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M. Ram Murty

To the memory of F. Momose, with respect and admiration

Abstract. We give a short survey of results and conjectures regarding special
values of certain Dirichlet series
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1. Introduction

In this paper, we are concerned with special values of Dirichlet series of the
form

∞∑
n=1

an
ns

,

assuming that the series is convergent. Most of the time, these Dirichlet series
will be zeta and L-functions that arise out of number theory. Sometimes, they
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will be general series arising from other considerations (as we will see below as
in the case of the Chowla and Erdös problems or the Chowla-Milnor conjectures).
Several different perspectives are available to study the former case of zeta functions.
The cohomological approach of Beilinson and his predictions regarding the special
values in terms of generalized regulators is an active area of current research and we
refer the reader to several good expositions such as Soulé [51] and Ramakrishnan
[44]. What we want to highlight in this exposition is a more analytic and classical
approach.

Beginning with Euler’s work on the explicit evaluation of the Riemann zeta
function at even arguments and the role the cotangent function plays in this eval-
uation, we amplify the role of special functions that emerge in our understanding
of these special values. The logarithm function, the dilogarithm function and the
polylogarithm functions assume a central place in this study, as well as the gamma
function, the digamma function and the polygamma functions. Special values of
modular forms are also closely connected to special values of certain Dirichlet series
and L-functions. Other zeta functions, such as the Hurwitz zeta function, the Lerch
zeta function, the multiple zeta functions and the multiple Hurwitz zeta functions
also make an appearance.

Often the evaluation of these Dirichlet series and the determination of their al-
gebraic or transcendental nature require the marriage of several disparate branches
of number theory. The former is an analytic-arithmetic viewpoint, and the latter
being transcendental number theory. It is hoped that this survey will serve to high-
light the beauty of all these viewpoints and propose some new questions for further
research. The reader may find additional exposition in the monograph [36].

2. The discovery of transcendental numbers

An algebraic number is a complex number which is a root of a non-trivial
polynomial with integer coefficients. It is a beautiful theorem of algebra that the
totality of algebraic numbers forms a field. If a complex number is not algebraic,
we call it transcendental. The notion of a transcendental number may be traced
back to Euler but the first use of the term “transcendental” occurs in a 1682 paper
of Leibnitz where he showed that sinx is not an algebraic function of x. In 1844,
using the theory of continued fractions, Joseph Liouville proved that transcendental
numbers exist. It was not until 1851 that he realized that there was a simple way to
construct some examples. His construction was based on the following elementary
idea which had a profound impact on the development of transcendental number
theory.

Liouville observed that if α is algebraic then we may consider a polynomial
f(x) ∈ Z[x] of minimal degree for which it is a root. This polynomial is unique
up to an integral factor. The degree of α is defined to be the degree of f . Thus,
the algebraic numbers which have degree 1 are precisely the rational numbers. If α
has degree ≥ 2, and f(x) is an irreducible polynomial with integer coefficients such
that f(α) = 0, Liouville proved that there is a positive constant C (depending on
f) such that for any rational number p/q, we have∣∣∣∣α− p

q

∣∣∣∣ ≥ C

qn
.
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To prove this, let us note that if |α− p/q| > 1, we are done since 1 ≥ 1/qn and we
can choose C = 1. So, let us suppose that |α− p/q| ≤ 1. If α = α1, ..., αn are the
roots of f , and A is the leading coefficient of f(x), then,

A(α− p/q)(α2 − p/q) · · · (αn − p/q) = f(p/q).

Observe that for any rational number p/q,

|f(α)− f(p/q)| = |f(p/q)| ≥ 1/qn

because the numerator is a non-zero integer. Since∣∣∣∣αi −
p

q

∣∣∣∣ ≤ |αi − α1|+
∣∣∣∣α1 −

p

q

∣∣∣∣ ≤ |αi − α1|+ 1,

we see immediately on choosing

M = |A|
n∏

i=2

(|αi − α|+ 1),

that ∣∣∣∣α− p

q

∣∣∣∣ ≥ 1

Mqn
.

Setting C = max(1, 1/M) gives the result.
What Liouville’s theorem says is that algebraic numbers are not too well ap-

proximable by rational numbers. Consequently, if a number is too well approx-
imable by rational numbers, in the above sense, it must be transcendental. Apply-
ing his theorem to numbers of the form

∞∑
n=0

1

2n!
,

Liouville deduced that these must be transcendental numbers since partial sums
of these numbers are rational numbers that approximate the sum too well for the
sum to be algebraic. These were perhaps the first class of infinite series shown to
be transcendental.

Liouville’s numbers were exotic constructions. It wasn’t clear at that time
whether numbers like e or π were transcendental. This had already been conjectured
by Johann Heinrich Lambert in his 1761 paper where he proved that π is irrational.
In 1873, Charles Hermite proved that e is transcendental. A year later, in 1874,
Cantor gave his famous diagonal argument to show that transcendental numbers
are uncountable. It was as late as 1882 when Ferdinand von Lindemann proved that
π is transcendental using methods initiated by Hermite. In his paper, Lindemann
stated many results without proof. For example, he stated that if α is algebraic
and non-zero, then eα is transcendental. Since eπi = −1, we deduce that π is
transcendental. This more general result was later proved rigorously by Hermite.
Lindemann also stated that if α1, ..., αn are algebraic numbers which are linearly
independent over Q, then eα1 , ..., eαn are algebraically independent. The proof of
this statement was given by Weierstrass. (For some reason, Lindemann did not give
much attention to the line of research he initiated. Instead, he turned his gaze to
Fermat’s Last Theorem and published a book on it with a general “proof”, which
was unfortunately wrong.)
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Perhaps the oldest explicit evaluation of an infinite series was first carried out
by Madhava in 14th century India, when he proved that

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

This evaluation is often attributed to Leibnitz, but there is now well-documented
evidence to the contrary. Recent research has uncovered the contributions of the
Kerala school of mathematicians, led by Madhava. Their writings show that much
of what we would now call “pre-calculus” was well developed in 14th century India
by the Kerala school and we refer the reader to [26] for an account of this fascinating
history.

Several centuries later, the famous Basel problem asking for an explicit evalu-
ation of

1 +
1

4
+

1

9
+

1

16
+ · · ·

was solved by Euler in 1735 almost a century after Pietro Mengoli proposed the
problem in 1644. Euler went on to show, after a decade of work, that

∞∑
n=1

1

n2k

is a rational multiple of π2k. The underlying reason for the explicit evaluation of
both the Madhava-Leibnitz series and Euler’s determination of the special values
of the Riemann zeta function at even arguments is due to the properties of the
cotangent function, though this is not overtly clear from the study of their works.

