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Abstract. This paper is an exposition of several classical results
formulated and unified using more modern terminology. We generalize a
classical theorem of Hurwitz and prove the following: let

Gk(z) =
∑

m,n

′ 1

(mz + n)k

be the Eisenstein series of weight k attached to the full modular group.
Let z be a CM point in the upper half-plane. Then there is a transcendental
number �z such that

G2k(z) = �2k
z · (an algebraic number).

Moreover, �z can be viewed as a fundamental period of a CM elliptic
curve defined over the field of algebraic numbers. More generally, given
any modular form f of weight k for the full modular group, and with
algebraic Fourier coefficients, we prove that f (z)πk/�k

z is algebraic for
any CM point z lying in the upper half-plane. We also prove that for any
automorphism σ of Gal(Q/ Q), ( f (z)πk/�k

z )
σ = f σ (z)πk/�k

z .
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1. Introduction

In his epochal paper [15], Ramanujan introduces the power series

�r,s(x) =
∞∑

n=1

σr,s (n)xn,

where
σr,s(n) =

∑

de=n

dr es,

is the generalized divisor function. He isolates the functions

P := 1 − 24�0,1(x), Q := 1 + 240�0,3(x), R := 1 − 504�0,5(x),

and proves that �r,s(x) is a polynomial in P, Q, R with rational coefficients
whenever r + s is an odd positive integer. It is still a mystey if a similar result
holds when r + s is an even positive integer.

The purpose of this paper is to re-examine a classical result of Hurwitz and
to relate it to the functions P, Q, R.

In 1898, Hurwitz [8] proved that

∑

(m,n) �=(0,0)

1

(mi + n)4k
= �4k · (a rational number), i = √−1 (1)

where

� = �(1/4)2

2
√

2π
=

∫ ∞

1

dx√
x3 − x

.

Since this integral allows us to identify � as a fundamental period of the
elliptic curve y2 = x3 − x , we can apply a famous 1937 theorem of Schneider
[17] to deduce that � is transcendental.

There are several ways to view this elegant theorem of Hurwitz. One way is
to view it as the Gaussian analogue of the celebrated theorem of Euler giving
the explicit values of the Riemann zeta function at positive even integers in
terms of integer powers of π and the (rational) Bernoulli numbers. From this
perspective, one is led to ask the question if a similar result can be obtained
for the sums ∑

α �=0

α−k, k ≥ 4

where the sum is over the non-zero elements of the ring of integers of an
imaginary quadratic field (Hurwitz’s theorem corresponding to the ring of
Gaussian integers). Another perspective is to view it as a special value of a
certain Hecke L-series, as done in Damerell [3] and Harder-Schappacher [7].
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Viewing the rational numbers appearing in Hurwitz’s theorem as generalizations
of the classical Bernoulli numbers, one is led to study the arithmetic and
divisibility properties of these numbers, as done in Coates-Wiles [2].

In this paper, we take yet another perspective which is not unrelated to the
two viewpoints mentioned above.

The classical Eisenstein series for the full modular group is defined to be

Gk(z) =
∑

m,n

′ 1

(mz + n)k
(2)

where
∑ ′

means that (m, n) �= (0, 0) is a modular form of weight k for the
full modular group when k ≥ 4. Thus, what Hurwitz proved is that

G4k(i) = r�4k , where r ∈ Q. (3)

Let us observe that

S :=
∑

m,n

′ 1

(mi + n)4k+2
= 0

since

S =
∑

m,n

′ 1

i4k+2(m − ni)4k+2
= −S.

Using very basic notions of the theory of modular forms, we will give another
proof of (3), which is much simpler and more conceptual than that of Hurwitz.

