Lagrange, Laplace, Legendre
and the French Revolution




The French Revolution

The 18™ century is often viewed as the century of
revolutions. In America, 1776 marks the end of the
American revolution. In France, 1789 marks the
end of the French revolution.

Both of these are in the context of the global
Industrial revolution where scientific methods were
being applied to increase productivity.

In this period, three mathematicians stand out as
eaders 1n their field: Lagrange, Laplace and
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Legendre.



Joseph Louis Lagrange

Joseph Louis Lagrange (1736-1813) was actually Italian by birth
and was the youngest of 11 children and the only one to have
survived beyond infancy.

The universities in France at that time were not as they are today.
Thus, many mathematicians were educated privately and not in a
formal sense at any university. Nor did they find jobs in
universities but rather were patronized by royalty.

Lagrange was instrumental in the French adoption of the
decimal system in their system of weights and measures.

He also developed analytic geometry and used it to develop a
new branch of mathematics called the calculus of variations.



Analytic geometry and the cosine law

Most students are familiar with the dot product of two vectors.
However, they may not be familiar with how the concept arose
from studying the cosine law using analytic geometry.

a=(aj,ay,....a,), b=/(by,by,...by), a-b=aby +asby+---+a,b,.

Let us see how the cosine law motivates this definition of the dot product.

& =a®> + b —2abcosh.

(n—beosH, bsind)

The co-ordinates of a+b are easily calculated:
(a+bcosg,bsin o).

Since # + ¢ = m, we find either by looking at the graph of the cosine and sine

/ functions, or by using the addition formulas, that
/ ’ a+becosgp=a—beosfl, bsing = bsind,
and our claim is now evident.
AN Calculating the length of the vector from the co-ordinates now
¥ gives us the cosine law.

(0,0) (a,0)



The dot product and the cosine law

Now we can relate the cosine law to the dot product. Consider
the two vectors a and b as shown in the figure with an angle 0
between them. The cosine law gives:

b—all?=||b||? ~|lal|* =2
|

a

Ib|| cosd

On the other hand, if a = (a1,as) and b = (by,bs), then b —a = (b, —
a1,b2 — az2) so that by the Pythagorean theorem, we have

||h—§l_| 2 = {bl —ﬂ-ljlz—F{bg—ﬂ-g:Iz = b%-I—bg+H%+ﬂ§—2[‘ﬂ-lbl+ﬂ-gbg).

The right hand side is: Ibl|? + [|a]|* — 2(a- b).

We therefore see, at least in two dimensions, a visual
representation of the dot product in terms of the co-ordinates
a of the vectors using the cosine law.

Observe also that the dot product of two vectors 1s zero if and only if they are
orthogonal to each other.



"The cross product

= The cross product also affords a geometric meaning and
students usually encounter it in a basic physics course.

It is convenient to recall here the cross product of two vectors in B*. For-
mally, given two vectors

a= (ay,az,as), b= (by,bs, bs)
in R%, the cross product is by definition

axb:= (ﬂ.zbg — ﬂ-jbg.. -’1351 — ﬂ-]bj._. ﬂ,lbg — ﬂ-gbl).

The formal definition lacks any hint of its importance and meaning. In
physics, the concept arises to describe torque. If a represents the displace-
ment of a particle from a fixed point to a movable point, and b is the force
applied at the movable point, then the cross product a x b is the torque
exerted by the force about the fixed point. The above opaque definition is
better remembered using determinants. One writes symbolically,

i jk
axb=|a as ay

S by by by

where i, j, k are the unit vectors (1,0,0),(0,1,0) and (0,0, 1) respectively.




‘ The area of a parallelogram in terms
of the cross product

= We can formally expand the determinant:

Expanding the determinant using the first row leads to the earlier definition

i jk
axb=la asa; so that the “determinant expression” serves as a useful mnemonic for the
by by by cross product. A straightforward and tedious computation shows that

|a x b|* = (a] + a3 + a3) (b 4+ b3 4+ b3) — (a1by + asby + azbs)®
We recognize the last term as the square of a dot product

so that ‘

la x b|* = |al*|b|* — |a|*|b|* cos? 6.

