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Abstract In 1976, Serge Lang and Hale Trotter formulated general conjectures
about the value distribution of traces of Frobenius automorphisms acting on an
elliptic curve. In this paper, we study a modular analog. More precisely, we consider
the distribution of values of Fourier coefficients of Hecke eigenforms of weight

k>4
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1 Introduction

Let E be an elliptic curve over a number field K. If p is a prime of Ok and E has
good reduction at p, denote by a,(E) the integer

Np+ 1= |E(Fy)|.
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In 1976, Lang and Trotter [4] formulated some conjectures about how often ap(E )
takes a fixed value. More precisely, they conjectured that there is a constant g
(possibly zero) such that for x — oo,

Jx

logx’

TEa(x) :=#{p: Np < xandap(E) = a}~Cpa

provided we are in the generic case, that is, a % 0 or E does not have complex
multiplication. The constant ¢, depends on the Galois representation attached to

E.In 1981, Serre [13] proved that for any € > 0,
mEa(X) Ke x/(logx)™*¢,

in the generic case. The exponent 5/4 was improved to 2 by Daqing Wan [17]. A
further refinement was obtained by the second author in [5] where it is shown that

x(loglog x)*
(logx)*

The case ay(E) = 0 corresponds to E having supersingular reduction at p. A
classical result of Deuring shows that if E has complex multiplication by an order
in an imaginary quadratic field F, the set of supersingular primes of K has density
1/2 if F is not contained in K and zero if F' C K. If E does not have complex
multiplication, then Elkies, Kaneko, and R. Musty (see [1]) showed that

TE u () <

J’l’g_o(x) i< x3f4.

Recently, R. Taylor has announced the meromorphic continuation of symmetric
power L-series attached to E (in the case that K is totally real and E has
multiplicative reduction at some prime p). It is conjectured that these symmetric
power L-functions extend to entire functions. If we assume this, together with an
analogue of the Riemann hypothesis for them, K. Murty [6] has shown that

rEa(x) € X

ifa # Oor E does not have CM. A substantial generalization and reinterpretation of
the Lang-Trotter conjecture can be found in [7], where a more general formulation

in terms of Galois representations is made.
In this paper, we consider a normalized Hecke eigenform of weight k = 4 for the

full modular group. We write
0o
f(Z) - Z Af(n)ebu'nz
n=l1

for its Fourier expansion at ioo. The field Ky generated by the values A y(n) as n
ranges over all positive integers is of finite degree over Q. We write O for the ring
of integers of K ;. In an earlier paper [9], we showed that if @ € O is coprime to 2,
then the number of solutions of the equation

Arn) = (1)
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is bounded. Moreover, there is an effectively computable constant ¢ = ¢ (@) >0
such that all solutions 1 of the equation satisfy

n < exp(IN(a)[%),

where N («) is the norm of « from K s to Q. This means that for any given , all the
solutions of (1) can be effectively determined. If, in addition, we assume the abe
conjecture for the number field K 7. then it was shown that the exponential bound
can be improved to a polynomial bound of the form ¢ |N (2)|°, for some constant
¢1 > 0 and the same ¢ as before. In the special case of the Ramanujan t-function,
we deduced that the number of solutions of the equation 7(n) = a with a odd is
finite, a result obtained earlier in our Jjoint work with Shorey [11]. Our methods are
sufficiently versatile to be applied to related problems. For example, in [10], we
study the greatest prime ideal factor of the ideal generated by A p(p") for fixed p
and varying n using similar techniques.
In this paper, we want to study the number vy (a) of solutions of the equation

INAs(m)| =a

for a given natural number a. We prove the following Theorem:

Theorem 1 Let f be a normalized Hecke eigenform of weight k > 4 for the full

modular group. Assume the abc conjecture for K f-Letd = [K; : Q) Then, for

anye > 0,
/
§ Vf(a) & x?./d(k—3)+s,

asx
where the dash on the summation indicates that we sum over odd, positive a.
We immediately deduce the following corollary:

Corollary 2 For any normalized Hecke eigenform [ of weight k > 4 for the full
modular group,

