Cauchy, Fourier and Chebychett




Cauchy, complex analysis & group theory

Even though Gauss introduced the field of complex
numbers, it was Cauchy who realized that one extend
the ideas of calculus to this realm. He singlehandedly
created complex analysis.

He also 1nitiated the study of group theory with
emphasis on permutation groups which he
encountered in his study of determinants.

Augustin Louis Cauchy (1789-1857) was born in Paris
in well to do family during the Napoleonic era.
Lagrange was a friend of the Cauchy family and we
may assume that he had a formative influence in the

mathematical development of the young Cauchy.

Cauchy was educated to be an engineer, but field work
did not suit him. In 1812, at the age of 23, he fell ill
and had to retire from engineering. He became more
and more enamored by the beauty of abstract
mathematics.



Cauchy as Professor at Ecole Polytechnique

Cauchy prior to 1857

Cauchy soon accepted a professorship at Ecole
Polytechnique in Paris and began his research
into mathematics there.

It 1s said Cauchy was a poor lecturer, cramming
too much material into his lectures and often
assuming that his students were familiar with the
concepts as he was.

Still, his work on complex analysis started in
earnest, and his famous residue theorem in
complex analysis was soon to find important
applications.



‘ Cauchy’s theory of complex analysis

= FPor a function of a complex variable, Cauchy defined the notion
of differentiability using the familiar notions from calculus, but
he soon realized that this notion led to more structure and a
remarkable cosmos unfolded before his eyes.

Let 12 be an open set of the complex plane C. Suppose that f : 12 — Cis
differentiable. That is, the limit

lim flz) — flzn)

T—*Ig T — I}

exists for every zp € 2. Writing = = = 4 iy, we can decompose f(z) as
ulz,y) + iv(r. )

where u(r, y) and v(r, y) are real valued functions of r and ». Festricting the limiting process to the two orthogonal directions, namely

the r and y directions, we get
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“The Cauchy-Riemann equations

= This leads to the important set of equations called the Cauchy-Riemann

equations.
The reader should understand that although the definition of differen-
g P tiability of f is similar to the usual derivative of a function of a real varni-
e v able, the complex variable case is much richer This is underscored by the
dz Ehy Cauchy-Riemann equations. For instance, we see that for an analytic func-
tion f(z) = ulz,y)+iv(x, y), the functions u(z, y) and v(r, y) of real variables
Gu Ov satisfy Laplace’s equation:
dr Oy
P u : P u 0 and &y : o i
dr? iyt ar? = Oyt -

Ditferentiable functions of a complex variable are called analytic to distinguish

them from functions of a real variable. If a function is analytic in the whole complex plane,
it is called entire. Cauchy found that any such function can be expanded as a power series
about any point z;
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‘ JOS@ph F()U.fler = Around the same time, Joseph
Fourier (1768-1830) was developing

his mathematical theory of heat, and
to study this, he developed what is
now called the theory of Fourier
series.

= His question was:

Suppose f : R/Z — Cis a continuous function. We would like to investigate
if f can be written as a Fourier series
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If such a series exists, we see that proceeding formally

i
f (Z ann'lm'r.s:) . Frime dr o
i

neEl

=1 if m=n and 0 otherwise.

These numbers are
, called the Fourier
Tm f fizr)e ™™= Jr. Coefficients of f.
i

In other words,
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Complex analysis and Fourier series

= Writing our complex number z in polar co-ordinates, we see that
z=re*™ 50 that now, our function can be thought of as a
function of the real variable r and the angle 6.

= The power series for any analytic function then can be viewed as
a Fourier series if we write z=a+re™ so that
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This allows us to deduce an important theorem in complex analysis called
Liouville’s theorem: a bounded entire function is constant. Here is the proof.

Suppose |f(z) | <M. Then,

—f fla+re®)2do < M.

If we ket r — oo, we get a contradiction unless ey — a2 — --- = 0. Thus, f ~
is constant. [



The Fundamental Theorem of Algebra

The fundamental theorem of algebra, first proved by Gauss, is the theorem
that any polynomial of degree n with complex coefficients has n roots over
the complex number field.

This should be seen as the culmination of the efforts of ancient
mathematicians trying to understand roots of quadratic, cubic, quartic
equations that we have already studied from earlier civilizations.

We can use Liouville’s theorem to prove this. If P(z) is a polynomial of
degree n, we see that |P(z)| tends to infinity as |z| tends to infinity.

If P(2) had no roots, then 1/P(z) is analytic everywhere and so entire. But as
| P(2) | tends to infinity as |z| to infinity, we see 1/P(z) is a bounded entire
function, and hence constant by Liouville’s theorem, which is a contradiction.

