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COUNTING SQUAREFREE DISCRIMINANTS OF TRINOMIALS

UNDER ABC

ANIRBAN MUKHOPADHYAY, M. RAM MURTY, AND KOTYADA SRINIVAS

(Communicated by Wen-Ching Winnie Li)

Abstract. For an odd positive integer 𝑛 ≥ 5, assuming the truth of the 𝑎𝑏𝑐
conjecture, we show that for a positive proportion of pairs (𝑎, 𝑏) of integers
the trinomials of the form 𝑡𝑛 + 𝑎𝑡 + 𝑏 (𝑎, 𝑏 ∈ ℤ) are irreducible and their
discriminants are squarefree.

1. Introduction

Let 𝐷𝑓 be the discriminant of the trinomial

(1) 𝑓(𝑡) = 𝑡𝑛 + 𝑎𝑡+ 𝑏 (𝑎, 𝑏 ∈ ℤ),

where ℤ denotes the set of integers. For positive integers 𝐴 > 1, 𝐵 > 1 we define
ℳ𝑛(𝐴,𝐵) to be the set of (𝑎, 𝑏) with 𝐴 ≤ ∣𝑎∣ ≤ 2𝐴, 𝐵 ≤ ∣𝑏∣ ≤ 2𝐵 such that 𝑓(𝑡)
is irreducible and 𝐷𝑓 is squarefree. Let 𝑀𝑛(𝐴,𝐵) = #ℳ𝑛(𝐴,𝐵). It is reasonable
to expect that for 𝐴, 𝐵 tending to infinity,

𝑀𝑛(𝐴,𝐵) ∼ 𝑐𝑛𝐴𝐵,

for some positive constant 𝑐𝑛. This is probably very difficult to prove. We will apply
the 𝑎𝑏𝑐 conjecture to show that 𝑀𝑛(𝐴,𝐵) ≫ 𝐴𝐵. Recall that the 𝑎𝑏𝑐 conjecture,
first formulated in 1985 by Oesterlé and Masser, is the following statement.

Fix 𝜖 > 0. If 𝑎, 𝑏 and 𝑐 are coprime positive integers satisfying 𝑎+ 𝑏 = 𝑐, then

𝑐 ≪𝜖 𝑁(𝑎, 𝑏, 𝑐)1+𝜖,

where 𝑁(𝑎, 𝑏, 𝑐) is the product of distinct primes dividing 𝑎𝑏𝑐.
Our main theorem is as follows:

Theorem 1. Assume the truth of the 𝑎𝑏𝑐 conjecture. Let 𝑛 ≥ 5 be odd and 𝑛 ≡
1mod 4. Let 𝐴 be sufficiently large and 𝐵 > 𝐴1+𝛿0 for some fixed 𝛿0 > 0. Then

𝑀𝑛(𝐴,𝐵) ≫ 𝐴𝐵,

where the implied constants may depend on 𝑛.
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Remark. The cases 𝑛 = 2 and 𝑛 = 3 of the theorem can be treated without the
use of the 𝑎𝑏𝑐 conjecture. Indeed, the case 𝑛 = 2 reduces to counting the number
of 𝑎, 𝑏 with 𝑎2 − 4𝑏 squarefree. This question is answered in [6] as Theorem 3.
The case 𝑛 = 3 can be dealt with along the same lines. Indeed, first, one counts
the number of such pairs (𝑎, 𝑏) such that 4𝑎3 + 27𝑏2 is squarefree. This is easily
done by fixing 𝑎, using Theorem 3 of [6] and then summing over 𝑎. A cognate
result is derived in [3]. The case 𝑛 = 4 can be treated using the simple asymptotic
sieve as in [5]. In this case, we essentially need to count how often 27𝑎4 + 256𝑏3 is
squarefree. Fixing 𝑎, we are reduced to determining how often the value of a cubic
polynomial is squarefree. Following the method of Chapter 4 of [5], we easily derive
the required result. An appropriate modification of this leads to an answer to the
question under consideration. We leave the details to the reader.

Now we describe an application of the theorem. In [7], Osada showed that the
Galois group of (1) is isomorphic to 𝑆𝑛 provided

(1) 𝑓(𝑡) is irreducible over ℚ,
(2) ((𝑛− 1)𝑎, 𝑛𝑏) = 1.