Consequently, A
la x b| = |a|b]| sin#, .y

where # is the angle between the two vectors a and b. This formula implies
a geometric interpretation of the magnitude of the cross prr.}duct vector. [t 8 a

is the area of the parallelogram spanned by the two vectors a and b. The fro—-
direction of the cross product is given by the familiar “right hand rule,” N —
where if you align the fingers of your right hand along the vector a and bend |a| |b|sin e

__ your fingers around in the direction of rotation from a to b, your thumb will
point in the direction of a x b. We also note that the cross product of a and
b is zero if and only if they are parallel.




"The area of a parallelogram as a

determinant

Lagrange discovered that the area of a parallelogram can also be written as a
determinant. Given two vectors v=(a,b) and w=(c,d) in R? we have from our
understanding of the cross product that the area of the parallelogram
determined by v and w is:

VIVEIW® = (v-w)?.

Computing this directly using vector co-ordinates leads to the square root

of
(a® + ) (b + d7) — (ab + ed)?

which is easily seen to be

(ad — be).

This is the determinant of the 2 x 2 matrix whose columns are v and w.




Areas and volumes as determinants

Lagrange found general formulas for areas and volumes
in terms of determinants. For instance, the area of a
triangle with co-ordinates (X, v,), (X5, V), (X3, V3) 1S:

| 6o | Similarly, the volume of a tetrahedron, with obvious notation is:
ol SR 8 !
T oy
b " VR
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The gradient of a function of several variables

= Lagrange developed multivariable calculus in several directions.
In dealing with functions of several variables, the concept of
dertvative 1s delicate and there are several ways of viewing it.

= The notion of gradient should be familiar. Given
a continuous function f : E"

gradient of f, denoted V f as a hunction from K™ to K" given by

— B, we define the

V= (Dif . D.f)

Here Dy, ..., D, denote partial differentiation operations with respect to the
variables xy, ..., X

ne

We also have the concept of a directional derivative: suppose u is a vector. Let us look at

the case f : B" — . Given a vector uwe can define the directional deriva-

tive at xg, sometimes denoted f,(xo) by the limit,

lim f(xo+ hu) — f(xq)
h—0 h

provided the limit exists.



‘ The Lagrange multiplier method

The Lagrange multiplier method gives conditions for finding the maxima

or minima of a scalar field subject to a side condition. Suppose we want to
find the maximum or minimum of a function f : ™ — R subject to the side
condition g(x) = 0 for some differentiable g : E™ — K. Let €' be any curve
given by r : [0,1] — E" lying on the hypersurface defined by g(x) = 0.
Thus, if r(t) = (z,(t),.... (1)), then g(r(t)) = 0. Now if f has an extremum
at Xy (say), and C passes through x;, then setting h(t) := f(r(t)), we see that
h also has an extremum at ¢y where t; is such that r(ty) = xo. Thus, by the
chain rule, we deduce that

0 =h'(ta) =V f(r(ta)) - '(ta)-

= As the dot product of these two vectors is zero, they must be orthogonal.

In other words, V f(x;) is orthogonal to the tangent vector r'(t;) for every

curve C' lying on g = 0 passing through xg. But if g(x) = 0, we see that for Vf {'.'{n} = AVyg {ID}.
any 1,

0=D,g=Vg-u, This is the Lagrange
which means that Vg is also orthogonal to r'(tp). Therefore, V f and Vg must Multiplier method.

be parallel at the extreme point. In other words, there is a A such that



Laplace and variational methods

Beginning with Lagrange, mathematicians began to
study functions defined by integration, often
encountered in the calculus of variations, a subject
initiated by him.

Laplace discovered the method of steepest descent
to analyse the asymptotic behavior of integrals.

This allowed him to re-dertve Stirling’s formula as
well as prove what is now called the de Moivre-
Laplace law of large numbers.