Therefore, any polynomial of degree n has a root.

Now, by the division algorithm, we can factor out that root to obtain a
polynomial of degree n-1 so we see an induction argument proves the
theorem.

Many mathematicians have objected to the use of analysis to prove a theorem
in algebra. But they forget that analysis and algebra are human constructs
that don’t exist in “nature”.



Chebychett and Prime Numbers

The name of Chebychetf is spelled in many ways
in the literature and we adopt here the one that
starts with a Cl

Pafnuti Chebycheff (1821-1894) was a Russian
mathematician who worked in number theory and
probability theory.

His most notable contribution in number theory is
the proof of Bertrand’s postulate: there is always a
prime number between n and 2n.

Chebycheff proved this using very elementary

arguments involving binomial coefficients.

Though he didn’t prove the prime number
theorem conjectured by Gauss, he came very close
and showed that there are constants A and B such
that Ax/log x < n(x) < Bx/log x.

He also-showed that if n(x)(log x)/x has-alimit-as
x tends to infinity, then this limit must be 1.



‘ Chebychett and Bertrand’s postulate

= Let us give a briet description of Chebycheff’s proof of Bertrand’s postulate.

= His proof 1s based on three elementary observations:

< (*") < 22" this comes from (1+1)2" =32 (37).

2n — m=0 \m

22 n

1.
2. (°") is not divisible by any primes p > 2n.
3. (*") is divisible by all primes n < p < 2n.

Properties (2) and (1) of the middle binomial coefficient imply that

2n
_ﬂ'{?nj—ﬂ{ﬂ}{: n < < 2n
1 < II p_(n)_ﬂ .
n<p<n

Taking the log gives m(2n) — w(n) < 2log Zlﬂgn. Using induction we now easily
see that

Qk
m(2F) < 3.

k- —



The inductive argument and the upper bound

In fact, this is checked directly for £ < 5; for k& > 5 we find

2k+1 32!., 22“"_52“" 3_2k+1
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Now we exploit the fact that f(r) = = is monotonely increasing for = > e.
Thus if 4 < 2F < # < 251 then
k: 2!.:

9
< m(2kt1) <« 6—— < 6log 2
m(z) < 7 ) < E+1— 8 log 2%

T

< 6log 2 :
=~ 2706 log =

Since m(zx) < ﬁlng?lnzm for » < 4, the proof is now complete.

= This proves the upper bound for n(x).




‘ The lower bound

= We write the unique factotization of nlas a product of primes p, with v (al) being the
power of p that divides it. Here is the formal lemma due to Legendre:

Lemma Let vy(n) denote the exponent of the marimal power of p dividing

n. Then s
vp(n!) = Z Lp_mJ

m>1
Proof. Among the numbers 1, 2, ... n, exactly [%_l are multiples of p and thus
contribute 1 to the exponent; moreover, exactly [;ﬂ}] are multiples of p® and
contribute another 1 to the exponent ... =

Now put N = {2“}. By the lemma above we have
" For all z € R we have |2z| — 2|z| € {0,1}.

vp(N) = % ([‘—EJ - zlimJ] Proof. Write = = |z| + {z}. If the fractional part {x} < &, then 2r = 2|z +
m>1 F P {2z}, hence |2z| — 2|x| = 0. If {z} > &, then we get |2x| — 2|x| = L. o

: : . log2 . !
It is also clear that if m = Ifg;.. then [E—,’,‘lj - E[lej = 0. Thus we find
vp(N) < 2220 | and now

logp
2n gem 2n
2nlog2 —log 2n < log R becanse 5 < N
log 2n .
< Z log p becanse N = H prrti)
b L log p J
< Z log 2n because (x| < x This yields the lower bound
- p<2n o
£T
= mw(2n)log 2n m(2n) > log 2 — L

log 2n



‘ Some fine tuning

= We can fine tune this to get a lower bound for n(x) valid for all x. We just

showed: We claim that this implies

log2 =
(2 log 2 — 1. m(z) = —
) 2 Iﬂg En E 2 logzx

for all £ > 2. This inequality can be checked directly for = < 16, hence it is
sufficient to prove it for r = 16. Pick an integer n with 16 < 2n < r < 2n + 2.
Then

In n+1 n—1 LT 1
log2n  log2n  log2n = 4log2 = log2’
henee
— x l‘.'.. - T o . o ¥
i) [.n']l - 'E'I-l'[]'g Em =(z) > 7(2n) > log 2 . in+1)log2 . log2 =

log 2n ~ log(2n+2) — 2 logx

Putting both estimates together, we have shown that there are constants A and B such that
Ax/log x < n(x) < Bx/log x, which is Chebycheff’s theorem.