The Madhava-Leibnitz formula is an explicit evaluation of a Dirichlet L-series.
In fact, it is L(1, χ) with χ being the non-trivial Dirichlet character (mod 4). From
this, together with Lindemann’s result that π is transcendental and Euler’s explicit
evaluation of special values of the Riemann zeta function, there emerges a new
theme of determining the nature of special values of general zeta and L-functions
and more generally special values of Dirichlet series. This determination requires
a two-fold (perhaps three-fold) development of number theory. On the one hand,
one needs a general method to evaluate these series and this is often difficult. It
involves an analytic and arithmetic study of special functions. One then needs re-
sults from transcendental number theory regarding the precise nature of the special
values. These special values often factor as a product of an algebraic number and
a transcendental number (a “period” in modern parlance), and the algebraic num-
ber is often pregnant with arithmetic meaning. These determinations stimulate a
three-fold development of number theory. At the moment, some of these strands
are developing faster than others. The slowest seems to be transcendental number
theory where it is difficult to determine whether a given number (or “period”) is
transcendental. Such results require tremendous advances in our understanding the
nature of special functions. This is best highlighted by relating the story of some
of the Hilbert problems.

In his famous list of problems at the International Congress of Mathematicians
held in 1900, Hilbert asked: if α is algebraic �= 0, 1 and β is any irrational algebraic
number, then is αβ transcendental? If true, it would imply that eπ is transcendental
since eπ = (−1)−i. Apparently, Hilbert considered this problem to be notoriously
difficult. He predicted that the Riemann hypothesis and Fermat’s Last Theorem
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would be solved before this problem (see p. 84 of [49]). History proved otherwise!
It is dangerous to make predictions!

In 1934, Gelfond and Schneider independently resolved this problem. This
represented a major advance in the field. Thus, not only are e and π transcendental
numbers but so is eπ by the Gelfond-Schneider theorem. But what about e + π
or πe? Are these transcendental? (It is easy to see that at least one of the two
is transcendental.) Is there an algebraic relation between e and π? The answers
to these questions are unknown at the moment. However, in the 1960’s, Schanuel
(as cited in Lang’s monograph on Transcendental Numbers) conjectured that if
x1, ..., xn are linearly independent over Q, then

tr degQ(x1, ..., xn, e
x1 , ..., exn) ≥ n.

The Lindemann- Weierstrass theorem states that if x1, ..., xn are linearly inde-
pendent algebraic numbers, then this conjecture is true. For n = 1, Schanuel’s
conjecture follows from the Hermite - Lindemann theorem. Already for n = 2, we
do not know the truth of the conjecture. However, the general case is still a major
unsolved problem and many interesting consequences emerge from it. For example,
we immediately deduce that e and π are algebraically independent. To see this,
consider x1 = 1, x2 = πi. These are linearly independent over Q and so the

tr degQ(π, e) = tr degQ(1, πi, e, eπi)

is at least 2. Thus, e and π are algebraically independent. Therefore Schanuel
implies that both e + π and eπ are transcendental and algebraically independent.
Also, 1, log π are linearly independent over Q for otherwise, we have a+ b log π = 0,
for some integers a, b from which we get eaπb = 1, contradicting the algebraic
independence of e and π. To deduce that log π is transcendental, we consider
πi, log π which are linearly independent over Q since π �= ±1. Thus, π and log π are
algebraically independent. In particular, log π is transcendental (modulo Schanuel).

There has been some progress on Schanuel’s conjecture but not much. A special
case of the conjecture is the following conjecture of Gelfond and Schneider: if α
is an algebraic number and α �= 0, 1, and if β is an irrational algebraic number of
degree d, then the d− 1 numbers

αβ , αβ2

, ..., αβd−1

are algebraically independent. We call this the Gelfond-Schneider conjecture. What
is know is a result of Diaz [14] which states that the transcendence degree of the
field generated by the d− 1 numbers above is at least [(d+ 1)/2].

Schanuel’s conjecture will help us later to determine the transcendental nature
of special values of many Dirichlet series (more specifically Artin L-series at s = 1).

3. An overview of problems and results

The prototypical example of an L-series is the Riemann zeta function, denoted
by ζ(s) and defined by the Dirichlet series

∞∑
n=1

1

ns
,

for �(s) > 1 and then extended to the entire complex plane via a classical method
of Riemann [46]. Related to this, perhaps the most celebrated and most beautiful
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of results on special values of L-series is Euler’s theorem [15] that

ζ(2k) =
(2πi)2kB2k

2(2k)!
,

for every positive integer k. Here, Bk denotes the k-th Bernoulli number, given via
the generating function:

t

et − 1
=

∞∑
k=0

Bkt
k

k!
.

By the functional equation for ζ(s), this can be written equivalently as ζ(1− k) =
−Bk/k. It is easy to see that Bk = 0 for k odd and greater than 1. Thus, the
Riemann zeta function vanishes at s = −2,−4, ... and these are referred to as
the trivial zeros. Since the Bernoulli numbers are rational numbers, we see that
ζ(2k) ∈ π2kQ∗, and hence the special value is a transcendental number by a famous
theorem of Lindemann [30]. It is conjectured that all of the special values ζ(2k+1)
with k a natural number are transcendental and that in fact, 1, π, ζ(3), ζ(5), ζ(7), ...
are algebraically independent (see [8]). Though this conjecture is still open, some
spectacular progress has been made in the recent past. Beginning with the work of
Apéry [1] in 1978 that ζ(3) is irrational, we have the theorem of Rivoal [47] that
infinitely many of the values ζ(2k+1) are irrational. There are even some stronger
results giving a lower bound for the dimension of the Q-vector space spanned by
the values ζ(2k + 1) with k ≤ a.

There are several different directions in which these results can be extended.
Firstly, Euler’s theorem on the special values of the Riemann zeta function was
first extended by Hecke [24] to the case of a real quadratic field. He showed that
if F is a real quadratic field and ζF (s) is the Dedekind zeta function of F , then
ζF (2k) is an algebraic multiple of π4k. This led him to conjecture that if F is a
totally real algebraic number field, then ζF (2k) is an algebraic multiple of π2dk

where d = [F : Q]. This conjecture was later proved by Siegel and Klingen [28].
These results raise further questions. What happens if F is not totally real? If F
is totally real, what about ζF (2k + 1)? Are these transcendental numbers? The
answer is most likely “yes” but we are far from knowing this. We discuss what
is known and unknown in the larger context of Artin L-series, in a later section.
In this connection, it is worth noting that Euler’s theorem was first extended to
Dirichlet L-series by Hecke as late as 1940, though the ideas needed for this work
were already there at the time of Euler in the 18th century. We give the details of
this development in a section below.

Another direction worthy of study is to fix a value of s and study special values
of a family of L-series at s. The most celebrated example of this phenomenon is
Dirichlet’s class number formula. This formula states that if

L(s, χ) =

∞∑
n=1

χ(n)

ns

is the Dirichlet L-series attached to a Dirichlet character χ (mod q), then for χ a
non-trivial quadratic character,

L(1, χ) =

⎧⎨
⎩

2πh

w
√

|d|
, χ(−1) = −1

h log ε√
|d|

χ(−1) = 1,
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where h denotes the class number of the quadratic field cut out by χ and ε is the
fundamental unit in the real quadratic case, and w is the number of roots of unity
in the associated quadratic field.

If χ is not a quadratic character, one can also write down a precise formula
for L(1, χ). In all cases, Dirichlet’s celebrated result is that L(1, χ) �= 0 and this
is equivalent to the infinitude of primes in a given arithmetic progression (mod
q). Inspired by this formula, Chowla [12] proposed the following problem. Let
f : Z/qZ → C and consider the Dirichlet series

L(s, f) =

∞∑
n=1

f(n)

ns
.