The method of steepest descent and Stirling’s formula

We begin with an informal derivation of Stirling’s formula using the method of steepest
descent. Suppose that ¥ : [0,00) — K is a smooth funection with a unique global maximum at
xg > 0 and that /"(zp) < 0 and 9/(x) — —oo as = — 0o. Then, using the identities

b(x) = d(xo) + U (xo)(x —x0) + %ﬂ’" (z0)(z — z0)* + O((z — z0)”)

1
= d(zo) + 5V (@) (= — ) To-+e
/ B ACOF f ™) 4y
= Recall: 0 o
To+E
W rblx) [ And(xo)(z—x0)? g,

e ., ;D}/ —nﬁ,u IUHI_IDFEEI

m¥(za) —‘
- \| —ne" (o)

To derive Stirling’s formula, we write
nl=In+1)= / e Tdr = f ™V dy
0 (1]

where the function .
(x) = log(z) — ~

has a unique global maximum at zp = n. Caleulating ¢'(zp) = log(n) — 1 and " (zy) = —n
the method of steepest descents gives

n! ~ ' 2an (E)n ;

£



The de-Motvre-Laplace theorem

Laplace could give another proof of what is often
called the law of large numbers.

In the context of Bernoulli trials, or coin flipping,
de Moivre discovered the limit distribution as the
normal distribution.

His proof was long and complicated.

Laplace found a more direct proof using his new
asymptotic analysis.

We will sketch his argument now.



“The law of large numbers

= Although I will use the terminology of probability theory, you do not need to
have had a course in it to understand the essential idea.

Suppose that X, Xs,--- are 1.1.d. random variables with F(X, =1} =P(X, =-1) =1/2 and
let 5, =X, +--++ X,,. Then, since S;,, = 2k if and only if exactly n + k of the X;'s take the
value +1 and the remaining n — k X;'s take the value —1, we have

2n
P(S>, = 2k) = 9—2m,
192 ) (n + I;)

Our aim is to study the asymptotics of this probability in the imit as n — oo when k= z/n /2.

From Stirling’s formula, we have
2n B (2n)!
n+k)  (n+k)(n—k)
|

2n\ 2" e n+k e n—k f drn
e n+k n—k \/ (2m(n + k)27 (n — k)

{EH:IE“ T
(n+ E)"He(n — k)nFk V’ m(n? — k2)’




‘ Putting this together

IEE —{:r:—.i!z:I |iE —'['TL—IE:I _1/2 ;i:ﬂ —]-,.".2
P(S2, = 2k) ~ (1 + —) (] — —) (nm)~ ! (1 — —2)

n T n

k2 T A NF 2\ 2
= (1) (45) (5) e 3)
N

= We now recognize that we can use the familiar limits: (1+x/n)" tends to e* as
n tends to infinity. Thus:

(] 2 ) " If 2k /v/2n — z, then

, P(Son = 2k) ~ (wn) Y212




The tinal steps

Plav2n < S, < bv2n) = Z F{S2, = m)

m ey 2n,by 20 )N2E

- Z (nm)~ 1/2—x%f
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keeping in mind that the length of our interval is
(b—a)\/ (2n) so that the penultimate sum is
recognized as the Riemann sum converging to the
final integral.

This theorem is the beginning of probability theory.



Legendre and number theory

In 1797-98, Legendre published his two volume treatise on
number theory.

The most important idea in it concerned solutions of quadratic
congruences.

If p and q are primes, when can we solve the congruence x* = q
(mod p)?
If we can solve this congruence, Legendre defined the symbol

(q/p) to be 1. This is not a “fraction” but rather symbolic
notation.

Along with Euler, he discovered the relation that
(p/q)(q/p)= (-1)®-DE@D/* for odd primes p, q.

This 1s often called the law of quadratic reciprocity but neither

Legendre or Euler gave a complete proof. This was done later
by Gauss.



Legendre and the study of primes

Following Legendre, let n(n) be the number of primes
up to n.

In his two-volume treatise, he conjectured but could
not prove that n(n) is asymptotically n/(log n -1.08360)

Now we know this conjecture is wrong, but it does
come close to the truth in the sense that the correct
term is n/log n.

This was proved almost a century after Legendre
conjectured it, in 1896, by Hadamard and de la Vallee
Poussin and can be seen as the culmination of 19t
century mathematics. We will discuss this later.



‘ Legendre and his photograph

= Apparently, until 2005, many
scholars were using a wrong

photograph of Legendre.
= The photo of the politician

L.ouis Legendre was

erroneously used in most

books. ~

m There 1s, as far as we know, no
portrait of him except for the

1820 watercolor caricature of
the mathematicians Legendre
and Fourier by Julien Leopold |
Boilly.
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