Other than i = √−1, another interesting CM point is ρ = 1+√−3
2 which

leads to analogous results and this we discuss at the end of the paper.
We must add that at the time Hurwitz wrote his paper, the theory of modular

forms was not fully developed. Our proof will use some basic facts from the
elementary theory of modular forms that can be found in Serre’s graceful
monograph [19]. At the same time, we will show that Gk(z) is transcendental
whenever z is a CM point in the upper half-plane, that is, whenever, Q(z) is
an imaginary quadratic field. Our proof will also show an intimate connection
with the celebrated Chowla-Selberg formula.

More generally, we prove the following.

Theorem 1. Let f (z) be a modular form of weight k for the full modular
group. Suppose that f has algebraic Fourier coefficients. For each CM
point z in the upper half-plane, there is a transcendental number �z

which is algebraically independent with π such that f (z)(�z/π)−k is
algebraic. In particular, f (z) is an algebraic multiple of the k-th power
of a transcendental number. Also, for any automorphism σ of Gal(Q/Q),
( f (z)π k/�k

z )
σ = f σ (z)π k/�k

z .

As a corollary, we deduce
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Theorem 2. Let G2k(z) be the Eisenstein series of weight k on the full
modular group and let z be a CM point in the upper half-plane. Then there is
a transcendental number �z such that

G2k(z) = �2k
z · (an algebraic number).

Moreover, �z can be viewed as a fundamental period of a CM elliptic curve
defined over the field of algebraic numbers.

The CM elliptic curve can be defined over the Hilbert class field of Q(z).
However, in the case z = i or z = ρ, the algebraic number of the theorem is
really a rational number since in these cases, it is easily checked the curve is
defined over the rationals.

It is possible that the algebraic number of the theorem is zero. However,
a theorem of Rankin and Swinnerton-Dyer [16] shows that any zero of the
Eisenstein series G2k(z) lies on the unit circle |z| = 1. In addition, Kohnen [9]
has shown that apart from z = i and z = ρ, all the other zeros of G2k(z) are
transcendental. This work was recently extended by Gun [4] to other modular
forms. Thus, if z is a CM point unequal to i or ρ, then G2k(z) is necessarily
transcendental.

Our theorem as stated here, seems new. However, the necessary ingredients
needed to prove it are scattered throughout the literature and the main purpose
of this paper is to pull together these disparate strands of thought and present
them in a unified way from the viewpoint of Hurwitz’s theorem. In this
context, we set

E2k(z) = G2k(z)/2ζ(2k)

where ζ(s) denotes the Riemann zeta function. Then, the constant term of
E2k(z) is 1 and the Fourier expansion has rational coefficients.

Apart from the constant terms, both E4 and E6 coincide with Ramanujan’s
Q and R respectively. One can also define E2 appropriately and this is (again
apart from the constant term), Ramanujan’s P . His result that any �r,s (x) is
a polynomial in P, Q, R is a precursor of the general result that the algebra
of quasi-modular forms for the full modular group is generated by E2, E4

and E6.
The transcendence of E2k(z) when z is a CM point is nascent in a more

general theorem proved by Gun, Murty and Rath [5]. If j denotes the modular
invariant, and α lies in the upper half-plane such that j (α) is algebraic,
then they showed that for any modular form f for the full modular group,
with algebraic coefficients, the values f (α) and e2π iα are algebraically
independent, provided that α is not a zero of f . (See Theorem 4 in [5].)
In particular, f (α) is transcendental. In [5], a pivotal role is played by an
application of Nesterenko’s theorem (see [12] as well as Chapters 1 and 3
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of [13]) stating that for any z in the upper half-plane, at least three of the four
numbers

e2π i z, E2(z), E4(z), E6(z)

are algebraically independent. The same setting is true in our context. If j (α)

is algebraic, then as j (z) = E4(z)3/
(z), with 
(z) being Ramanujan’s
cusp form, we deduce that E4(α) and E6(α) are algebraically dependent.
Unravelling this fact, and applying Nesterenko’s theorem gives us the desired
transcendence result.

