [46] to show that continuation to the left of

(s) = 1

2 would suffice and the non-vanishing would follow from this. As a graduate
student, Kumar showed [29] that continuation to 
(s) = 1 would suffice. Later, he
showed [36] that if we just had continuation to the point s = 1 (in other words, if
one can extend the functions Lk(s) to a neighbourhood of s = 1), then the “weak
Sato–Tate conjecture” would follow, namely that

∑
p≤x,θp∈[a,b]

log p

p
∼

(∫ b

a

2

π
sin2 θdθ

)
log x .

The Sato–Tate conjecture is now a theorem thanks to the groundbreaking work
of M. Harris, R. Taylor, L. Clozel, N. Shepherd-Barron, Barnet-Lamb and Geraghty.
However, the question of the automorphy of the Lk remains. Interestingly, the con-
ventional wisdomwas that the Sato–Tate conjecture would be proved by establishing
the automorphy of all of the Lk , but the published proof manages to avoid that. In re-
cent joint work, Kumar and Ram showed [52] that the Sato–Tate conjecture, together
with another hypothesis (namely the automorphy of π ⊗ π′ where π is an arbitrary
automorphic representation and π′ is a GL(2) automorphic representation), can ac-
tually be used to deduce the automorphy of the Lk .

3.2 Artin L-Functions

A number of papers by Kumar deal with the analytic properties of Artin L-functions.
Given a Galois extension K/F of number fields and a representation ρ of Gal(K/F)

on a complex finite-dimensional vector space V , we can define the Artin L-function
L(s, ρ, F) as an Euler product over primes of F . More precisely, it is given by

L(s, ρ, F) =
∏
p

det(I − (Frobp|V Ip)(Np)−s)−1

where Ip denotes an inertia group of any prime of K above p and V Ip denotes the
subspace of V fixed by such an inertia group. This Euler product converges for

(s) > 1 and by theorems of Brauer, Hecke–Tate and class field theory, L(s, ρ, F)

has a meromorphic continuation for all s.
Artin’s holomorphy conjecture (AC) asserts that in fact L(s, ρ, F) is a holomor-

phic function of s apart from a possible pole at s = 1 of order equal to themultiplicity
of the trivial representation in ρ. A result of Stark [59] asserts that L(s, ρ.F) is ana-
lytic at any point s = s0 at which the Dedekind zeta function ζK (s) of K has a zero
of order ≤ 1. This was extended by Kumar and Richard Foote [12] to show that if
K/F has odd degree, then L(s, ρ, F) is analytic at any point s = s0 where ζK (s) has
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a zero of order ≤ p2 − 2 where p2 is the second largest prime divisor of [K : F].
This and other results are reviewed in the survey paper [13].

The Brauer–Siegel theorem asserts that as K runs through a sequence of number
fields with the property that

1

[K : Q] log |dK | −→ ∞

we have
log ress=1ζK (s) −→ 0

or equivalently,
log(hK RK )

log |dK | −→ 1

2
.

Here, hK and RK denote the class number and regulator (respectively) of K . The
Brauer–Siegel theorem is ineffective in general, and the originalmotivation of Stark’s
paper was to show that there are many cases in which it can be made effective. The
ineffectivity occurs because of possible zeros of ζK (s) near s = 1. More precisely,
if it can be shown that there are no zeros in the region


(s) ≥ 1 − 1

4 log |dK | , |�(s)| ≤ 1

4 log |dK |
then the theorem can be made effective. In particular, if K is a CM field and ζK (s)
could be shown not to have zeros in this box, then Stark observed that one could
get effective lower bounds for the class number of K . This technique was refined by
Odlyzko in several papers.

In two beautiful papers [32, 33], Kumar showed that if we are working with CM
fields which have solvable normal closure, then one can actually deal with the zeros
near s = 1 and get good effective lower bounds for theminus part of the class number
of the CM field.

3.3 Chebotarev Density Theorem and its Applications

In his undergraduate thesis written at Carleton University, Kumar studied the distri-
bution of primes in arithmetic progressions. He was able to improve a result of Turán
on the least prime in an arithmetic progression. Turán had showed that if we assume
the Lindelöf hypothesis for Dirichlet L-functions, then there is a prime in any arith-
metic progression modulo q which is O(q4+ε) for any ε > 0. Kumar showed that
in fact, unconditionally, this bound could be improved to O(q2+ε). This was never
published but is mentioned (in a more general form) at the end of a long paper with
Ram Murty [48].
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The problem of distribution of primes in number fields has always been of great
interest to both Kumar and Ram. The analogue of the prime number theorem for
arithmetic progressions in a general number field is the Chebotarev density theorem.
Ram was inspired by a course that Serre gave at Harvard on effective forms of the
Chebotarev density theorem and told Kumar about it as well. A few years later, they
were able to show [53] that Serre’s estimates could be improved if one knew the
Artin holomorphy conjecture AC. They then used this version to approach the Lang–
Trotter conjecture, and by some use of sieve methods and group theory, they were
able to bypass the hypothesis of AC and improve Serre’s results on this problem.