Moreover, if 𝐾𝑓 is the splitting field of 𝑓(𝑡) over ℚ, then 𝐾𝑓 is unramified at all

finite primes over ℚ(
√
𝐷𝑓 ) with the alternating group 𝐴𝑛 of degree 𝑛 as the Galois

group.
Using Theorem 1, we prove the following quantitative version of Osada’s result.

Corollary 1. Assume the truth of the 𝑎𝑏𝑐 conjecture. Let 𝑛 ≥ 5 be odd and
𝑛 ≡ 1mod 4. Also, let 𝒩𝑛(𝑋) be the number of quadratic number fields of the form
ℚ(
√

𝐷𝑓 ) with ∣𝐷𝑓 ∣ ≤ 𝑋 which has a Galois extension with Galois group 𝐴𝑛 and is
unramified at all finite primes. Then for large 𝑋,

𝒩𝑛(𝑋) ≫ 𝑋
1
𝑛+

1
𝑛−1 ,

where the implied constant may depend on 𝑛.

In order to prove the theorem we need to count irreducible polynomials with
squarefree discriminants. In section 2, we show that almost all polynomials of the
specific form under consideration are irreducible. In section 3, we show that a
positive proportion of the polynomials have squarefree discriminants. Sections 4
and 5 provide the technical details needed in section 3. The last section contains
the conclusion of the proof.

2. Counting irreducible polynomials

We start with a result due to S. D. Cohen [4] regarding the number of irreducible
polynomials of a certain form over finite fields. Before stating it we need to intro-
duce some notation. For a fixed prime 𝑝, let 𝑔(𝑡), ℎ(𝑡) be monic, relatively prime
polynomials in 𝔽𝑝[𝑡] satisfying

𝑛 = deg 𝑔 > deg ℎ ≥ 0

and
𝑔(𝑡)/ℎ(𝑡) ∕= 𝑔1(𝑡

𝑝)/ℎ1(𝑡
𝑝), for any 𝑔1(𝑡), ℎ1(𝑡) ∈ 𝔽𝑝[𝑡].

Let 𝐿 be the splitting field of 𝑄(𝑦) = 𝑔(𝑡) − 𝑦ℎ(𝑡) ∈ 𝔽𝑝[𝑡][𝑦] over 𝔽𝑝(𝑦) and 𝐺 be
its Galois group. Let 𝔽𝑝𝑓 be the maximal algebraic extension of 𝔽𝑝 in 𝐿. For any
𝜎 ∈ 𝐺, let 𝐿𝜎 denote the subfield of 𝐿 fixed by 𝜎. We define

𝐺∗ =
{
𝜎 ∈ 𝐺 ∣ 𝐿𝜎 ∩ 𝔽𝑝𝑓 = 𝔽𝑝

}
.
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We consider 𝐺 to be a subgroup of 𝑆𝑛. Let 𝐺𝑛 = {𝜎 ∈ 𝐺 ∣ 𝜎 is an 𝑛-cycle} and
𝐺∗

𝑛 = 𝐺∗ ∩ 𝐺𝑛. We define 𝜋(𝑔, ℎ) to be the number of irreducible polynomials of
the form ℎ𝑃 (𝑔/ℎ), where 𝑃 is a linear monic polynomial in 𝔽𝑝[𝑡]. Now we state a
particular case of Theorem 3 in [4].

Lemma 1.

𝜋(𝑔, ℎ) =
∣𝐺∗

𝑛∣
∣𝐺∗∣ 𝑝+𝑂(

√
𝑝).

For a fixed 𝑎 ∈ 𝔽𝑝, let 𝑔𝑎(𝑡) = 𝑡𝑛 + 𝑎𝑡. For 𝑔 = 𝑔𝑎 and ℎ = 1, we get from [1]
that

𝐺 = 𝐺∗ = 𝑆𝑛

whenever (𝑝, 2𝑛(𝑛− 1)) = 1. Also

∣𝐺∗
𝑛∣

∣𝐺∗∣ =
1

𝑛
.