Under what general conditions can we assert that L(1, f) �= 0? Is it possible to
evaluate L(1, f)? If f is algebraic valued, can we say that if L(1, f) �= 0, then
L(1, f) is transcendental? More generally, what can we say about L(k, f)? These
questions led Chowla and his daughter, Paromita Chowla, [13] to a variety of
conjectures. These conjectures were generalized by Milnor [31]. One can ask for
analogues of Chowla’s question to number fields. But this investigation is still in
its infancy. V.K. Murty and M.R. Murty [34] initiated this study by considering
first imaginary quadratic fields. We describe this below.

Yet another direction of study is via multiple zeta values. These are defined as:

ζ(k1, ..., kr) =
∑

n1>n2>...>nr

n−k1
1 n−k2

2 · · ·n−kr
r ,

with k1 ≥ 2, and k2, ..., kr−1 ≥ 1 and the ni run over all positive integers.. The
weight of the multiple zeta value ζ(k1, ..., kr) is defined as the sum k1+ · · ·+kr and
its depth as r. A recent remarkable theorem of Brown [7] is that all multiple zeta
values of weight n are Q-linear combinations of

{ζ(a1, ..., ar) : where ai = 2 or 3, and a1 + · · ·+ ar = n}.
Using this theorem, we can see that the dimension of the Q-vector space Vn spanned
by multiple zeta values of weight n is bounded by dn where dn satisfies the recur-
rence relation dn = dn−2 + dn−3, with d0 = 1, d1 = 0, and d2 = 1. It is conjectured
that the dimension of Vn is exactly dn but this has not yet been proved. The re-
cursion shows that dn grows exponentially as a function of n and yet, not a single
value of n is known for which dim Vn is at least 2. Gun, Murty and Rath [21]
showed that if the Chowla-Milnor conjecture is true, then there are infinitely many
values of n for which the dimension is at least 2. This goes to indicate that the
Chowla-Milnor conjecture is quite difficult.

A fourth direction of study is the special values of L-series attached to modular
forms and more generally automorphic forms. Already, in the modular forms case,
there are quite a number of results and conjectures. The full extent of these con-
jectures is beyond the scope of this survey. We relegate this to a future occasion.
For the time being, we refer the reader to the excellent survey by Raghuram and
Shahidi [43] where more references on this theme can be found.

4. Euler’s theorem revisited

The analytic continuation of the Riemann zeta function to the entire complex
plane was first proved by Riemann [46]. He also established the functional equation
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for the zeta function:

π− s
2Γ

(s
2

)
ζ(s) = π

1−s
2 Γ

(
1− s

2

)
ζ(1− s).

If it is only the analytic continuation we desire and not the functional equation,
there is an elementary way to derive it. This was noted in the author’s paper with
Reece [37]. For this purpose, it is useful to consider the Hurwitz zeta function:

ζ(s, x) =
∞∑

n=0

1

(n+ x)s
,

for 0 < x ≤ 1. Thus, ζ(s, 1) = ζ(s). This series converges absolutely for �(s) > 1
and it is surprising that one can derive an analytic continuation of the Hurwitz zeta
function by a simple induction argument as follows. Let us observe that

− 1

xs
+ ζ(s, x)− ζ(s) =

∞∑
n=1

{
1

(n+ x)s
− 1

ns

}
.

Writing the summand as
1

ns

((
1 +

x

n

)−s

− 1

)
,

we can apply the binomial theorem for 0 < x < 1 and get

(4.1) − 1

xs
+ ζ(s, x)− ζ(s) =

∞∑
r=1

(
−s

r

)
ζ(s+ r)xr.

Several observations can now be made. First, if x = 1/2, we observe that ζ(s, 1/2) =
(2s − 1)ζ(s) so that

−2s + (2s − 2)ζ(s) =
∞∑
r=1

ζ(s+ r)2−r,

which serves to provide a meromorphic continuation of the Riemann zeta function
to the entire complex plane by a simple induction argument. This argument shows
that ζ(s) extends analytically to the entire complex plane except possibly at those
s for which 2s = 2. Indeed, let us first consider the region �(s) > 0. In this region,
the only poles are at

s =
2πim

log 2
, m ∈ Z.

For any natural number q > 1, we also have the identity

(qs − q)ζ(s) =

q∑
a=1

(
ζ(s,

a

q
)− ζ(s)

)

and the right hand side is analytic for �(s) > 0 by (4.1). This identity serves to
imply that if ζ(s) has any poles in this region, they occur at

s = 1 +
2πim

log q
, m ∈ Z,

and they are all simple. Taking q = 3 say, and noting that s = 1 is the only element
in the intersection of{

1 +
2πim

log 2
: m ∈ Z

}
∩
{
1 +

2πin

log 3
: n ∈ Z

}
,
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we deduce that ζ(s) extends to �(s) > 0, except for a simple pole at s = 1.
Proceeding inductively, we deduce the analytic continuation of ζ(s) to the entire
complex plane. This then serves to give the analytic continuation of ζ(s, x) as well.

What is impressive about (4.1) is that it shows that ζ(1− k, x) is a polynomial
in x of degree k − 1 for any positive value of k. To see this, one need only note
that for s = 1 − k, the infinite series becomes a finite series because the binomial
coefficients vanish for r ≥ k. One can also derive from this that ζ(1− k) = −Bk/k,
by an elementary induction argument as follows. The recursion above allows us to
deduce that for any positive integer m,

mζ(1−m) =
(−1)m

m+ 1
−m

m−1∑
r=1

(−1)r
(
m− 1

r

)
ζ(1−m+ r)

r + 1
.

Recall that the generating function for the Bernoulli numbers is

t

et − 1
=

∞∑
k=0

Bkt
k

k!
.

From this we deduce that the Bk are rational numbers and the following recurrence
for them:

n∑
k=0

(n
k

) Bn−k

k + 1
= 0.

Moreover,
t

et − 1
+

t

2
is an even function of t so that the Bernoulli numbers for odd subscripts ≥ 3 vanish.
We can then prove by induction the formula

ζ(1− k) = (−1)k−1Bk

k

using (4.1). One can now use the functional equation to deduce the explicit value
of ζ(2k).

Of course, Euler’s approach was completely different. Since this approach will
be useful later in our study of multiple zeta values, we indicate briefly his point of
view.

In 1735, Euler discovered experimentally that

(4.2) 1 +
1

22
+

1

32
+

1

42
+ · · · = π2

6
.

He gave a “rigorous” proof much later, in 1742. Here is a sketch of Euler’s proof.
The polynomial (

1− x

r1

)(
1− x

r2

)
...

(
1− x

rn

)
has roots equal to r1, r2, ..., rn. When we expand the polynomial, the coefficient of
x is

−
(

1

r1
+

1

r2
+ · · ·+ 1

rn

)
.

Using this observation, Euler proceeded “by analogy.” Supposing that sinπx “be-
haves” like a polynomial and noting that its roots are at x = 0,±1,±2, ..., Euler
puts

f(x) =
sin πx

πx
.
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By l’Hôpital’s rule, f(0) = 1. Now f(x) has roots at x = ±1,±2, ... and so

f(x) = (1− x)(1 + x)
(
1− x

2

)(
1 +

x

2

)(
1− x

3

)(
1 +

x

3

)
· · · .