The interplay between problems involving prime numbers and analytic aspects
of L-functions together with their algebraic interrelationships is a recurrent theme
in number theory that is still not understood very well. These questions bring to the
foreground the importance of the study of this interplay. In [54], one can find this
line of investigation developed further.

3.4 Non-vanishing of L-Functions

Starting with classical Dirichlet L-functions, it is a conjecture of Chowla that for a
Dirichlet character (over the rationals), the associated L-function L(s,χ) does not
vanish at s = 1

2 .
Note that if we look at the analogous question over number fields, then there

are finite-order Hecke characters ψ so that L( 12 ,ψ) = 0. This happens because the
vanishing is forced by a root number condition. So the general conjecture might be
that the L-function associated with a finite-order Hecke character over any number
field should not vanish unless forced to do so by the root number in the functional
equation. We are far from being able to prove such an assertion.

Kumar and Balasubramanian looked at this question (over the rationals) and
proved [3] that for any prime q, there is a positive proportion of characters χmodulo
q so that L( 12 ,χ) �= 0. More recently, Iwaniec–Sarnak [21] (as part of a larger work)
have obtained a better numerical value of the proportion. Moreover, Soundararajan
[58] has proved that a large positive proportion of Dirichlet L-functions correspond-
ing to real characters are non-vanishing at s = 1

2 .
Over the years, Kumar and Ramwrote more than 30 papers together. Their collab-

orationwas (and is) effective onmany levels. Perhaps theirmost intense collaboration
was on the so-called Kolyvagin hypothesis. Kolyvagin had discovered a method to
prove the finiteness of the Shafarevich–Tate group of a modular elliptic curve E ,
provided the rank of E(Q) is ≤ 1 and there is a quadratic twist ED of E with the
property that the L-function L(ED, s) has a simple zero at s = 1 (the centre of the
critical strip). Assuming L(E, 1) �= 0, Kumar and Ram were able to prove [49] the
existence of such a quadratic twist by showing that there is a constant c �= 0 and a
δ > 0 for which
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∑
0<−D≤x

D≡1 mod 4N

L ′(ED, 1) = cx log x + O(x(log x)1−δ).

In particular, we must have L ′(ED, 1) �= 0 for infinitely many D. This corollary was
also proved by Bump, Friedberg and Hoffstein [4] by using other methods.

As was pointed out in [49], the theorem is really one about modular forms. Let
f be a new form of weight 2 for �0(N ) with the property that the L-function of f
does not vanish at s = 1 (the centre of the critical strip). Then one gets an asymptotic
formula for the average of L ′( f,χD, 1). Later, Kumar was able to refine the methods
to get an asymptotic formula for the (weighted) average values of L( f,χD, 1) and
thus deduce the existence of quadratic twists f ⊗ χD for which L( f ⊗ χD, 1) �= 0.
In this work, f is allowed to be a form for �1(N ) and in particular have non-trivial
Nebentypus character. Under these hypotheses, the asymptotic formula

1

x

∫ x

1

∑
|D|≤t

D≡a mod 8N

L( f,χD, 1)dt = C( f )x + O(x(log x)−δ)

is proved. Thus, the non-vanishing result extends awell-known result ofWaldspurger
which applies in the case of trivial Nebentypus character. This work appeared in
the joint monograph [50]. This monograph was probably their second most intense
collaboration. They wrote this monograph during one term when they were both at
the Institute for Advanced Study. They were honoured and delighted when it was
awarded the Balaguer Prize.

3.5 Distribution of Euler–Kronecker Constants

There is a vast literature on the distribution of special values of L-functions. These
values encode certain arithmetic and geometric features of related number fields and
varieties. Notable examples are the Dirichlet class number formula and the Birch and
Swinnerton–Dyer conjectures which, respectively, deal with the values at 1 and 1/2
of the L-functions. For a number field K , Ihara [18] has introduced a new invariant
γK , called the Euler–Kronecker constant, which is closely related to the values of
the logarithmic derivative of L-functions at 1. More precisely,

γK = lim
s→1+

(
ζ ′

K (s)

ζK (s)
+ 1

s − 1

)
,

where ζK (s) is the Dedekind zeta function of K . In [18], Ihara relates the negativity
of γK with the size of the set of primes with small norms of the number field K .

In past few years, Kumar has extensively investigated the size of γK for certain
families of number fields. In [43], Mariam Mourtada and Kumar proved an �-result
for the Euler–Kronecker constants of quadratic number fields. More precisely, they
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showed that as K varies over the family of quadratic fields Q(
√

D), one gets

γK = �(log log |D|).

