Stirling and de Motvre: The
development of probability
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Abraham de Moivre

Abraham de Moivre (1667-1734) was
a French mathematician who (due to
religious persecution in France) went
to England and studied with Newton
and Halley.

Abraham de Moivre

Unable to secure a university (1667-1754)

position, he eked out an existence |
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being a private tutor of mathematics.

In 1718, he wrote his famous book,
Doctrine of Chances 1n which he
outlined the a mathematical theory

of probability.




“The probability integral
= De Moivre was the first to recognize the importance of the
probability integral:

Here is a short proof of this fact. Put:
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We change = = ty in the inner integral and interchange the order, which we
can do because of absolute convergence:
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The inner integral is easily evaluated and we find:
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= We saw earlier that Nicolas Oresme had shown the harmonic series diverges.
But how does it diverge?

= What is the asymptotic behavior of the partial sum? This can be answered as
follows.

Note that
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since the numerator of the integrand 1s at most 1. Therefore
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Also,




‘ Euler’s constant

By the integral test the tail is O(l/n). Now
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By the mean value theorem?

log(n +1) =logn + O(1/n).

This proves:

=

=logn+C+ O(1/n).
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(' 1s called Euler’s constant.

= It 1s unknown at present if Euler’s constant 1s a rational number.
The conjecture is that it is irrational.




‘ Approximating the logarithm

= We can use Taylor expansion of log (1-x) to approximate the logarithm:
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This tells us that, for |z| < 1, we have:

|—log(l —z) — x| < Z|:c|k -
k=2

||
1—|z|

Changing r to —x gives us:

By the approximation to the logarithm

log(n+1)=logn + — : —I—U(l)
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‘ De Motvre’s asymptotic formula for n!

= In his work on probability theory, de Moivre needed an asymptotic formula
for n! which he obtained by simple calculus in the following way. By
considering log n!, we have:
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By the approximation to the logarithm
. . . 1 1
The last integral is easily evaluated: log(n+1) =logn+ = +0 ( nz)
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= (n+1)log(n+1)—n = nlogn—n+log n+14+0(1/n).

The sum can be re-written as

- log —dt = — [ log (1 + —) du.
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We approximate the logarithm:
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and the sum becomes
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for some constant C';.



“The final asymptotic

m We can now insert this in our approximation of log n! Recall
that we proved:

The final answer is

- 1
logn! = Zlﬂgﬁz =nlogn —n + 5 logn+Ca+ O(1/n)
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for some constant C2. This is de Moivre’s theorem. That is, as n tends to infinity,
n! ~ y/Csn(n/e)".

de Moivre could not determine C;. This was done by Stirling.

Let us write #1 ~ Byn (n/e)”




‘ How to determine the constant?

= The simplest way to determine the constant
1s via Wallis’s formula, already discussed in
an earlier lecture.
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By integrating by parts, we have:
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‘ Solving the recursion
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= We solve the recursion: fon = (n) yzar1 and
Ioon — 227(n!)*
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Now, since 0 < sin(ff) < 1 when £ € [0, T], it follows that
Iﬂ—? = In—l = In-
It follows that:
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It follows that:
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Computing along the even subsequence, we see that we are immediately led to the
constant B in de Moivre's formula:
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“The final steps
= We can now find B by Wallis’s formula (proved in

an earlier lecture):
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