The goal of our paper is to isolate and highlight this particular application
in the context of Eisenstein series and its relation to the classical theorem of
Hurwitz. As such, our result can be viewed as a generalization of Hurwitz’s
theorem. We also make prominent the interpretation of the special value of
the Eisenstein series as a period of a CM elliptic curve, something which was
not explicitly done in [5].

Much of this work can be generalized to higher levels. This has now been
done in a forthcoming paper of Hamieh and Murty [6].

2. Preliminary lemmas

Now, let us recall the definition of a modular function, and state the valence
formula which will be useful in our proof. (See [19], Chapter VII for details.)
A meromorphic function f on the upper half plane H is called weakly
modular of weight 2k if

f (z) = (cz + d)−2k f

(
az + b

cz + d

)
(4)

for all z ∈ H and all
(

a b
c d

) ∈ G := SL2(Z). Since f (z + 1) = f (z), f can be
expressed as a function f̃ of q = e2π i z which is meromorphic in the punctured
disk 0 < |q| < 1. If f̃ extends to a meromorphic function at the origin q = 0
then we say f is a modular function of weight 2k.

For p ∈ H let v p( f ) be the order of f at p and v∞( f ) be the order of f̃ at
q = 0. Note that v p( f ) = vg(p)( f ) for g ∈ G and that v p( f ) only depends on
the image of p in H/G. If the order of the stabilizer of the point p is denoted
by ep then one can show that ep = 2 (respectively ep = 3) if p is congruent

modulo G to i (respectively to 1+√
3i

2 ) and ep = 1 otherwise.

Lemma 3 (The valence formula). Let f be a modular function of weight 2k,
not identically zero. One has:

v∞( f ) +
∑

p∈H/G

1

ep
v p( f ) = k

12
,
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or equivalently

v∞( f ) + 1

2
vi( f ) + 1

3
vρ( f ) +

∑∗

p∈H/G

v p( f ) = k

12

where
∑∗ means a summation over the points of H/G distinct from the

classes of i and ρ = 1+√−3
2 .

Proof. See [19], Theorem 3 of Chapter VII. �

As a corollary of the valence formula, we easily deduce that E6(i) = 0 and
E4(ρ) = 0 and these are the only zeros of E6 and E4 respectively.

A modular function f of weight 2k is called a modular form if it is
holomorphic everywhere i.e. f̃ is holomorphic in the disk |q| < 1.

Lemma 4. For k � 1, G2k , the Eisenstein series of weight 2k, can be
expressed as a rational linear combination of monomials Gα

4 Gβ
6 , where α and

β are integers with 2α + 3β = k.

Proof. For k � 4, G2k is given by Theorem 1.13 of [1] as

(2k + 1)(k − 3)(2k − 1)G2k = 3
k−2∑

r=2

(2r − 1)(2k − 2r − 1)G2r G2k−2r , (5)

which is easily established using the second order differential equation
satisfied by the Weierstrass ℘-function. This enables us to express G2k as

G2k =
∑

α,β

cαβ Gα
4 Gβ

6 , with cαβ ∈ Q, (6)

by applying (5) repeatedly via induction. We also find by induction that the
sum is over positive integers α, β satisfying 4α + 6β = 2k. �

Remark. In general, the space Mk of modular forms of weight 2k has a basis
consisting of monomials Gα

4 Gβ
6 over C, where α, β nonnegative integers and

2α + 3β = k. This can be found for example in Chapter VII, Corollary 2
of [19].

Lemma 5. For any imaginary quadratic field with discriminant −D and
character χD, the numbers π, eπ

√
D,

∏D−1
a=1 �(a/D)χD(a) are algebraically

independent.

This is Corollary 3.2 of [13].
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3. Periods of elliptic curves

Let
E : y2 = 4x3 − g2x − g3

be an elliptic curve. It is well-known that if e1, e2, e3 are the roots of the cubic
on the right hand side of this equation, then the fundamental periods ω1, ω2

of E are given by (see for example, p. 65 of [14])

ω1

2
=

∫ e3

e2

dx√
4x3 − g2x − g3

,
ω2

2
=

∫ e3

e1

dx√
4x3 − g2x − g3

.