Uf ((l) & a2/d(k—3)+e’
provided a is odd and the abc conjecture holds for K 1

What is interesting about this corollary is that it is consistent with the Atkin—Serre
conjecture (see p.244 of [14]). This conjecture predicts that if f is of weight k& > 4
and is not of CM type, then for sufficiently large primes p,

[As(p)| > pH—3r2=e, (2)

As (2) is conjectured to hold for all conjugates £ of S, it implies that

dik—13)

ST

INAs(p)> p 2
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and so

vr(a) < fa] T,

As was shown in [9], A y(p) is divisible by 2 for all odd primes p in the level-one
case. This is a key fact, since it implies that for & coprime to 2, the equation A ;) =
@ forces 1 1o be a perfect square (see [9]). Thus, Theorem 1 can be extended to
higher levels, provided this property holds for all sufficiently large primes. Indeed,
Ono and Taguchi [12] have shown that this is the case for all forms of level 29N,
with @ arbitrary and Ny = 1,3,5,15, or 17. We record this observation in the
following.

Theorem 3 Let f be a normalized Hecke eigenform of weight k > 4 and level N.
Suppose that for all primes sufficiently large, A ;(p) is divisible by 2. Assuming the
abc conjecture for K r» we have for any € > 0,

’
Z Vf(a) & x2/d(k-3)+€,
asx

where the dash on the summation indicates that we sum over a coprime to 2 and

d=[K;:Q]

Acknowledgements We would like to thank the referee for useful comments on an earlier version
of this paper.

2 Preliminaries

We begin by reviewing results proved in an earlier paper [9].

Proposition 4 Let f be a normalized cuspidal eigenform of weight k > 4 and
level N. There is an effectively computable constant ¢, > 0 such that for m > 2 and
every prime p, we have

L n— m
[;Lf(P"!)I > h}f(p,m)lp 7 (m—c) log )'

where ys(p,m) = L if m is even and A ;(p) if m is odd.
Proof. This is Proposition 2.2 of [9]. O

In particular, we see from this proposition that A s (p™) # 0 when m is even and
sufficiently large.

Proposition 5 Ler f be a Hecke eigenform of weight k and level N. Then, for all
p sufficiently large, either Ay(p) = 0 or As(p®) # O for all a > 1. Moreover,
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Sfor each m, there is a binary form f,, of degree [m/2), with integeral coefficients
such that

Ar(p™) = yr(p.m) fu(d p(p)2 PF71).

Proof. The first part of the assertion follows from the previous proposition or from
Lemma 2.3 of [9]. The second part follows from the proof of the same lemma. The

binary form f,(x, y) is

[m/2]
H (x — 4y cos*(zr/(m + 1)),

r=1

which is easily seen to have integer coefficients by simple field-theoretic considera-
tions. O

‘We will also have need of a version of Roth’s theorem, which we record in the
following lemma.

Lemma 6 (Roth’s theorem) Let f be a binary form with integer coefficients and
degree d > 3. If f has distinct irrational roots, then,

|/ Cx, )] > max(|x], [yD?=>7¢,

where the implied constant depends only on the coefficients of f.

Progf. This essentially follows from Roth’s theorem. See also [8]. [}

A number-field version of this lemma will also be needed in the later sections,
and this will be recalled in Section 4.

Our line of argument has its origins in [9] and [11]. In [11], it was observed that
the Ramanujan r-function has the fortuitous property that t(p) is even for every
prime p. By an analogue of Proposition 5 for the t-function, we see that t(p™) is
even for every odd m. Hence, if we are interested in the equation

t(n)=a

for a odd, it follows that n must be a perfect square, by virtue of the multiplicativity
of 7. This was the key fact that enabled the application of results from Baker's
theory to establish that the number of solutions to the equation t(n) = a, with a
odd, is finite. This argument was extended to any normalized eigenform for the full
modular group in [9]. As indicated in [9], results of Tate [15] imply that A 7 (p) is
divisible by 2 for every prime p. This enabled us to extend the results of [11] to the
full modular case. As indicated in [9], the method can be generalized to arbitrary
level provided that A r(p) is divisible by 2 for all primes p sufficiently large. With
this background information in place, we now outline our basic strategy.
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We fix a positive integer # coprime to 2 and study the equation
|IN(A 7(n)} = a.

