
Diophantus, Pappus and the 
decline of  Greek mathematics



Diophantus of  Alexandria
 Diophantus is often dated as 

living around 250 CE.
 His major work is called 

Arithmetica and consists of  13 
books, of  which only 6 have 
survived.

 This was essentially a treatise on 
number theory and dealt with 
integer solutions of  equations.

 Such equations are called 
Diophantine equations today. 



Arithmetica and its use of  symbology
 Arithmetica seems to be the 

first work where symbols are 
introduced for unknowns.

 An unknown number is 
represented by the symbol 
indicated here.

 In some editions, he uses ζ.
 Squares, cubes, fourth 

powers, fifth powers and 
sixth powers are represented 
by various symbols:



Bachet’s translation of  Diophantus

 In 1621, Claude Gaspard de 
Bachet (1591-1639) translated 
the Arithmetica of  
Diophantus into Latin.

 This made a deep impression 
on Pierre de Fermat who is 
considered today as the one 
who revived number theory 
in the 17th century.



Fermat’s method of  descent
 Diophantus seemed to have used in his proofs, a method  of  

descent that we attribute today to Fermat.



Fermat’s Last Theorem
 Perhaps the most 

famous of  Fermat’s 
1637 marginal 
comments in his 
edition of  Bachet’s
translation is what 
has since been called 
Fermat’s Last 
Theorem.

He wrote his famous marginal 
note: to split a cube into a 
sum of  two cubes
or a fourth power into a sum 
of   two fourth powers and in 
general an n-th power as a 
sum of  two n-th powers is 
impossible.  
I have a truly marvellous 
proof  of  this but this 
margin is too narrow to 
contain it.



The method of  descent for n=4

 What Fermat may have had is a valid proof  for n=4 
which he derived by the method of  descent, as we 
will soon demonstrate.

 He may have been premature to conclude that his 
proof  was valid for all n.

 Here is the precise statement:



From Pythagorean triples to Fermat’s 
study of  n=4
 The trick is to consider a seemingly more “difficult” 

problem.
 Fermat showed the equation x4+ y4=z2 has no non-

trivial integer solutions.
 He did this by assuming that there is a non-trivial 

solution and then choosing the solution with |z| 
minimal.

 Then he showed that there is a solution with a 
smaller |z|, which is a contradiction.



The argument in detail



The development of  algebraic number 
theory
 Fermat’s last theorem is a superb example of  how a 

single conjecture can inspire the rapid development 
of  mathematics.  

 After Fermat, Euler began a systematic study and 
showed that for n=3, there are no non-trivial 
solutions.  

 Important reduction:  it suffices to solve the 
problem for prime exponents.



FLT solved in
1995.



Pappus’s theorem

 Pappus (c. 300 CE) is considered the last great 
geometer of  the Alexandrian school before it was 
destroyed.

 His geometric theorem is a precursor to the theory 
of  elliptic curves.



A simple proof  using co-ordinate 
geometry
 Using Cartesian co-ordinates, one can give a simple, 

but a bit tedious proof.



We can solve for xa and ya:

 Put ui= 1/xi.  Then,



The condition for collinearity

 The condition for collinearity of  the points a,b,c is:

This is now easily verified with the 
above formulas.
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