That is,

f(x) = (1− x2)

(
1− x2

4

)(
1− x2

9

)
· · · .

The coefficient of x2 on the right hand side is

−
(
1 +

1

4
+

1

9
+ · · ·+

)
.

By Taylor’s expansion,

sin πx = πx− (πx)3

3!
+ · · ·

so that comparing the coefficients gives us formula (4.2).
The main question is whether all of this can be justified. Euler certainly didn’t

have a completely rigorous proof of his argument. To make the above discussion
rigorous, one needs either the theory of Weierstrass products discovered in 1876
(see page 79 of [45]) or Hadamard’s theory of factorization of entire funtions, a
theory developed much later in 1892, in Jacques Hadamard’s doctoral thesis. Still,
we credit Euler for the discovery of this result since the basic idea is sound.

The next question is whether Euler’s result can be generalized. For example,
can we evaluate

∞∑
n=1

1

n3
or

∞∑
n=1

1

n4
.

Euler had difficulty with the first question but managed to show, using a similar
argument, that

∞∑
n=1

1

n4
=

π4

90

and more generally that
∞∑

n=1

1

n2k
∈ π2kQ.

It is not hard to see that Euler’s proof can be modified to deduce the above results.
Indeed, if i =

√
−1, then observing that

f(ix) = (1 + x2)

(
1 +

x2

4

)
· · ·

we see that

f(x)f(ix) = (1− x4)

(
1− x4

24

)(
1− x4

34

)
· · ·

But the Taylor expansion of f(x)f(ix) is(
1− π2x2

3!
+

π4x4

5!
− · · ·

)(
1 +

π2x2

3!
+

π4x4

5!
+ · · ·

)
.

Computing the coefficient of x4 yields
∞∑

n=1

1

n4
=

π4

90
.
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Continuing in this way, it is not difficult to see how Euler arrived at the assertion
that

∞∑
n=1

1

n2k
∈ π2kQ.

Euler’s viewpoint is useful in the study of multiple zeta values. He seemed to
suggest that for ζ(2k+ 1) the value is a product of π2k+1 and “a function of log 2”
(see the last line of p. 1078 of [2]). This conjecture is probably wrong but no definite
disproof has yet been found.

5. Special values of Dirichlet L-series

The logarithmic derivative of the Γ-function is called the digamma function.
Higher derivatives of the digamma function give rise to the polygamma functions.
More precisely, the digamma function is defined by

ψ(z) = −γ − 1

z
−

∞∑
n=1

(
1

n+ z
− 1

n

)
, z �= 0,±1,±2, ...

so that the polygamma functions ψk(z) are given by

ψk(z) = (−1)k−1k!

∞∑
n=0

1

(n+ z)k+1
.

It is easily seen from the series expansion for ψk(z) that

ψk(z + 1) = ψk(z) +
(−1)kk!

zk+1
.

This allows us to deduce that for every integer k ≥ 0,

− dk

dzk
(π cotπz) = ψk(z) + (−1)k+1ψk(−z) + (−1)k

k!

zk+1
.

Indeed, from the partial fraction expansion of the cotangent function, we have

π cotπz =
1

z
+

∞∑
n=1

(
1

z − n
+

1

z + n

)
.

The result is now easily deduced by taking successive derivatives. This allows us
to relate the cotangent function to the polygamma functions. Indeed, it is readily
seen that

(5.1) − dk

dzk
(π cotπz) = ψk(z) + (−1)k+1ψk(1− z).

These identities are at the heart of Hecke’s 1940 generalization of Euler’s explicit
determination of (see Ayoub [2] and [15]) ζ(2k) of 1749 and it is surprising that it
took almost two centuries to write them down. This highlights the importance of
a survey, when we can look back and see what has been done and what is yet to be
done. Here is a brief description of Hecke’s theorem.

Let q be a natural number and let χ : (Z/qZ)∗ → C be a Dirichlet character
and define the L-series L(s, χ) by

L(s, χ) :=

∞∑
n=1

χ(n)

ns
.
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Then

(k − 1)!L(k, χ) = (−q)−k

q∑
a=1

χ(a)ψk−1

(
a

q

)
.

Here k is a positive integer and if k = 1, we assume χ is non-trivial. Indeed, we
may write

L(k, χ) =

q∑
a=1

χ(a)
∑

n≡a(mod q)

n−k =

q∑
a=1

χ(a)
∞∑
j=0

(qj + a)−k

from which the desired result is apparent.
If χ is an even character (that is, χ(−1) = 1) and k is even, then

−2(k − 1)!L(k, χ) = (−q)−k

q∑
a=1

χ(a)
dk

dzk
(π cotπz)

∣∣∣
z=a/q

.

Then, L(k, χ) is an algebraic multiple of πk.
To see this, we can write

2(k − 1)!L(k, χ) = (−q)−k

q∑
a=1

χ(a)ψk−1

(
a

q

)
+ χ(q − a)ψk−1

(
1− a

q

)

which is

= (−q)−k

q∑
a=1

χ(a)

(
ψk−1

(
a

q

)
+ ψk−1

(
1− a

q

))
.

By our earlier observation (5.1), the result follows. The last assertion is immediate
upon noting that

dk

dzk
(π cotπz)

∣∣∣
z=a/q

is an algebraic multiple of πk. It is also important to note that this calculation
allows us to determine the algebraic number precisely. An analogous calculation
can be made for odd characters.

If χ is an odd character (that is, χ(−1) = −1) and k is odd, then

−2(k − 1)!L(k, χ) = (−q)−k

q∑
a=1

χ(a)
dk

dzk
(π cotπz)

∣∣∣
z=a/q

.

and L(k, χ) is an algebraic multiple of πk.
As before we can write

2(k − 1)!L(k, χ) = (−q)−k

q∑
a=1

χ(a)ψk−1

(
a

q

)
+ χ(q − a)ψk−1

(
1− a

q

)

which is now equal to (since χ is odd)

= (−q)−k

q∑
a=1

χ(a)

(
ψk−1

(
a

q

)
− ψk−1

(
1− a

q

))
.

As before, the result follows by noting the relation of the polygamma function to
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the cotangent function. The last assertion is also immediate upon noting (as before)
that

dk

dzk
(π cotπz)

∣∣∣
z=a/q

is an algebraic multiple of πk.
When k and χ have opposite parity, the situation is as difficult as the determi-

nation of the transcendental nature of the Riemann zeta function at odd arguments.
The simplest unknown case concerns the famous Catalan constant:

1− 1

32
+

1

52
− · · ·

We do not know if this number is irrational.

6. Summation of infinite series of rational functions

The essential success of explicit evaluations of the special values of Riemann’s
zeta function and Dirichlet’s L-series discussed in the earlier sections is mainly due
to our understanding of the cotangent function. More precisely, the identity

π cotπz =
∑
n∈Z

1

n+ z
, z /∈ Z

and its derivatives allow us a precise knowledge of∑
n∈Z

1

(n+ z)k
.