As A r(n) is multiplicative, we see that A y(p™) is coprime to 2 for p™||n. Now
suppose that A r(p) is divisible by 2 for all primes p > c¢. Then by Proposition 3,
we see that A ;(p™) is divisible by 2 for all odd m and p > ¢,. Thus, if we write
n = ngnny, where the prime factors of 1| are < cp satisfying A 7(p) # 0, the
prime factors p of ng are < ¢g with A y(p) = 0, and the prime factors of n, are
> cp, then we see that 11 is a perfect square. For primes p|n|, we have p < ¢g and
Ar(p) = 0, so that Proposition 4 shows that

E=L (m—c logm
Mf(Plr:)l > I]lf(P,m)]P T (m—¢| log )

This means that #, is bounded, since the primes and prime powers that divide it are
bounded. I we lock at 11y, then A s(p) = O for each p|ng. Since p™||n, m must be
even, for otherwise A r(n) = 0. Thus, ny is a perfect square. In any case, n has the
form ab® with a, b coprime and @ bounded and A s (h?) # 0. Thus, we are motivated

to study the Dirichlet series

D) =3 ING )™,

n=|

where the dash in the summation means we go over those 1 such that A s (n?) 3 0.
Since A ;(n?) is multiplicative, we may write this as an Euler product:

Ptsr= H (Z IN(Af(p’"'))l*) ’

m=0

where the dash on the product indicates we go over primes p such that A ((p*™) # 0
for any m = 0. Our objective is to determine a half-plane in which this series

converges absolutely.
We remark that if the series

a=i a.5
converges absolutely for R(s) > c, then

Z vr(a) <€ Z uf(a)(x/n)c'*" & x°Fe

n<x n=x

for any € > 0. We will use this remark in our discussion below.
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Let us note also that as
IN(L ()| < n®*d(n?),

where d () denotes the number of divisors of 7, the series does not converge for

1
R (Y

Moreover, as D ;(s) is a Dirichlet series with non-negative coefficients, it must have
a singularity at its abscissa of convergence, by a celebrated theorem of Landau. In

particular, we have

> vpla) = x7ED),

asx

3 The special case of Ramanujan’s z-function

For the sake of clarity, we will first consider a special case, namely, the study of the
Dirichlet series

oo’ 1
D) = X e

Since 7(n?) is a multiplicative function, we can expand the series as an infinite
product over the primes:

Do) =T (Z lr(pz”‘)l“") .

P m=(

Qur goal is to determine a region of convergence for this series. By Proposition 4,
we see that
[T(sz)l > pllm(l—f)

for m = my (say). This means that the series

Z |r(p2m)|-m(x) & Z p—ilm(l—e}m{s}

m=niy m=my

converges for f(s) > 0. To deal with the other part of the series, we need to estimate
T(p¥") for2 < m < my. We can use Propostion 5 combined with Roth’s theorem to
derive a lower bound for |z(p*")| for 6 < m < my. Indeed, Roth’s theorem allows

us to deduce that
|ﬂn(f(p)2,Pll)| > pll(nx/Z—?_—E).
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We need to discuss lower bounds for z(p?) and z(p*). For this, we need to invoke
the abe conjecture. To this end, let us define the radical of a natural number #,
denoted by rad(n), to be the product of the distinct primes dividing n. The abc
conjecture predicts that for any two coprime integers a, b,

rad(ab(a + b)) > max(la|, |b])"~,

for any € > 0. The implied constant will depend on ¢ but not on a, b.

Lemma 7 Suppose that t(p) # 0. The abe conjecture implies that for any € > 0,
le(p?)] > p**~

and
[t(ph) > p'.