This can be considered analogous to a classical �-result of Chowla [6] on the values
of Dirichlet L-functions at 1. Further results on the distribution of γK for quadratic
fields were obtained by Lamzouri [38]. For a quadratic field Q(

√
D), we have

γK = γ + L ′

L
(1,χD),

where γ is the Euler constant and χD(n) = (D/n) is the Kronecker symbol. In an-
other joint work [42], Mariam Mourtada and Kumar established, under the assump-
tion of GRH, the existence of a distribution function for the values of L ′

L (σ,χD),
where σ > 1/2 and D varies over the fundamental discriminants. This result should
be compared with a theorem of Chowla and Erdös [7] on the distribution of the val-
ues of L(σ,χD) for σ > 3/4 and a result of Elliott [10] on the value distribution of
log L(1,χD).

In [19], Ihara studied theEuler–Kronecker constantsγm := γQ(ζm ) for the family of
cyclotomic fieldsQ(ζm) and, based on numerical evidence, made several conjectures
on the size of γm . Notably he conjectured that for q prime and given ε > 0, the
inequality (

1

2
− ε

)
log q < γq <

(
3

2
+ ε

)
log q (1)

holds for all sufficiently large primes q. Kumar obtained several results related to
the above conjecture. In a joint work with Ihara and M. Shimura [20], they proved
unconditionally that |γq | = Oε(qε). Moreover, under the assumption of GRH they
proved that the estimation can be improved to |γq | = O((log q)2). From (1), one
predicts that |γq | has order log q. In [37], Kumar proved that this is the case on
average over q. More precisely, he established that

1

π∗(Q)

∑
1
2 Q<q≤Q

|γq | � log Q,

where π∗(Q) denotes the number of primes bigger than 1
2 Q and not exceeding Q.

In [14], the authors showed that the lower bound in the conjectural inequality
(1) is inconsistent with the prime k-tuple conjecture of Hardy and Littlewood. More
precisely, they proved that theHardy–Littlewood conjecture establishes the existence
of infinitely many negative values of γq . In spite of possible negativity of γq , in [41],
Mariam Mourtada and Kumar showed that γq/ log q cannot be smaller than −11 for
a positive proportion of primes; in other words, they proved that γq > −11 log q on
a set of primes of density 1.
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3.6 Spaces of L-Functions

Recently, Kumar has been thinking about spaces of L-functions. There is the well-
known Selberg class introduced in [56] which captures most of the L-functions that
“arise in nature”. Ram had explained in [47] that Selberg’s conjectures had many
important consequences including Artin’s holomorphy conjecture (AC) and in [51]
it was shown that Selberg’s conjectures could be seen as a pair correlation conjecture
in the Selberg class.

However, as important as this class is, one often feels the need to go outside
the class, especially when one has to perform algebraic operations on L-functions.
For example, the sum of two elements in the Selberg class is in general not in the
class. Kumar introduced in [35] a larger class which he called the Lindelöf class,
which forms a natural ring. Elements of this class do not necessarily have a functional
equation or an Euler product, but are defined in terms of certain growth requirements.
The original definition was modified a little in Kumar’s joint work with his student
Anup Dixit [9], and properties of the new class were studied in Anup’s thesis [8].

4 Cryptography and Further Applications

Starting in about 2001, Kumar has considered various ways in which number theory
and algebraic geometry could be applied to problems that arise from Information
Technology. This is the focus of the GANITA Lab that he started at that time. He has
published about 20 papers in data integrity, security and privacy and has two patents.
Moreover, a number of his students (Nicolas Theriault, Vijay Patankar, Nataliya
Laptyeva, Catalina Anghel, Robby Burko, Aaron Chow and William George) have
written theses which explicitly or implicitly were motivated by problems that arise
from one of these areas.

4.1 Koblitz’s Conjecture

His work with Ali Miri [2] uses the Selberg lower-bound sieve method to address
a conjecture of Koblitz. Given an elliptic curve E over the rationals, Koblitz had
conjectured that the number of primes p ≤ x for which the number of points in
E(Fp) is prime is asymptotic to

CE x(log x)−2

for some nonzero constant CE . Koblitz’s conjecture has relevance for cryptography
because one can build a public-key cryptosystem using the group of points E(Fp).
However, the security of such a system is diminished when the order of the group is
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not prime, or nearly prime. Koblitz’s conjecture would tell us that we can begin with
an elliptic curve over the rationals and reduce it modulo many primes to get groups
suitable for cryptography.

Kumar and Ali Miri considered the case where E does not have complex multi-
plication and showed assuming the GRH (Riemann Hypothesis for Dedekind zeta
functions) that there are � x(log x)−2 primes p ≤ x for which the cardinality of
E(Fp) has at most 16 prime divisors. This was the first result of its kind, and other
authors have now reduced the number 16.