Schneider [17] has shown that if g2, g3 are algebraic, then the periods ω1, ω2

are transcendental. If the elliptic curve has periods ω1, ω2, then one can
arrange (by changing sign) that z = ω2/ω1 lies in the upper half-plane.

The Eisenstein series of weight 2k associated to a lattice L is defined to be

G2k(L) :=
∑

ω∈L ′

1

ω2k
, (7)

where L ′ denotes the set of non-zero periods.
Let Lz = [ω1, ω2] be the lattice associated to z = ω2/ω1 ∈ H. Then

the corresponding g2(z) = g2(Lz) and g3(z) = g3(Lz) are related to the
Eisenstein series G4(Lz), G6(Lz) via the formulas

g2(z) = 60G4(Lz), g3(z) = 140G6(Lz). (8)

(See [10] or [14] for details.)
Here is the promised elementary proof of the theorem of Hurwitz.

Theorem 6. G4k(i) = r�4k , where r ∈ Q.

Proof. As G4k = ∑
2α+3β=2k cαβ Gα

4 Gβ
6 with cαβ ∈ Q (by Lemma 4) and

G6(i) = 0 (by Lemma 3), we conclude that

G4k(i) = ck0G4(i)
k, (9)

since all other terms vanish.
Notice that � in (3) is a period of the elliptic curve

y2 = 4x3 − 4x .

This curve corresponds to the point z = i in the standard fundamental
domain and has j -invariant 1728. The period is given by

� =
∫ ∞

1

dx√
x3 − x

.
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Comparing the definitions of (2) and (7), one can check easily that

G4(z) = ω4
1G4(Lz), for z = ω2

ω1
∈ H.

On the other hand, we know from (8) that 4 = 60G4(Li) so that

G4(i) = 1

15
ω4

1.

A simple change of variable transforms the integral to

� = 1

2

∫ 1

0
u−3/4(1 − u)−1/2du,

which is easily recognized to be a beta integral. Again, by expressing ω1, ω2

and ω3 as beta integrals, we get ω1 = −�, ω2 = −i� and ω3 = −(1 + i)�
(so that ω2

ω1
∈ H and ω1 + ω2 = ω3). Hence, ω4

1 = �4.
We therefore deduce that

G4(i) = 1

15
ω4

1 = 1

15
�4.

This, together with (9), completes the proof. �

Remark. If we recall the evaluation of the beta function given by

B(x, y) :=
∫ 1

0
t x−1(1 − t)y−1dt = �(x)�(y)

�(x + y)
,

where Re x, Re(y) > 0, we can evaluate

� = �(1/4)2

2
√

2π
.

4. The general CM case, the Chowla-Selberg formula and
proof of the main theorem

We review chapters 16 and 17 of [14] here. For a CM point z, let Ez be an
elliptic curve y2 = 4x3 − g2x − g3 over Q with complex multiplication
by z = ω2/ω1 where ωi ’s are its fundamental periods. One can choose a
model for Ez so that g2 and g3 are algebraic. Then �z := ω1 is given by the
Chowla-Selberg formula:

�z = αz
√

π
∏

0<a<dz ,(a,dz)=1

�(a/dz)
wz χz (a)

4hz (10)
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where αz is an algebraic number, wz is the number of roots of unity in Kz :=
Q(z), −dz is the discriminant of Kz , χz is the quadratic character mod dz

determined by Kz and hz is the class number of Kz . For z = ω2/ω1 lying in
the upper half-plane and from the fact that (see [14] Corollary 17.9)

E4(z) = 3

4

(
�z

π

)4

g2, E6(z) = 27

8

(
�z

π

)6

g3, (11)

where E2k(z) is the normalized Eisenstein series given by G2k(z)/2ζ(2k),
we see that G2k(z) is equal to �z