Proof. We first apply the abc conjecture to the equation
o(p?) =(p)* - p''.
Suppose first that p is coprime to t(p). From the abc conjecture, we deduce that
rad(z(p)’*c(p?)p'") > p'117.
Using |t(p)| < 2p'"/?, we obtain
|2(p?)] 2 rad(jz(p?)]) 3> p*/*79,

as desired. If p|t(p), write (p) = pv, with v, coprime to p. As 7(p?) # 0, we
deduce that

2 _11=2a; 2 11=2a 11—2a—
rad(v,p (v, —p T > p "
so that
r(pZ) - pla(vi _pll—2a) > p9/2+a—e.

This completes the proof of the first part. For the second part, consider

(2t(p)* —3p")? = 4t(p*) — 5p*.

Assuming first that p is coprime to 7(p), we can apply the abc conjecture to this
equation to deduce

lz(p*)| > p'U.
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If p|z(p), then we write, as before, 7(p) = p“v, with v, coprime to p. Then, we
have

Applying the abc conjecture to the term in the square brackets, we obtain
|t(p4)| 3 p10+2t1—s,

so that the result is proved in this case also. O

We are now in a position to study the convergence of

> e eI

m=my

We break the sum into three parts:

lZPHI™ + 2™+ Y eI

I<m=my

By our earlier discussion, the last sum is bounded by p=>*) By the previous
lemma, the first two terms are |8

&« p—g(l—ejm(.r)‘
This result immediately implies that D (s) converges for R(s) > 2/9. Thus,

, |
Z vala) & x%2re, 8

a<x

We record the following corollary for its own intrinsic interest.

Corollary 8 Ifa is an odd number, the number of solutions of t(n) = a is bounded
by O(|a|??¥¢), assuming the abc conjecture.

4 The abe conjecture for number fields

Let K be an algebraic number field. Suppose a, b, ¢ € K* such thata +b +¢ =0
Define

radg(a, b, ¢) = [ | Nxso(p),
p

4r(p") = paf(@? —3p" T2 + 5p7 7). [
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where the product is over those prime ideals for which the numbers

llallp. [1811ps llells

are unequal. We will also write rad (a) to be the product of norms of the distinct
prime ideal divisors of (a). We define

Hy(a,b.c) = [ [max(llalln. [1b]l. lle]]),

where the product is over all valuations of K (both finite and infinite and we
normalize the archimedean valuations by ||x||, = |x|% with d, = 1 or 2
according as v is real or complex, and the nonarchimedean valuations by ||x||, =
N g(p)™™). The abc conjecture for K is the following assertion. For any € > 0,
there is a constant Cg . such that

HK (a, b, C) = CK,e(radK(ar b! C))1+E'
A stronger version predicts that one may replace Ck.e by
C E{K:Q] D }{ e

where Dy is the absolute value of the discriminant of K. We will not be using this
stronger version of the abc conjecture in our discussion below. We refer the reader

to Vojta [16] for further details.
We first derive a consequence of the abe conjecture for number fields that will

be applied in the subsequent discussion.

Lemma 9 Let K be an algebraic number field and suppose thatd = ged ((a), (0)).
Suppose for all finite primes p, ||a||, # ||b||p Assuming the abc conjecture for K,
we have

1—e
1

rad(a)rad(b)rad(a +b)/ (rad(@))* > (max(IN(@)|, IN ()], IN(a + b)|}/N (2)’)

where N stands for N q and the implied constant depends on K and €.

Proof. Suppose first that o = 1. From the definition, we have

radg(a,b,a+b)= [[ N
plab(a+b)

since a, b, (a + b) are mutually coprime. Let us note that for every finite v, we also
have that one of

lallv, 1ol lla + &l
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is 1, so that
Hi(a,b,a + b) = max(|N{a})|, IN(b)|, |IN(a + b)|).

The abe conjecture now implies the result in this case. If 0 5 1, let p be a prime
ideal dividing 0. By our assumption, p enters into the radical. N (p) enters three times
into the product rad(a)rad(b)rad(a + &), and to remove two of the occurences, we
can divide by N(p)>. This completes the proof. O

In our estimations below, we will need a number field version of Lemma 6, and
this we record here.

