
Cauchy, Fourier and Chebycheff



Cauchy, complex analysis & group theory
 Even though Gauss introduced the field of  complex 

numbers, it was Cauchy who realized that one extend 
the ideas of  calculus to this realm. He singlehandedly 
created complex analysis.

 He also initiated the study of  group theory with 
emphasis on permutation groups which he 
encountered in his study of  determinants.

 Augustin Louis Cauchy (1789-1857) was born in Paris 
in  well to do family during the Napoleonic era.  
Lagrange was a friend of  the Cauchy family and we 
may assume that he had a formative influence in the 
mathematical development of  the young Cauchy.

 Cauchy was educated to be an engineer, but field work 
did not suit him.  In 1812, at the age of  23, he fell ill 
and had to retire from engineering.  He became more 
and more enamored by the beauty of  abstract 
mathematics.



Cauchy as Professor at Ecole Polytechnique

 Cauchy soon accepted a professorship at Ecole
Polytechnique in Paris and began his research 
into mathematics there.

 It is said Cauchy was a poor lecturer, cramming 
too much material into his lectures and often 
assuming that his students were familiar with the 
concepts as he was.

 Still, his work on complex analysis started in 
earnest, and his famous residue theorem in 
complex analysis was soon to find important 
applications.



Cauchy’s theory of  complex analysis
 For a function of  a complex variable, Cauchy defined the notion 

of  differentiability using the familiar notions from calculus, but 
he soon realized that this notion led to more structure and a 
remarkable cosmos unfolded before his eyes.



The Cauchy-Riemann equations
 This leads to the important set of  equations called the Cauchy-Riemann 

equations.

Differentiable functions of  a complex variable are called analytic to distinguish 
them from functions of  a real variable.  If  a function is analytic in the whole complex plane, 
it is called entire.  Cauchy found that any such function can be expanded as a power series 
about any point z0:



Joseph Fourier  Around the same time, Joseph 
Fourier (1768-1830) was developing 
his mathematical theory of  heat, and 
to study this, he developed what is 
now called the theory of  Fourier 
series.  

 His question was:

These numbers are 
called the Fourier 
Coefficients of f.

=1 if  m=n and 0 otherwise.



Complex analysis and Fourier series
 Writing our complex number z in polar co-ordinates, we see that 

z=re2πiθ so that now, our function can be thought of  as a 
function of  the real variable r and the angle θ.  

 The power series for any analytic function then can be viewed as 
a Fourier series if  we write z=a+re2πiθ so that  

This allows us to deduce an important theorem in complex analysis called 
Liouville’s theorem: a bounded entire function is constant.  Here is the proof.
Suppose |f(z)|<M.  Then, 



The Fundamental Theorem of  Algebra
 The fundamental theorem of  algebra, first proved by Gauss, is the theorem 

that any polynomial of  degree n with complex coefficients has n roots over 
the complex number field.

 This should be seen as the culmination of  the efforts of  ancient 
mathematicians trying to understand roots of  quadratic, cubic, quartic 
equations that we have already studied from earlier civilizations.

 We can use Liouville’s theorem to prove this.  If  P(z) is a polynomial of  
degree n, we see that |P(z)| tends to infinity as |z| tends to infinity.

 If  P(z) had no roots, then 1/P(z) is analytic everywhere and so entire.  But as 
|P(z)| tends to infinity as |z| to infinity, we see 1/P(z) is a bounded entire 
function, and hence constant by Liouville’s theorem, which is a contradiction.

 Therefore, any polynomial of  degree n has a root.
 Now, by the division algorithm, we can factor out that root to obtain a 

polynomial of  degree n-1 so we see an induction argument proves the 
theorem.

 Many mathematicians have objected to the use of  analysis to prove a theorem 
in algebra.  But they forget that analysis and algebra are human constructs 
that don’t exist in “nature”.



Chebycheff  and Prime Numbers
 The name of  Chebycheff is spelled in many ways 

in the literature and we adopt here the one that 
starts with a C!

 Pafnuti Chebycheff (1821-1894) was a Russian 
mathematician who worked in number theory and 
probability theory.

 His most notable contribution in number theory is 
the proof  of  Bertrand’s postulate: there is always a 
prime number between n and 2n.

 Chebycheff proved this using very elementary 
arguments involving binomial coefficients.

 Though he didn’t prove the prime number 
theorem conjectured by Gauss, he came very close 
and showed that there are constants A and B such 
that Ax/log x < π(x) < Bx/log x.

 He also showed that if  π(x)(log x)/x  has a limit as 
x tends to infinity, then this limit must be 1.



Chebycheff  and Bertrand’s postulate
 Let us give a brief  description of  Chebycheff ’s proof  of  Bertrand’s postulate.
 His proof  is based on three elementary observations:



The inductive argument and the upper bound

 This proves the upper bound for π(x).



The lower bound
 We write the unique factorization of  n! as a product of  primes p, with vp(n!) being the 

power of  p that divides it. Here is the formal lemma due to Legendre:



Some fine tuning
 We can fine tune this to get a lower bound for π(x) valid for all x.  We just 

showed:

Putting both estimates together, we have shown that there are constants A and B such  that 
Ax/log x < π(x) < Bx/log x, which is Chebycheff ’s theorem.
Chebycheff did some further fine tuning to show two things: (1) Bertrand’s postulate that 
there is always a prime between n and 2n and (2) that if  π(x)(log x)/x tends to a limit, then 
the limit must be 1.  Both of  these are “easy” given our current knowledge and so we give
a quick indication of  how these two results were derived by  Chebycheff. 



Prelude to  Bertrand’s postulate




Proof  of  Bertrand’s postulate: there is always a prime p between n and 2n

 Here we are using our earlier bound for θ(x).



Stirling’s formula and Chebycheff
 Chebycheff  noticed that Stirling’s formula implies that if  π(x)~ Cx/log x,  

then C=1.  
 Define the function Λ(n) as log p if  n is a power of  a prime p and zero 

otherwise.
 From the unique factorization of  natural numbers as product of  distinct 

prime powers, it is easy to see that log k = Σd|k Λ(d).  (Exercise)
 We sum both sides of  this equation for k≤n.  The left hand side is log n! 

which by Stirling’s formula is nlog n –n + O(log n).
 The right hand side becomes Σd≤n Λ(d)[n/d] = nΣd≤n Λ(d)/d +O(n), using 

our bound for the prime counting function.
 Dividing through by n gives us that Σd≤n Λ(d)/d = log n +O(1).
 Now let ψ(n) = Σd≤nΛ(d).  A simple partial summation argument shows that 

π(n)~n/log n is equivalent to ψ(n)~n.  If  ψ(n)~Cn for some constant C then 
we would get  Σd≤n Λ(d)/d = Clog n +O(1).  Hence C=1.

 So the difficult part in the proof  of  the prime number theorem is to show the 
limit exists.  A way to address this was discovered by Riemann which we 
discuss in a later lecture.
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