This idea also allows us to explicitly evaluate infinite series of the form∑
n∈Z

A(n)

B(n)
,

where A(x), B(x) are polynomials and we assume that the sum converges and that
B(x) has no integral roots. We may further allow for B(x) to have integer roots
and then restrict the sum so that we exclude these (finite number of) roots in the
summation. In any case, one can apply partial fraction expansions and derive very
beautiful explicit formulas for these sums. In the case A(x) and B(x) have algebraic
coefficients, the transcendental nature of these sums can sometimes be determined
thanks to the work of Nesterenko [42]. All of these investigations have been carried
out in the paper by Murty and Weatherby [40]. Among other results proved in
[40], here is a representative one. If the Gelfond-Schneider conjecture is true, then
for any A(x), B(x) ∈ Q[x], with degree of A less than the degree of B and B(n) �= 0
for any n ∈ Z, the sum ∑

n∈Z

A(n)

B(n)

is either zero or transcendental. Perhaps the most striking of formulas derived
through these investigations is a superb generalization of Euler’s theorem. The
sum ∑

n∈Z

1

An2 +Bn+ C
=

2π√
D

(
e2π

√
D/A − 1

e2π
√
D/A − 2(cos(πB/A))eπ

√
D/A + 1

)

is transcendental if A,B,C ∈ Z and −D = B2 − 4AC < 0. The explicit evaluation
is simply an application of the cotangent expansion. The transcendence is derived
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by applying a result of Nesterenko which states that π and eπ
√
D are algebraically

independent. Viewing the right hand side as a function of C and applying successive
differentiation with respect to C, we deduce an explicit formula for∑

n∈Z

1

(An2 +Bn+ C)k
,

and this is exposed in [41]. More can be done in this direction and one can study
sums of the form ∑

n∈Z

f(n)

(An2 +Bn+ C)k
,

with f a periodic function (mod q). More generally, we can study∑
n∈Z

A(n)

B(n)
f(n).

Some partial results have been obtained in [54]. However, the full extent of our
knowledge of these special values has not yet been determined.

7. Multiple zeta values

To understand the arithmetic nature of special values of the Riemann zeta
function, it has become increasingly clear that multiple zeta values (MZV’s for
short) must be studied. These are defined as follows:

ζ(k1, ..., kr) =
∑

n1>n2>···>nr>0

1

nk1
1 nk2

2 · · ·nkr
r

,

where k1, k2, ..., kr are positive integers with the proviso that k1 ≥ 2. The last
condition is imposed to ensure convergence of the series.

There are several advantages to introducing these multiple zeta functions. First,
they have an algebraic structure which we describe. It is easy to see that

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2).

Indeed, the left hand side can be decomposed as∑
n1,n2

1

ns1
1 ns2

2

=
∑

n1>n2

1

ns1
1 ns2

2

+
∑

n2>n1

1

ns1
1 ns2

2

+
∑

n1=n2

1

ns1
1 ns2

2

from which the identity becomes evident. In a similar way, one can show that

ζ(s1)ζ(s2, ..., st)

is again an integral linear combination of multiple zeta values. More generally,
the product of any two MZV’s is an integral linear combination of MZV’s. These
identities lead to new relations, like

ζ(2, 1) = ζ(3),

an identity which appears in Apéry’s proof [1] of the irrationality of ζ(3).
If we let Vr be the Q-vector space spanned by

ζ(s1, s2, ..., sk)

with s1 + s2 + · · ·+ sk = r, then the product formula for MZV’s shows that

VrVs ⊆ Vr+s.
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In this way, we obtain a graded algebra of MZV’s. Let dr be the dimension of Vr as
a vector space over Q. For convenience, we set d0 = 1 and d1 = 0. Clearly, d2 = 1
since V2 is spanned by π2/6. Zagier [55] has made the following conjecture:

dr = dr−2 + dr−3,

for r ≥ 3. In other words, dr satisfies a Fibonacci-type recurrence relation. Con-
sequently, dr is expected to have exponential growth. Given this prediction, it is
rather remarkable that not a single value of r is known for which dr ≥ 2! We relate
this to the Chowla-Milnor conjecture in a later section.

In view of the identity, ζ(2, 1) = ζ(3), we see that d3 = 1. What about d4?
V4 is spanned by ζ(4), ζ(3, 1), ζ(2, 2), ζ(2, 1, 1). What are these numbers? Zagier’s
conjecture predicts that d4 = d2 + d1 = 1 + 0 = 1. Is this true? Let us see.

We can adapt Euler’s technique to evaluate ζ(2, 2). As noted earlier(
1− x

r1

)(
1− x

r2

)
· · ·

(
1− x

rn

)

has roots equal to r1, r2, ..., rn. When we expand the polynomial, the coeffcient of
x is

−
(

1

r1
+

1

r2
+ · · ·+ 1

rn

)
.

The coefficient of x2 is ∑
i<j

1

rirj
.

With this observation, we see from the product expansion

f(x) =
sin πx

πx
= (1− x2)

(
1− x2

4

)(
1− x2

9

)
· · ·

that the coefficient of x4 is precisely ζ(2, 2). An easy computation shows that

ζ(2, 2) =
π4

5!
.

It is now clear that this method can be used to evaluate ζ(2, 2, ..., 2) = ζ({2}m)
(say). By comparing the coefficient of x2m in our expansion of f(x), we obtain that

ζ({2}m) =
π2m

(2m+ 1)!
,

which can also be viewed as another generalization of Euler’s result. We could have
also evaluated ζ(2, 2) using the identity

ζ(2)2 = 2ζ(2, 2) + ζ(4),

but we opted for the method above to indicate its generalization which allows us
to also evaluate ζ(2, 2, ..., 2).

What about ζ(3, 1)? What can we say about it? This is a bit more difficult
and will not come out of our earlier results. In 1998, Borwein, Bradley, Broadhurst
and Lisonek [6] showed that ζ(3, 1) = 2π4/6!.

What about ζ(2, 1, 1)? Can we relate it to a known constant? With some work,
one can show that this is equal to ζ(4). Thus, we conclude that d4 = 1 as predicted
by Zagier.
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What about d5? With more work, we can show that

ζ(2, 1, 1, 1) = ζ(5); ζ(3, 1, 1) = ζ(4, 1) = 2ζ(5)− ζ(2)ζ(3).

ζ(2, 1, 1) = ζ(2, 3) = 9ζ(5)/2− 2ζ(2)ζ(3).

ζ(2, 2, 1) = ζ(3, 2) = 3ζ(2)ζ(3)− 11ζ(5)/2.

This proves that d5 ≤ 2. Zagier conjectures that d5 = 2. In other words, d5 = 2 if
and only if ζ(2)ζ(3)/ζ(5) is irrational. Of course, this is not yet known.

Can we prove Zagier’s conjecture? To this date, not a single example is known
for which dn ≥ 2. In the next section, we will show its relation to another conjecture
due to Chowla and Milnor. If we write

(1− x2 − x3)−1 =

∞∑
n=1

Dnx
n,

then it is easy to see that Zagier’s conjecture is equivalent to the assertion that
dn = Dn for all n ≥ 1. Deligne and Goncharov [17] and (independently) Terasoma
[53] showed that dn ≤ Dn. As noted earlier, Brown [7] showed that the MZV’s are
generated by

ζ(k1, ..., kr)

with the ki equal to 2 or 3. The number of such values is clearly seen to be Dn

since we are looking for the number of ways of writing n as a sum of 2’s and 3’s.
The conjecture therefore is that this collection is a basis for all MZV’s.

