Newton’s derivation of

Keplet’s laws




Review ot Kepler’s laws

m Let us first review Kepler’s three laws:
Kepler's First Law:
The orbit of a planet about the Sun is an ellipse with the Sun at one focus.

Kepler's Second Law:

A line joining a planet and the Sun sweeps out equal areas in equal intervals of time.

Kepler's Third Law:

The squares of the sidereal periods of the planets are proportional to the cubes of their semimajor axes.

These laws were stated by Kepler from meticulous observations. He did not provide any

th ‘“,, explanation ror-them his-was.done_-bv_\ewton.-throuon

gravitation.



The equation for the ellipse in polar co-ordinates

Recall that the ellipse can be described as the locus of
points whose sum of the two distances to two foci I, and
I, is constant. The length of the major axis 1s denoted a
and the minor axis 1s b.

We write the distance of the foci from the origin as ae and
call e the eccentricity.

Thus, the eccentricity for a circle is zero.

To derive the equation for the ellipse in polar co-
ordinates, it is convenient to make one of the foci as the
origin as we did before. It is then clear that we have using
the cosine law r+ \/(rz + (2ae)? — 4aer cos 0)= a(l+e).

This can be simplified as r= A/(1+Bcos 0) for certain
constants A and B.

This will be useful later in understanding Newton’s
derivation of Kepler’s first law.




Area of the ellipse 1n polar co-ordinates

It will be usetul to derive the formula for the area
of the segment of the ellipse swept by an angle 6 at
one of the focal points.

Thus, the area swept by the radial vector moving
from 6, to 6, or time t, to time t, is:
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This will be usetul in deriving Kepler’s second law.



Newton’s law of universal gravitation

Recall that Newton formulated the law of universal
gravitation by the equation: F=GMm/t* |, where G
is a universal constant, M and m are the masses of
the two bodies and r 1s the distance between them.

Recall also Newton’s second law of motion: F=ma,
where m 1s the mass and a represents acceleration.

In trying to understand planetary motion, we are led
to the equality that the acceleration a= GM/+? |
which expresses how the acceleration changes with
the radial distance.



‘ Analysing the orbit via polar co-ordinates

= As noted earlier, in describing planetary motion, it is convenient to use polar co-

ordinates instead of cartesian co-ordinates.

= In describing an ellipse in polar co-ordinates, it 1s convenient to use one of the foct as

the origin.

= This will allow us to put the sun at one of the focal points and study the motion of the

planet from this perspective.
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r and 6 will both be viewed as
functions of time parameter t.

As depicted in the figure, the sun is at the origin (the “heliocentric”
_}
point of view), and R is the position vector of the orbiting planet. The vector

r is the unit vector in the direction of R. Since r - 7= 1, the product
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rule for differentiation shows that 7 - (E r ) = (; therefore if s is the unit

vector in the dirction of — ? it follows that = - s — 0, as well. All of this is

. i w . : — —
depicted in Figure - In fact, from this picture, we see that r and s are
given explicitly as
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from which it follows that via componentwise differentiation
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The vector equation dictating the motion of  the orbiting planet is
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since the force on the planet is directed back towards the sun.
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The acceleration is the time derivative of Equation (2}):
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‘ Deriving Keplet’s second law

However, from equation (1) we see that the acceleration vector is given by
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from which we conclude that
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= Using this we can derive Kepler’s second law.

m Recall this states:

t,=t,=t,-t, implies equal areas
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“The final step
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Note, however, that
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where we have used Equation (4), above. The upshot is that the integrand r

Is a constant—call it L—from which we conclude that

1 [ ,d
Area swept between times #; and t; = 5/ r d—f di — —L( 9 — t1).
t

Therefore, if t4 — t3 = to — t; the areas will be the same! This proves Kepler's
Second Law.




‘ Kepler’s tirst law

= Recall from our discussion of Kepler’s second law

that:
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is a constant: define the new constant

and define the (dimensionless) variable
IJ
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We have, using the Chain Rule, that
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‘ Kepler’s first law (continued)

Differentiate again and obtain

d*r ' (d-r) d) L d*u do u L2u? d?u

dt ~  Pd#2dt  P3 dp?

de2 ~ de

dt

Next, we substitute into Equation (3) and get
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Dividing by the common factor of — R results in the inhomogeneous second-
order differential equation:
L - 1
— +u=1.
dp?

The general solution of this has the form
u=u(f) =14 ecos(f — b)),

where e and f/; are constants which can be determined from the initial conditions.
In terms of the polar radius r, this becomes

B 24
~ 1+4+ecos(f—6)’

T

= This 1s the equation of an ellipse in polar co-ordinates.



‘ Dertving Keplet’s third law

= Recall that Keplet’s third law says that T?/a’ is constant, where T is the
period of the orbit and a is the length of the semi-major axis. We can deduce
this from Newton’s law of gravitation in five steps.

Step 1. Denoting by 7" the orbital period, note that the area of the ellipse swept

out by the orbiting body is
1 =" ,de
AL [Ty,

However, we've seen that 7°— is a constant, denoted L. Therefore, the

dt
' 1

=ty
above area is given by A = 3

Step 2. Denoting by a the semi-major axis and by b the semi-minor axis, the
area of the corresponding ellipse can be expressed by the integral

A——/ vV a2 — r2dr = abr.



‘ Kepler’s third law (continued)

Step 3. Recall from Analytical Geometry that an ellipse with semi-major axis a
and eccentricity e has semi-minor axis b = av/1 — €2. ('Exercise on the next
assignment) Conclude from Steps 1 and 2 that
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Step 4. Using the equation
P P Fig
o= Y = A 2 4.2
L e Step 5. We conclude that 13 = i
together with a GM
26 = Py + max = = + i
A min max — 1 + e 1 —e

leads immediately to

L? =a(1 - &)GM.

= This completes the proof of Kepler’s third law.
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