Hence from Lemma 1, we have

(2) 𝜋(𝑔𝑎, 1) =
𝑝

𝑛
+𝑂(

√
𝑝).

Clearly, for a fixed 𝑎 ∈ 𝔽𝑝, 𝜋(𝑔𝑎, 1) is the number of irreducible polynomials of the
form 𝑡𝑛 + 𝑎𝑡+ 𝑏 with 𝑏 ∈ 𝔽𝑝.

For a prime 𝑝 we define 𝒮𝑝 and 𝒯𝑝 as follows:

𝒮𝑝 =
{
(𝑎, 𝑏) ∈ (𝔽𝑝)

2∣ 𝑡𝑛 + 𝑎𝑡+ 𝑏 is reducible over 𝔽𝑝

}
,

𝒯𝑝 =
{
(𝑎, 𝑏) ∈ (𝔽𝑝)

2∣ 𝑡𝑛 + 𝑎𝑡+ 𝑏 is irreducible over 𝔽𝑝

}
,

and let 𝑠𝑝 = ∣𝒮𝑝∣ and 𝑡𝑝 = ∣𝒯𝑝∣. From (2), varying over 𝑎 ∈ 𝔽𝑝, we get the following
lemma estimating 𝑡𝑝.

Lemma 2. If 𝑝 does not divide 2𝑛(𝑛− 1), then

𝑡𝑝 =
𝑝2

𝑛
+𝑂(𝑝3/2).

Now we introduce the following notation:

𝒯 (𝐴,𝐵) =
{
(𝑎, 𝑏) ∈ ℤ2∣ 𝑡𝑛 + 𝑎𝑡+ 𝑏 is irreducible, 𝐴 ≤ ∣𝑎∣ ≤ 2𝐴,𝐵 ≤ ∣𝑏∣ ≤ 2𝐵

}
.

The proof of the following proposition estimating the cardinality of 𝒯 (𝐴,𝐵),
closely follows the method outlined in exercise no. 12, page 169 of [2].

Proposition 1.

∣𝒯 (𝐴,𝐵)∣ = 𝐴𝐵 + 𝑜 (𝐴𝐵) .

Proof. We observe that 𝑠𝑝 + 𝑡𝑝 = 𝑝2. So, from Lemma 2, we get

𝑠𝑝 = 𝑝2
(
1− 1

𝑛

)
+𝑂(𝑝3/2).

For a squarefree integer 𝑑, let

𝜙𝑑 : ℤ
2 → (ℤ/𝑑ℤ)2

be the reduction modulo 𝑑. Let

𝐻 ⊂ {(𝑎, 𝑏) ∈ ℤ2∣ 𝐴 ≤ ∣𝑎∣ ≤ 2𝐴, 𝐵 ≤ ∣𝑏∣ ≤ 2𝐵
}
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and 𝐻𝑑 be the image of 𝐻 under 𝜙𝑑. The number of elements of 𝐻 which are
mapped to the same element of (ℤ/𝑑ℤ)2 under 𝜙𝑑 does not exceed ([2𝐴/𝑑] +
1)([2𝐵/𝑑] + 1). We deduce

∣𝐻∣ ≤ ∣𝐻𝑑∣([2𝐴/𝑑] + 1)([2𝐵/𝑑] + 1)

≪ ∣𝐻𝑑∣
𝑑2

𝐴𝐵

≪
⎛
⎝∏

𝑝∣𝑑

∣𝐻𝑝∣
𝑝2

⎞
⎠𝐴𝐵.

Now we set

𝐻 =
{
(𝑎, 𝑏) ∈ ℤ2∣ 𝑡𝑛 + 𝑎𝑡+ 𝑏 is reducible,with 𝐴 ≤ ∣𝑎∣ ≤ 2𝐴,𝐵 ≤ ∣𝑏∣ ≤ 2𝐵

}
.

Then 𝐻𝑝 ⊂ 𝒮𝑝 for each prime 𝑝. From above, we have

∣𝐻∣ ≪
⎛
⎝∏

𝑝∣𝑑

𝑠𝑝
𝑝2

⎞
⎠𝐴𝐵 ≪

∏
𝑝∣𝑑

(
1− 1

𝑛

)
𝐴𝐵.