It is a fruitful line of research to study multiple Hurwitz zeta functions and this
was initiated in [39]. These are defined as:

ζ(k1, ..., kr;x1, ..., xr) :=
∑

n1>n2>···>nr≥1

1

(n1 + x1)k1 · · · (nr + xr)kr
.

However, many of the elegant evaluations of MZV’s have not yet been extended to
MHZV’s.

8. The Chowla-Milnor conjecture

In the sums considered in the previous section, if one restricts the summation
to only positive integers, we are led to study

(8.1)

∞∑
n=1

A(n)

B(n)
.

Again, we restrict the sum over those positive n which avoid the zeros of B(x).
In these situations, a partial fraction expansion leads us to write the value of the
sum in terms of the digamma function and special values of the Hurwitz zeta
function. Recall that the digamma function ψ(x) is the logarithmic derivative of
the Γ-function and it appears as the constant term in the Laurent expansion of the
Hurwitz zeta function:

ζ(s, x) =
1

s− 1
− ψ(x) + · · ·

Indeed, the partial fraction expansions lead to sums of the form
∞∑

n=1

1

(n+ α)k
.
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If k ≥ 2, then the sum is the special value of the Hurwitz zeta function ζ(k, α).
If we assume that the series (8.1) converges, the terms corresponding to k = 1
disappear. The nature of the emerging sums has not been investigated since there
is only meager knowledge about the special values of Hurwitz zeta functions. In
fact, there are very few conjectures on what we may expect. Foremost among the
sparse set of conjectures is the one due to Paromita and Sarvadaman Chowla [13]
and its generalization due to Milnor [31]. Their conjecture is that the special values
for a fixed natural number k ≥ 2 and q ≥ 1

ζ

(
k,

a

q

)
, (a, q) = 1,

are linearly independent over the rational numbers. In particular, this conjecture
would imply that if f : (Z/qZ)∗ → Q is a rational-valued function and supported
on the coprime residue classes (mod q), then

∞∑
n=1

f(n)

nk
�= 0.

In [20], Gun, Murty and Rath proved that the Chowla-Milnor conjecture im-
plies that (

ζ(2k + 1)

π2k+1

)2

/∈ Q

for any k ≥ 1. They also showed that the Chowla-Milnor conjecture for the single
modulus q = 4 is equivalent to the irrationality of

ζ(2k + 1)

π2k+1

for all k ≥ 1 (see Proposition 4 in [20]). At the end of their paper, the authors
formulate a stronger form of the conjecture, namely that,

1, ζ(k, a/q), (a, q) = 1, 1 ≤ a < q,

are linearly independent over the rationals. If this stronger conjecture is true either
for q = 3 or q = 4, then it would imply that ζ(2k + 1) is irrational for every value
of k. It would also imply that

∞∑
n=1

f(n)

nk

is irrational whenever f is rational-valued. From these implications, we see how
difficult the Chowla-Milnor conjecture is.

9. The Riemann zeta function at odd arguments

In the notebooks of Ramanujan published by the Tata Institute in 1957, we
find some elegant formulas for the special values of the Riemann zeta function at
odd arguments. In particular, on page 171 of Volume 2, we see

(9.1)

α−k

{
1

2
ζ(2k + 1) +

∞∑
n=1

n−2k−1

e2αn − 1

}
= (−β)−k

{
1

2
ζ(2k + 1) +

∞∑
n=1

n−2k−1

e2βn − 1

}
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(9.2) − 22k
k+1∑
j=0

(−1)j
B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
αk+1−jβj ,

where α, β > 0 with αβ = π2, k is any nonzero integer and Bj is the jth Bernoulli
number. If we put α = β = π and k is odd, we deduce

(9.3) ζ(2k+1)+2

∞∑
n=1

1

n2k+1(e2πn − 1)
= π2k+122k

k+1∑
j=0

(−1)j+1 B2jB2k+2−2j

(2j)!(2k + 2− 2j)!
,

a formula apparently due to Lerch [29] and published in an obscure journal (see
also[5]). It seems that Grosswald [18] rediscovered this formula and published its
proof in 1970 only to learn later that it was discovered earlier by Ramanujan and
even earlier by Lerch.

Since the left hand side of this equation is non-zero (both the terms being
positive), the right hand side is a non-zero rational multiple of π2k+1. Consequently,
at least one of

ζ(4k + 3),

∞∑
n=1

1

n4k+3(e2πn − 1)

is transcendental for every integer k ≥ 0.
Motivated by these identities, the authors of [22] introduced the function:

Fk(z) =

∞∑
n=1

σ−k(n)e
2πinz.

and proved the following theorem:

Theorem 9.1. Let k be a non-negative integer and set δ = 0, 1, 2, 3 according
as the gcd(k, 6) equals 1,2,3 or 6. With at most 2k + 2 + δ exceptions, the number

F2k+1(α)− α2kF2k+1(−1/α)

is transcendental for every algebraic α ∈ H. In particular, there are at most 2k+2+δ
algebraic numbers α ∈ H such that F2k+1(α) and F2k+1(−1/α) are both algebraic.

Notice the similarity between Fk(z) and the classical Eisenstein series Ek+1(z)
with k odd. It is therefore not unreasonable to study special values of modular
forms and quasi-modular forms at algebraic arguments and this is investigated in
[23]. The interest in this theorem as it relates to ζ(2k + 1) is highlighted by the
following observation. There exist algebraic numbers α in the upper half plane H

for which the numbers

F2k+1(α)− α2kF2k+1(−1/α)

are non-zero algebraic multiples of ζ(2k + 1) for all k ≥ 4. Thus, Theorem 9.1
comes very close to showing transcendence of ζ(2k + 1). The function Fk(z) is
closely related to the classical Eisenstein series Ek+1(z) and is really an example of
an Eichler integral. Clearly, the study of the special values of these Eichler integrals
will shed new light on the nature of the Riemann zeta function at odd arguments.

Much of the analysis used to derive (9.2) can be carried out for Dirichlet L-
functions L(2k + 1, χ) for χ even (and similarly for L(2k, χ) for χ odd). But this
has not been done in a systematic manner and offers a good program for further
research. There are some related papers on this topic by Katayama [27].
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10. Hecke’s conjecture and the Siegel-Klingen theorem

The Dedekind zeta function of an algebraic number field F is defined as

ζF (s) =
∑
a �=0

N(a)−s,

where the summation is over non-zero ideals a of the ring of integers of F . The
analytic continuation and functional equation of ζF (s) was proved by Hecke [25] in
1918. From this functional equation, we can see that the Dedekind zeta function has
trivial zeroes at s = −1,−2, ... unless F is totally real, in which case it has trivial
zeroes only at s = −2,−4, ... just like the Riemann zeta function. It is for this
reason that Hecke was able to surmise and Siegel and Klingen were able to extend
Euler’s theorem describing the special values of ζF (2k) as algebraic multiples of
π2kd with d = [F : Q] when F is totally real.