Chebycheff did some further fine tuning to show two things: (1) Bertrand’s postulate that
there is always a prime between n and 2n and (2) that if n(x)(log x)/x tends to a limit, then
the limit must be 1. Both of these are “easy” given our current knowledge and so we give
a quick indication of how these two results were derived by Chebycheff.




Prelude to Bertrand’s postulate

), Chebycheff found that it is a bit easier if instead of looking at n(x), we look at a
related function, 0(x) =[] ,,<xp. Then log 6(x) weights each prime by log p instead
of by the weight 1. This seemingly minor change simplifies our work.

Proof. It is clearly sufficient to prove this for integers r > 4. Observe that

B(x) < 47, (*THY) = (AmH) < 22m — 4™, This gives
2m + 1
]:[ Pl ( " ) < 4™,
T
m+2<p<2m+1

Now we prove the claim by induetion; assume it is true for all n < k. If £ is
even, then B(k) = 8(k — 1) < 4*~! = 4% by induction assumption and the fact
that k is not prime. Assume therefore that £ = 2m + 1. Then

B(k) =0(m+1) [ p<amttam=4s
m+2<p2m41

We have already seen that N = (%7) is divisible hy all prlmes p with n <
p < 2n (if there are any). Now we claim that the primes p with 2 in<p<ndo
not divide N. In fact we have 2n < 3p < p?, hence 2 < < In -3, hem::e- [9”] = 2

and [2] = 1, and this implies that vy(N) =22 =0,




Proof of Bertrand’s postulate: there 1s always a prime p between n and 2n

Now we prove Bertrand’s postulate by eontradiction. Assume there is an
integer n such that the interval (n,2n| does not contain any prime. By the

discussion above this implies that N = ﬁf_‘] is not divisible by any prime p > 2n.

Now consider primes p | N with -vp{;"v'jlm:'; 1. They satisfy p* < p'r < 2n, hence
we must have p << +/2n for such primes. The number of such primes is clearly
bounded by +/2n. Now we find

2" < (E”) <[] ¢ [[p< @)™ e(%") < (2n)VEn2In/3,

2n ~ \n
Up>1 vp=1
= Here we are using our earlier bound for 6(x).

a(z) < 4*.
Taking the log we get

2nlog2 < 3(1 + +2n ) log 2n.

Since hEI is monotonically inereasing for x = 3, this inequality must be false

for all sufficiently large values of n. In fact, it is false for n = 512, For n < 512,

Bertrand’s postulate is proved by looking at the sequence of primes 7, 13, 23,
43, 83, 163, 317, 631.




Stirling’s formula and Chebychetf

Chebycheff noticed that Stirling’s formula implies that if n(x)~ Cx/log x,
then C=1.

Define the function A(n) as log p if n is a power of a prime p and zero
otherwise.

From the unique factorization of natural numbers as product of distinct
prime powers, it is easy to see that log k = 2, A(d). (Exercise)

We sum both sides of this equation for k<n. The left hand side is log n!
which by Stirling’s formula 1s nlog n —n + O(log n).

The right hand side becomes >, A(d)[n/d] = nX ., A(d)/d +O(n), using
our bound for the prime counting function.

Dividing through by n gives us that >, A(d)/d = log n +O(1).

Now let {(n) = X, A(d). A simple partial summation argument shows that
n(n)~n/log n is equivalent to ¢(n)~n. If $(n)~Cn for some constant C then
we would get >,.. A(d)/d = Clog n +O(1). Hence C=1.

So the difficult part in the proof of the prime number theorem is to show the

hmit-extsts—A-way to-address-thts-was-dtscovered by Rtemann-which-we
discuss in a later lecture.



	Cauchy, Fourier and Chebycheff
	Cauchy, complex analysis & group theory
	Cauchy as Professor at Ecole Polytechnique
	Cauchy’s theory of complex analysis
	The Cauchy-Riemann equations
	Joseph Fourier
	Complex analysis and Fourier series
	The Fundamental Theorem of Algebra
	Chebycheff and Prime Numbers
	Chebycheff and Bertrand’s postulate
	The inductive argument and the upper bound
	The lower bound
	Some fine tuning
	Prelude to  Bertrand’s postulate
	Proof of Bertrand’s postulate: there is always a prime p between n and 2n
	Stirling’s formula and Chebycheff

