
Riemann and Dirichlet:
The distribution of  primes






Bernhard Riemann
 Bernhard Riemann (1826-1866) was a 

German mathematician who made important 
contributions to number theory, complex 
analysis and differential geometry.

 We do not have the time or space to describe 
all the discoveries he made in his short life 
but will highlight how he connected complex 
analysis and number theory.

 You will recall Gauss’s conjecture about the 
distribution of  primes, namely that if  π(x) 
denotes the number of  primes up to x, then 
π(x) ~ x/log x as x tends to infinity.

 Though Riemann did not prove this 
conjecture, he indicated how to do it by 
outlining a method of  attack.



The Riemann zeta function

 Riemann showed that this function  which converges 
for Re(s)>1, can be extended to the entire complex 
plane such that ς(s) – 1/(s-1) is an entire function.

 The fact that ς(s) can also be expressed as an infinite 
product over primes now leads one to translate 
questions about prime numbers to properties of  the 
zeta function.

 In particular, he stressed that studying the zeta 
function as a function of  a complex variable will lead 
to a proof  of  Gauss’s conjecture.

 He wrote this up in an 1859 paper and didn’t have time 
to develop his idea because he died from tuberculosis 
at the age of  40.

ς(s)=



Riemann’s explicit formula




Von Mangoldt’s explicit formula
 Riemann’s explicit formula is quite messy since he was dealing with π(x).  
 He never gave a rigorous proof  of  his formula.  This was done later by von 

Mangoldt.
 It is better to deal with a slightly modified function ψ(x):

What is remarkable about this formula is that the left hand side is essentially the sum of  
the logarithms of  primes less than x, and the right hand side is a sum of  over the zeros
of  the Riemann zeta function, showing how these two worlds are intimately connected.



The prime number theorem
 The prime number 

theorem was finally 
proved in 1896 by 
Jacques Hadamard and 
Charles de la Vallee 
Poussin (independently) 
using the program 
outlined by Riemann.

 Their work underscored 
the importance of  
complex analysis in 
number theory.

An essential ingredient in their proof  is
The assertion that ς(s)≠0 for Re(s)=1.



The Riemann hypothesis
 In his famous 1859 paper, Riemann made the (now famous) 

conjecture that all zeros of  ς(s) in the region 0≤Re(s)≤1 lie 
on the line Re(s)=1/2.  

 This is called the Riemann hypothesis and is still unsolved as 
of  today.

 Hadamard and de la Vallee Poussin showed that there are no 
zeros on Re(s)=1 in their proof  of  the prime number 
theorem.

 In the 1930’s, Norbert Wiener showed that π(x)~x/log x 
implies that ς(s)≠0 for Re(s)=1.  

 Thus, the asymptotic for π(x) is equivalent to the non-
vanishing of  the zeta function on the line Re(s)=1.

 Since, the zeta function involves complex analysis, it was 
widely believed in the 1940’s that the prime number theorem 
cannot be proved without using the zeta function.

 But this was refuted in 1949 when Atle Selberg and Paul 
Erdos showed that there is an “elementary proof ” without 
using the zeta function.



Dirichlet and primes in arithmetic progressions
 An important development in prime number theory 

that preceded the work of  Riemann lies in the work 
of  Dirichlet whose work we now describe.

 Peter Gustav Lejeune Dirichlet (1805-1859) is 
credited with the creation of  analytic number 
theory.  Sadly, he died at the age of  54 of  a heart 
attack.

 Dirichlet had Gauss and Riemann among his 
illustrious teachers at Gottingen, and after Gauss’s 
death, succeeded him as Professor.

 In 1837, he showed that if  m is any natural number 
and a is coprime to m, then there are infinitely many 
primes p≡a(mod m).

 This generalizes Euclid’s famous theorem of  the 
infinitude of  primes.

 Dirichlet modified Euler’s proof  of  the infinitude 
of  primes by injecting group theory into number 
theory.



Primes ≡ 3 mod 4
 Let us look at a special case of  Dirichlet’s theorem, namely the case m=4.  
 Here the two coprime residue classes are 1 and 3 (mod 4).  Observe that any 

odd number is in one of  these classes.
 Dirichlet’s theorem says there are infinitely many primes in each of  these 

residue classes.
 The case of  3 (mod 4) is easy and we can mimic Euclid.  Suppose there are 

only finitely many such primes, p1, …, pk (say).  
 Consider N=4p1 … pk -1.  This being an odd number we see that any prime 

divisor is either ≡1 or 3 (mod 4).
 If  all the prime divisors of  N are ≡1 (mod 4), then N would be ≡1 (mod 4) 

which it isn’t.  Therefore N has a prime ≡3 (mod 4) which is different from 
our earlier ones.