The gist of the results of an earlier section is that the value of L(k, χ) when k
and χ have the same parity, is a non-zero algebraic multiple of πk. As mentioned
earlier, this fact was first proved by Hecke in 1940 and he noted that this implies
an interesting result for real quadratic fields. Namely, if F is a real quadratic field,
then ζF (2m) is an algebraic multiple of π4m. This motivated him to ask if such
a result holds generally for any totally real field F . That is, if F is totally real of
degree d over the rationals, then is it true that ζF (2m) is an algebraic multiple of
π2dm? Hecke’s calculation also answers his question in another case, namely the
case of the cyclotomic subfield Q(ζ + ζ−1) where ζ = e2πi/q is a primitive q-th
root of unity. This field is also totally real and its Dedekind zeta function is the
product of Dirichlet L-functions L(s, χ) with χ an even character (mod q). Thus,
Hecke’s simple extension of Euler’s theorem allowed him to prove his conjecture in
two important cases.

Hecke’s question was anwered in the affirmative by Siegel and Klingen and is
now known as the Siegel-Klingen theorem. The proof of the Siegel-Klingen theorem
makes use of the theory of classical modular forms and Hilbert modular forms. Since
a detailed explanation of the proof is beyond the scope of this survey, we content
ourselves with a brief outline and refer the reader to Garrett [16] as well as Siegel’s
exposition [50] or the authors [33] for further details.

Let F be a totally real number field of degree r and discriminant D. Let
x �→ x(i) be an indexing of real embeddings of F and let OF be the ring of integers
of OF and h denote the upper half-plane. The group SL2(OF ) is called the Hilbert
modular group and it acts on hr via the map:

g :=

(
a b
c d

)
∈ SL2(OF ),

g · (z1, .., zr) =
(
a(1)z1 + b(1)

c(1)z1 + d(1)
, ...,

a(r)zr + b(r)

c(r)zr + d(r)

)
.

For a, b ∈ F and z ∈ hr, it is convenient to use the notation

N(az + b) :=

r∏
i=1

(a(i)zi + b(i)).
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Let k be a natural number (which is even if K has a unit of norm −1). For an ideal
a, we define the analogue of the Eisenstein series as

Fk(a, z) = N(a)k
∑

(λ,μ) �=(0,0)

N(λz + μ)−k,

where the sum runs over a complete system of pairs of numbers in the ideal a
different from (0, 0) and not differing from one another by a factor which is a unit
(that is, not associated). One can show that the series converges absolutely for
k > 2 and for k = 2, one can apply a limit process (Hecke’s trick). The function
Fk(a, z) is an example of a Hilbert modular form in the sense that

Fk(a, gz) = N(cz + d)kFk(a, z) ∀ g ∈ SL2(OF ).

As OF is a lattice and its dual is the inverse different d−1 of OF , one has a Fourier
expansion of Fk(a, z) of the form

ζ(a, k) +

(
(2πi)k

(k − 1)!

)r

D1/2−k
∑

ν∈d−1,ν	0

σk−1(a, ν)e
2πiTr(zν),

where ν runs over totally positive numbers in d−1 and

ζ(a, k) = N(a)k
∑
a|(μ)

N(μ)−k,

σk−1(a, ν) =
∑

d−1|(α)a|ν
sign(N(α)k)N((α)ad)k−1.

The summation is over principal ideals (μ), (α) under the conditions given. If we
set all the variables z1, ..., zr to z, then Fk(a, z) becomes a classical modular form
of weight rk for the full modular group. The final result is then deduced using
the classical theory of modular forms. Indeed, let Ek denote the usual normalized
Eisenstein series of weight k, Δ denote Ramanujan’s normalized cusp form and j
the modular invariant. If Mk(SL2(Z)) is the space of modular forms of weight k
for the full modular group, let t = dimMk(SL2(Z)). Put

Fk := E12r−k+2Δ
−t.

Then Fk has q-expansion

Ckrq
−t + · · ·+ Ck1q

−1 + Ck0 + · · ·
with Ckr = 1 and Ck� ∈ Z for all �. We need to make one further observation.
Then for any integer m ≥ 0,

jm
dj

dz
has a q-expansion without a constant term. Using these facts, one shows that if f
is a modular form of weight k for the full modular group with q-expansion

f(z) = a0 + a1q + a2q
2 + · · ·

and Ck� are as above, then

Ck0a0 + Ck1a1 + · · ·+ Ckrar = 0.

The key observation is then that Ck0 �= 0, so that the constant term a0 is a rational
linear combination of a1, ..., ar. Applying this to our modular form Fk(a, z) , we
deduce that ζ(a, k) is a an algebraic multiple of πkr. Since the Dedekind zeta
function ζF (k) can be written as a rational linear combination of the values ζ(a, k),
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the Siegel-Klingen theorem follows from this. The reader can find further details
in [50] or [33].

11. Artin L-series

The Riemann zeta function and Dirichlet L-functions, as well as the Dedekind
zeta function of a number field F are all special cases of Artin L-series. Let K/F
be a finite Galois extension of algebraic number fields with Galois group G. Let
(ρ, V ) be a complex linear representation of G. For each prime ideal p of F , and
prime ideal ℘ of K lying above p, we have the usual inertia group I℘ which is a
subgroup of the Galois group G. We then define the Artin L-series attached to ρ
as

L(s, ρ,K/F ) =
∏
p

det(1− ρ(σ℘)N(p)−s|V I℘)−1,

where the product is over all prime ideals p of OF . One can show that the product is
well-defined and converges absolutely for �(s) > 1. If ρ is the trivial representation,
then the corresponding Artin L-series is the Dedekind zeta function of F . If F is
Q and K is the cyclotomic field Q(ζ) where ζ is primitive q-th root of unity, then
the Galois group is isomorphic to (Z/qZ)∗ and the Artin L-series attached to this
Galois group coincide with the classical Dirichlet L-series.

The first question that arises about special values of these Artin L-series is if
there is an analog of the Siegel-Klingen theorem. Surprsingly, this was first proved
as late as 1973 by Coates and Lichtenbaum [10]. A readable exposition of this
theorem can be found in [16]. But here is a quick summary.

Their result can be stated in the following form. Given a Galois representation
ρ : Gal(Q/Q) → GL(n,C), the Artin L-function L(s, ρ) has a functional equation
in which the gamma factors appearing in the functional equation are of the form

Γ(s/2)aΓ((s+ 1)/2)b

and we say ρ is totally real if b = 0 and totally complex if a = 0. (One could refer
to (a, b) as the “Hodge type” of ρ.) In any case, one can show that L(2k, ρ) is an
algebraic multiple of π2kχ(1) if ρ is totally real. Similarly, if ρ is totally complex,
then L(2k + 1, ρ) is an algebraic multiple of π(2k+1)χ(1). The essential idea for the
proofs of these theorems is to use Brauer’s induction formula and reduce it to the
case of evaluation of Hecke’s L-series and then to use a form of the Siegel-Klingen
theorem as described in the previous section. I believe that there is no gentle
exposition of these facts using classical analysis. The work that comes closest to
such a goal is Shintani’s paper [48]. It would be a good program of research to
simplify considerably these proofs into a readable exposition.