Lemma 10 Let K be an algebraic number field and f a binary form in Og|x, y]
with no repeated factors. Then, assuming the abc conjecture for K, we have

radg (f(u, v)) > Hy(u, v)*2,

where d is the degree of f andu,v e K.
Proof. This is proved on page 105 of [2]. O

We remark that if we replace rad g ( f(x, v)) by | f(u, v)|, this is essentially Roth’s
theorem for number fields. Thus, the ab¢ conjecture is making a stronger assertion
than that implied by Roth’s theorem. Indeed, since [N (f(u, v})| = radg (f(u,v)),
we deduce the following:

Corollary 11 Ler K be an algebraic number field and f a binary form in Ok [x, ¥].
Then,

INCSGev))| > Hi(u,v) 775,
where d is the degree of [ and u,v € K*, asswning the abc conjecture for K.

Lemma 12 Suppose that A f(p) # 0. Assume the abe conjecture for K. Then,
ING (2] > pET2e

and
ING (P D] > pE27,
where d = [Ky : Q] and p is unramified in K .
Proof. As before, we apply the abc conjecture to the equation

Ar(p?) = As(p)* = p*"
First suppose that A s(p) and p are coprime. By Lemma 9 applied to the field K 7,
we obtain

radk, (A (p)%, P*7 . A £ (P%) 3> p*47I7,

Lo led st




TR e g ey

472 M.R. Murty and V.K. Murty

where d = [K s : Q]. We obtain
PN A(PYNG(pY)] > pltk=ie,

from which we deduce, using the Ramanujan bound |N(A f(p))] < 24 pdtk=1)/2,
that
IN(s(p?)] > pE2,

Now suppose that p*[|(A 7(p)), with @ > 1. Then by taking norms, we obtain the

inequality
pia < pdt=n/2,

implying @ < (k — 1)/2. Since k is even, this is a strict inequality. Thus, a <

(k —1)/2. Since p is unramified,
1P Ml = N0 3 A, (p) 1l = Np) ™.
By Lemima 9, we obtain as before,
ING(P)] > D12,

The lower bound for |[N(A s (p*))| is derived similarly. We apply the abc conjecture
to the equation

@As(p)? —3p* ) = ddp(p*) — 5p*2, O

5 The Dirichlet series D /(s)

We will now study the series D/(s) and determine where it converges. Since
N(A £(n?)) is multiplicative, we have the Euler product

Df(s) H (z !N(A_f(pllm))l.s) '

=0

Our goal is to determine the region where the Euler product converges absolutely.
We split the product into two parts: p < ¢y and p > ¢, for which we have that
Ar(p) is divisible by 2. The first product is finite and is over those p for which
the A7(p™) are all coprime to 2. This product converges for ®(s) > 0. Let us
now consider the other product. We proceed as in the case of the r-function. By
Proposition 4, we see that for m > m (say),

I;Lf(pZm)] > pm(k—l)(l—c).
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A similar estimate holds with f replaced by any conjugate form f°. Thus the series
in the Euler product converges for Jt(s) > 0 if we restrict m > mg. By Corollary
11, we have

lﬁu(f]'-f(p)z, pk_l)l o3 p(k"l)(”‘/z"‘l—s)

for 6 < m < 2myg. Thus,
Mf(sz)l > p(kml)(m—-Z-—-e)
for 3 < m < myp. We deduce that
IN(lf(szm > p(k—!)d(rn—Z—-e)'

for3 = m < my. To complete our estimates, we need lower bounds for |4 s (p?)|
and |A s (p*)|, which are provided by Lemma 12. From that lemma, we get that

INGL ()] 3> p? &2~ |IN(A;(p*)| > pt2e,

Putting all this together shows the following:

Theorem 13 Assume the abc conjecture for Ky. Let d = [Ky : Q] Then, the
Dirichlet series D 7 (s) converges absolutely for R(s) > 2/d(k — 3). In particular;

!
Z Uf([l) < x2/d(k—3)+6,

a<x

for any € > 0, where the summation is over odd, positive a.
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