 This proof  mimics Euclid’s proof, but such a proof  doesn’t work for the 
residue class 1 (mod 4).



Primes ≡1 (mod 4)
 We can attempt a similar proof  to show there are infinitely many primes p ≡ 

1 (mod 4).  Suppose there are only finitely many p1, …, pk (say).
 Now consider N= 4(p1… pk)2 +1.  This number being odd has prime divisors 

either congruent to 1 or 3 (mod 4).
 We claim it has no prime divisor congruent to 3 (mod 4).
 We prove this by contradiction.  Suppose q is a prime ≡3 (mod 4) that divides 

N.
 Then reducing N (mod q) gives x2 ≡-1 (mod q) where x=2p1… pk.  
 But by Fermat’s little theorem, xq-1≡1 (mod q) so raising both sides of  our 

congruence to the power  (q-1)/2 gives 1≡(-1)(q-1)/2.
 Now q is a prime of  the form 4t+3 and so (q-1)/2 is of  the form 2t+1 which 

is odd.so that (-1)(q-1)/2 =-1 which means 4 divides 2, a contradiction.
 Therefore all prime divisors of  N are of  the form 4t+1 and clearly N is 

coprime to p1, …, pk which is a contradiction.



Coprime residue classes mod q
 Even elementary attempts at proving Dirichlet’s theorem require some knowledge of  

group theory.
 Here I want to recall one of  the most basic facts due to Lagrange which I will use in the 

next slides to give a reasonably elementary proof  that for any prime q, there are infinitely 
many primes p≡1(mod q).  

 Let us look at the non-zero residue classes (mod q).  There are (q-1) such classes.    Let g 
be such a class. We define the order of  g to be the smallest natural number t such that gt

≡ 1 (mod q).
 Such an element exists because by Fermat’s little theorem, gq-1 ≡1 (mod q). We denote 

the order of  g by o(g).
 Lagrange’s theorem in this case is that o(g) divides q-1 for any non-zero residue class g.
 The proof  makes use of  the division algorithm.  Since o(g)≤q-1, we can write q-1 = 

o(g)k+b where 0≤b<o(g).  But now by Fermat’s little theorem, 1≡gq-1 ≡go(g)k gb (mod q).  
But go(g) ≡1 by definition, so we deduce gb≡1.  If  b≠0, we have a contradiction, so b 
must be zero and o(g) divides q-1.

 This is a special case of  a very general theorem of  Lagrange that says the order of  an 
element of  finite group divides the order of  the group.  



Dirichlet’s proof  and cyclotomic polynomials
 Dirichlet’s proof  in the general case developed a new branch of  mathematics called character theory and 

Euler’s proof  was amenable to the implementation of  character theory, whereas the ad hoc style proof  of  
Euclid or the case m=4 doesn’t generalize.

 However, there is one case that can be proved without character theory and that is the case if  m=q is 
prime and we are considering primes in the residue class 1 (mod q).

 The proof  uses the q-th cyclotomic polynomial which we already met in the lecture on Gauss.
 Recall that this polynomial is f(x)= (xq-1)/(x-1)=xq-1 + … + x + 1.
 We suppose there are only finitely many primes p1, …, pk ≡ 1(mod q) and let N be the product of  these 

primes along with q.  
 Consider f(N).  If  p is a prime dividing f(N), then p divides Nq -1 and clearly p≠q.
 Now N is not congruent to 1 (mod p) for otherwise, 0≡ Nq-1 + … + N + 1 ≡q (mod p) which means p 

=q. This contradicts p ≠q.  
 Thus N has order q mod p.  By Lagrange’s theorem, q divides p-1.
 That is, p ≡ 1(mod q).Thus any prime divisor of  f(N) has to be congruent to 1 (mod q).
 Now in this proof, we used the q-th cyclotomic polynomial for a prime q.
 One can adapt this proof  to show infinitude of  primes ≡1 (mod m) for any m.  
 We will not do that here since it involves some detailed discussion of  the general m-th cyclotomic

polynomial, a topic we have not covered and perhaps you have not seen in an earlier course.  Our 
treatment here should give you some idea of  the depth and beauty of  this theorem.
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