2k up to some algebraic multiple.
More explicitly, by Lemma 4,

G2k(z) =
∑

4α+6β=2k

cαβ G4(z)αG6(z)β

so that for suitable rational numbers c∗
αβ ,

G2k(z) =
∑

4α+6β=2k

c∗
αβ(�4

z g2)
α(�6

z g3)
β

= �z
2k

∑

4α+6β=2k

c∗
αβgα

2 gβ
3

= δ0�z
2k for some δ0 ∈ Q. (12)

From the Chowla-Selberg formula (10) (see also [11]) we deduce that

�z
2k = α2k

z π k

⎛

⎝
∏

0<a<dz ,(a,dz)=1

�(a/dz)
wz χz (a)

4hz

⎞

⎠
2k

,

we derive that

G2k(z) = δπ k
∏

0<a<dz ,(a,dz)=1

�(a/dz)
wzk χz (a)

2hz

where δ is an algebraic number. This completes the proof of our main
theorem. �

Hurwitz’s result is easily derived from this by using the functional equation

�(z)�(1 − z) = π

sin π z
.

We now give another example that is similar to Hurwitz’s theorem

mentioned in our introduction. Let us consider the case when ρ = 1+√−3
2 .
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By the valence formula, one can check that G4(ρ) = 0. Also by Lemma 4
G6k+r (ρ) = 0 if 0 < r < 6. Since G6k(ρ) = c0k G6(ρ)k , it is equal to

π3k
∏

0<a<3,(a,3)=1

�(a/3)
18k χz (a)

2 =
(

π�(1/3)3

�(2/3)3

)3k

(13)

up to some algebraic multiple.
By Euler’s reflection formula �(z)�(1 − z) = π

sin(π z) , we get 1
�(2/3) =√

3 �(1/3)
2π . Now (13) gives that G6k(ρ) is

(
�(1/3)3

π

)6k

(14)

up to some nonzero algebraic multiple.
Since this is (up to an algebraic multiple) the power of a period of an elliptic

curve with algebraic coefficients, Schneider’s theorem (see [17]) implies that
it is transcendental.

However, it is possible to deduce this using a result of Čudnovskiĭ. We state
this as:

Proposition 7. E6k(ρ) is transcendental where ρ = 1+√−3
2 .

Proof. By Theorem 14 of [20](due to G. V. Čudnovskiĭ), the two numbers

�

(
1

3

)
and π

are algebraically independent. This, together with (14), implies the result.
�

An elliptic curve E over Q whose j -invariant is not 0 nor 1728 has the
Weierstrass equation y2 = 4x3−g2x−g3 where g2 and g3 are nonzero rational
numbers. If E has complex multiplication and g2, g3 > 0 or g2, g3 < 0, then
the recursion relation (5) for Eisenstein series shows that the above G2k(z)
is a nonzero number for all k since G2k is expressible as a polynomial in
g2 = 60G4 and g3 = 140G6 with positive rational coefficients.

As remarked earlier, by the result of Kohnen [9] G2k(z) is non-zero when
z is a CM point unequal to i or ρ and so in these cases, it is the 2k-th power
of a transcendental number.

5. Proof of the main theorem

Given any modular form f of weight k with algebraic Fourier coefficients,
we can write it as

f (z) =
∑

4a+6b=k

cab Ea
4 Eb

6
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with cab algebraic. This is evident since the collection of elements Ea
4 Eb

6 with
4a + 6b = k is a basis (with rational Fourier coefficients) for the space of
modular forms of weight k for the full modular group. Applying the Galois
automorphism to f simply leads to applying the Galois automorphism to the
cab’s. Thus, inserting formula (11), we see that

f (z) = (�z/π)k(an algebraic number),

whose action under Galois is fully determined. Applying Lemma 5, completes
the proof.
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