
Newton’s derivation of  
Kepler’s laws



Review of  Kepler’s laws
 Let us first review Kepler’s three laws:

These laws were stated by Kepler from meticulous observations.  He did not provide any
theoretical explanation for them.  This was done by Newton through his law of  universal
gravitation.



The equation for the ellipse in polar co-ordinates
 Recall that the ellipse can be described as the locus of  

points whose sum of  the two distances to two foci F1 and 
F2 is constant.  The length of  the major axis is denoted a 
and the minor axis is b.

 We write the distance of  the foci from the origin as ae and 
call e the eccentricity.

 Thus, the eccentricity for a circle is zero.
 To derive the equation for the ellipse in polar co-

ordinates, it is convenient to make one of  the foci as the 
origin as we did before.  It is then clear that we have using 
the cosine law  r+ √(r2 + (2ae)2 – 4aer cos θ)= a(1+e).

 This can be simplified as r= A/(1+Bcos θ) for certain 
constants A and B.

 This will be useful later in understanding Newton’s 
derivation of  Kepler’s first law.



Area of  the ellipse in polar co-ordinates

 It will be useful to derive the formula for the area 
of  the segment of  the ellipse swept by an angle θ at 
one of  the focal points. 

Thus, the area swept by the radial vector moving 
from  θ1 to θ2 or time t1 to time t2 is: 

This will be useful in deriving Kepler’s second law.



Newton’s law of  universal gravitation
 Recall that Newton formulated the law of  universal 

gravitation by the equation:  F=GMm/r2 , where G 
is a universal constant, M and m are the masses of  
the two bodies and r is the distance between them.

 Recall also Newton’s second law of  motion: F=ma, 
where m is the mass and a represents acceleration.

 In trying to understand planetary motion, we are led 
to the equality that the acceleration a= GM/r2 , 
which expresses how the acceleration changes with 
the radial distance.



Analysing the orbit via polar co-ordinates

 As noted earlier, in describing planetary motion, it is convenient to use polar co-
ordinates instead of  cartesian co-ordinates.

 In describing an ellipse in polar co-ordinates, it is convenient to use one of  the foci as 
the origin.

 This will allow us to put the sun at one of  the focal points and study the motion of  the 
planet from this perspective.

r and θ will both be viewed as 
functions of  time parameter t.



via componentwise differentiation



Deriving Kepler’s second law

 Using this we can derive Kepler’s second law.
 Recall this states:



The final step



Kepler’s first law
 Recall from our discussion of  Kepler’s second law 

that:



Kepler’s first law (continued)

 This is the equation of  an ellipse in polar co-ordinates.



Deriving Kepler’s third law
 Recall that Kepler’s third law says that T2/a3 is constant, where T is the 

period of  the orbit and a is the length of  the semi-major axis.  We can deduce 
this from Newton’s law of  gravitation in five steps.



Kepler’s third law (continued)

 This completes the proof  of  Kepler’s third law.
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