12. Schanuel’s conjecture and special values at s = 1.

The situation with respect to special values of Artin L-series at s = 1 has been
studied extensively by Stark in a series of papers (see for example, [52]). Essentially,
the conjecture predicts that the value is (up to an algebraic factor) a power of π
and a determinant of logarithms of algebraic numbers (more precisely units).

A special case of the Schanuel conjecture is the following. Let α1, ..., αn be non-
zero algebraic numbers such that logα1, ..., logαn are linearly independent over Q.
Then these numbers are algebraical-ly independent. Following [21], we call this the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

214 M. RAM MURTY

weak Schanuel conjecture. Baker’s theorem asserts that these numbers are linearly
independent over Q.

Assuming the weak form of Schanuel’s conjecture, the authors in [21] show
that these values are all transcendental numbers. Stark’s conjectures should be
viewed as generalizations of Dirichlet’s class number formula. In some cases, Stark’s
conjecture can be proved without Schanuel’s conjecture and we refer the reader to
[21] for more details.

13. The Chowla and Erdös conjectures

As mentioned in section 3, Chowla [12] asked in 1970 the following question.
Let f : Z/qZ → Q be a function defined on the residue classes (mod q), not
identically zero. Under what conditions is it true that

(13.1)

∞∑
n=1

f(n)

n
�= 0?

Chowla himself conjectured that this is the case if q is a prime number. This
conjecture was then settled by Baker, Birch and Wirsing [3] and presumably by
Chowla (since Chowla never published his proof and there is a comment by the
authors in [3] that he had done so along the lines of their paper). The author [32]
has written an exposition on how Chowla may have proved his theorem with the
resources available to him, since the methods of [3] involve the theory of linear
forms of logarithms and this may not have been the method adopted by Chowla.

Chowla’s question is undoubtedly inspired by Dirichlet’s theorem regarding the
non-vanishing of L(1, χ). The general programs of special values of L-series have
focused on those which admit Euler products and multiplicative structure. It may
be fruitful to consider the slightly general framework suggested by Chowla. In this
connection, Chatterjee, Murty and Pathak [9] have characterized all functions f for
which L(1, f) = 0 in Chowla’s problem. Related to this is a question (conjecture)
of Erdös, that (13.1) does not vanish whenever f(n) = ±1 and f(q) = 0. This
conjecture is non-trivial only in the case q is odd. Using some algebraic number
theory, Murty and Saradha [38] settled Erdös’s conjecture if q ≡ 3 (mod 4). If
q ≡ 1 (mod 4), the conjecture is still open, though it was shown by Chatterjee
and Murty [11] that the conjecture is true for at least 82 percent of q with q ≡ 1
(mod 4). Most likely, one needs to understand the arithmetic significance of the
non-vanishing to settle the conjecture completely.

That this approach has value can be seen in a set of analogous results obtained
in the case of an imaginary quadratic field. For instance, if k is an imaginary
quadratic field, and f is a function defined on the ideal class group of the ring of
integers of k, we may consider

L(s, f) =
∑

0�=a∈Ok

f(a)

N(a)s

and ask under what conditions this is non-zero at s = 1. This has been answered
by using the Kronecker limit formula, by the author and V. Kumar Murty in [34]
and further extended to functions on ray class groups of k in [35]. A good problem
for further research is to study this in general number fields.
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14. Concluding remarks

The appearance of the polylogarithm functions is expected in the evaluation of
special values of Artin L-series. Zagier formulated a general conjecture for Dedekind
zeta functions and this has been extended for Artin L-series by Zagier and Gangl
[56]. The polylogarithm function is

Lk(z) =

∞∑
n=1

zn

nk
,

and one expects that the value of L(s, ρ) at s equal to an integer m is a power of
π times a determinant of a matrix whose entries are values of the polylogarithm
function evaluated at certain algebraic numbers. It would be interesting to make
this more precise. This has been done in some cases but there is definitely a need
to specify which power of π we expect, what the size of the determinant should be,
and what are the algebraic numbers that appear as arguments of the polylogarithm
function. A part of this conjecture already emerges in the work of [34] where the
authors evaluated the special values of Hecke L-series attached to an imaginary
quadratic field.

The polylogarithm function Lk(z) is of course a generalization of the classical
logarithm function since for k = 1, L1(z) = − log(1 − z). Much of the success of
the work so far on the Chowla problem is due to Baker’s theorem about special
values of L1(z) at algebraic arguments. This led Gun, Murty and Rath to make
the following polylog conjecture. Suppose that α1, ..., αn are algebraic numbers
satisfying |αi| ≤ 1 such that Lk(α1), ..., Lk(αn) are linearly independent over Q.
Then they are linearly independent over Q. They show [21] that if the polylog
conjecture is true, then the Chowla-Milnor conjecture is true for all q > 1 and
k > 1. Thus, the program to extend Baker’s theory of linear forms in logarithms to
linear forms in polylogarithms will have tremendous applications in solving many
open problems.

In Zagier’s formulation of special values, we see the appearance of the polylog-
arithm function. By contrast, in [19], the authors relate special values of zeta and
L-functions to the multiple gamma functions. They also study instances of special
values of derivatives of the Riemann zeta function and Dirichlet L-functions. In
this connection, there is some similarity with other conjectures such as the Birch
and Swinnerton-Dyer conjecture. One could consider more generally, L-series of
automorphic L-functions or even linear combinations of these. This short survey
cannot exhaust the topics or the possibilities of these lines of investigation. But
we hope the reader is inspired to explore further this galaxy of special values and
behold its stellar beauty.
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512. MR1341859

[56] Don Zagier and Herbert Gangl, Classical and elliptic polylogarithms and special values of
L-series, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser.
C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 561–615. MR1744961

Queen’s University, Kingston, Ontario, K7L 3N6, Canada

Email address: murty@mast.queensu.ca

http://www.ams.org/mathscinet-getitem?mr=0427231
http://www.ams.org/mathscinet-getitem?mr=0032684
http://www.ams.org/mathscinet-getitem?mr=659851
http://www.ams.org/mathscinet-getitem?mr=837223
http://www.ams.org/mathscinet-getitem?mr=0382194
http://www.ams.org/mathscinet-getitem?mr=1918675
http://www.ams.org/mathscinet-getitem?mr=3060302
http://www.ams.org/mathscinet-getitem?mr=1341859
http://www.ams.org/mathscinet-getitem?mr=1744961

	Transcendental numbers and special values of Dirichlet series
	1. Introduction
	2. The discovery of transcendental numbers
	3. An overview of problems and results
	4. Euler’s theorem revisited
	5. Special values of Dirichlet 𝐿-series
	6. Summation of infinite series of rational functions
	7. Multiple zeta values
	8. The Chowla-Milnor conjecture
	9. The Riemann zeta function at odd arguments
	10. Hecke’s conjecture and the Siegel-Klingen theorem
	11. Artin 𝐿-series
	12. Schanuel’s conjecture and special values at 𝑠=1.
	13. The Chowla and Erdös conjectures
	14. Concluding remarks
	Acknowledgments
	References