In a related theme, Kumar, along with Amir Akbary and Dragos Ghioca, studied
the size of the reduction mod p of subgroups of the group of rational points E(Q)

as p varies. Under the assumption of GRH, they showed [1] that for a set of primes
of density 1, the size is greater than p/ f (p) for any slowly increasing function f
provided the Mordell–Weil rank of E(Q) is greater than 18. If in addition the Artin
holomorphy conjecture is assumed, the rank need only be greater than 10. They
derive unconditional results for CM elliptic curves. In this case, one needs the rank
to be greater than 5. These results are the analogues for elliptic curves of results
obtained by Erdös and Ram [11]. We should also mention the groundbreaking work
of Rajiv Gupta and Ram [16].

The elliptic curve discrete logarithm problem is of great interest for those who
work with public-key cryptosystems involving elliptic curves. The problem says that
given an elliptic curve E over a finite field F and given two points P, Q ∈ E(F)

with the property that Q is in the subgroup generated by P , we have to determine
the integer h so that Q = h P . If the parameters of the curve are chosen correctly
(for example, the cardinality of F has to be sufficiently large and E should avoid
some properties, such as being supersingular or having “trace 1”, or having a group
order which is not nearly prime), then we expect that the discrete logarithm will take
approximately O(|F| 1

2 ) steps to solve. (See [45, 11.6.6 and 11.6.7, pp. 396–397] for
a discussion of this.)

4.2 Factorization and Modular Forms

Some years ago, Kumar considered what he called a variant of Lehmer’s conjecture.
There is a conjecture of Lehmer that asserts that τ (p) �= 0 for any prime p, where τ
is the Ramanujan τ -function defined by

q
∞∏

n=1

(1 − qn)24 =
∞∑

n=1

τ (n)qn .

Lehmer’s conjecture is in fact equivalent to the assertion that τ (n) �= 0 for any integer
n ≥ 1.

A related conjecture is to ask whether we can have τ (p) ≡ 0 mod p. In fact, this
can happen and the list of known values of p is {2, 3, 5, 7, 2411}. It is not known
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whether there are infinitely many such primes. The variant that Kumar studied is to
ask about the greatest common divisor of n and τ (n). In [34], he showed that except
for a set of n of density zero, there is always a common factor between n and τ (n). The
estimate he obtained for the number of exceptional n ≤ x was � x/ log log log x .

In these calculations, we can replace the τ functionwith the Fourier coefficients of
a Hecke eigenform. Sanoli Gun and Kumar [15] considered the case of an eigenform
f of weight 2 with Fourier expansion

f (z) =
∑
n≥1

a f (n)qn

that has complex multiplication and showed that

#{n ≤ x, (n, a f (n)) = 1} = (c f + o(1))
x√

(log x)(log log log x)
,

where c f is a positive constant. This result can be interpreted as meaning that with
probability 1, n will have a factor in common with a f (n). Thus, we might look to
the computation of Fourier coefficients as a way of factoring integers. However, the
proof of the above results shows that it is generally only small factors that appear in
the gcd of n and a f (n). The case of complex multiplication forms f of weight larger
than 2 was considered in the thesis [39] of Kumar’s student, Nataliya Laptyeva.

Another approach to the question of using modular forms for factorization was
explored in the thesis of Kumar’s student, Aaron Chow [5].

4.3 Explicit Arithmetic on Abelian Varieties

A public-key cryptosystem can be built using the group of points on an Abelian
variety over a finite field, provided explicit arithmetic can be done efficiently and we
have good point counting algorithms. Both of these have been extensively studied for
elliptic curves and also for Jacobians of curves. However, the situation for a general
Abelian variety is different, in that we have to develop methods that don’t rely so
much on explicit equations.

Kumar and Pramath Sastry considered this problem, and they have developed
an explicit method to do arithmetic on Abelian varieties over finite fields using an
embedding of the Abelian variety into a Grassman variety (as opposed to a projective
embedding). This work [23] is in the spirit of K. Khuri-Makdisi [22] who showed
how to develop explicit arithmetic on the Jacobian of a curve using Grassmannians.
The case of a general Abelian variety (that is, onewhich is not necessarily a Jacobian)
is much more involved and relies more on geometric tools, though the final result
is expressed combinatorially. This work seems to be in its early stages, and the
calculations have still to be refined to make them more practical and efficient. On
the other hand, it is not clear that discrete log-based cryptosystems using Abelian
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varieties will be secure given the evolving knowledge about attacks on such varieties
as described in various papers of G. Frey, as well as quantum attacks. However, it is
possible that an isogeny-based cryptosystem might be secure.

Independently of the security, though, is that the methods developed by Kumar
and Pramath seem to be of interest in the study of Abelian varieties even from a
purely mathematical point of view. All of this is clearly something to be further
investigated.
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