For 𝜖 > 0, we choose 𝑚 > 1 such that(
1− 1

𝑛

)𝑚

< 𝜖.

Let 𝑝1, 𝑝2, . . . , 𝑝𝑚 be the first 𝑚 primes not dividing 2𝑛(𝑛 − 1). By choosing 𝑑 =
𝑝1 ⋅ ⋅ ⋅ 𝑝𝑚, we get

∣𝐻∣ ≪ 𝜖𝐴𝐵.

Hence the proposition follows. □

Corollary 1 is the quantitative version of the following result due to Osada (see
Corollary 2, [7]).

Let𝐾𝑓 be the splitting field of 𝑓(𝑡) overℚ and𝐺 be the Galois group𝐺𝑎𝑙(𝐾𝑓/ℚ).

Lemma 3. Let 𝑓(𝑡) = 𝑡𝑛 + 𝑎𝑡 + 𝑏 be a polynomial in ℤ[𝑡], where 𝑎 = 𝑎0𝑐
𝑛 and

𝑏 = 𝑏0𝑐
𝑛 for some integer 𝑐. Then the Galois group 𝐺 is isomorphic to 𝑆𝑛 if the

following conditions are satisfied:

(1) 𝑓(𝑡) is irreducible over ℚ;
(2) (𝑎0𝑐(𝑛− 1), 𝑛𝑏0) = 1.

Moreover, 𝐾/ℚ(
√

𝐷𝑓 ) is unramified at all finite places.

3. Counting squarefree discriminants

Let 𝑇 (𝑎, 𝑏) = (𝑛 − 1)𝑛−1𝑎𝑛 + 𝑛𝑛𝑏𝑛−1 for integers 𝑎, 𝑏. For 𝑛 ≡ 1mod 4, we
observe that discriminant 𝐷𝑓 = 𝑇 (𝑎, 𝑏). For sufficiently large positive real numbers
𝐴,𝐵, let 𝐷(𝐴,𝐵) be the number of squarefree integers 𝑑 with at least one solution
to

(3) 𝑑 = 𝑇 (𝑎, 𝑏), where 𝐴 ≤ ∣𝑎∣ ≤ 2𝐴,𝐵 ≤ ∣𝑏∣ ≤ 2𝐵

and ((𝑛−1)𝑎, 𝑛𝑏) = 1. Using ideas from [8] we now find a lower bound for 𝐷(𝐴,𝐵).
For a squarefree number 𝑑, let 𝑅0(𝑑) denote the number of solutions to (3). We
have
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Lemma 4. ∑
𝑑

𝑅0(𝑑) ≫ 𝐴𝐵.

Lemma 5. ∑
𝑑

𝑅0(𝑑)
2 ≪ 𝐴𝐵.

The proofs of these two lemmas will be presented in the next section. Assuming
them, we are ready to prove the following result giving a lower bound for 𝐷(𝐴,𝐵).

Proposition 2.

𝐷(𝐴,𝐵) ≫ 𝐴𝐵.

Proof. By the Cauchy-Schwarz inequality,

𝐷(𝐴,𝐵) ≥
(∑

𝑑

𝑅0(𝑑)

)2(∑
𝑑

𝑅0(𝑑)
2

)−1

.

Hence the result follows by Lemmas 4 and 5. □

4. Proof of Lemma 4

We define a new polynomial 𝐻(𝑎, 𝑏) = 𝑇 (𝑎, 𝑏)𝑇 (−𝑎, 𝑏). Let ℳ1 be the set of
pairs (𝑎, 𝑏) of integers with 𝐴 ≤ 𝑎 ≤ 2𝐴 and 𝐵 ≤ ∣𝑏∣ ≤ 2𝐵 such that 𝐻(𝑎, 𝑏)
is not divisible by the square of any prime 𝑝 ≤ log𝐵. We put 𝑀1 = #ℳ1 and
𝑃 =

∏
𝑝≤log𝐵 𝑝. We observe that

∑
𝑙2∣(𝛼,𝑃 2) 𝜇(𝑙) = 1 or 0 depending on whether

𝑝2 ∤ 𝛼 for all 𝑝 ≤ log𝐵 or not. Thus

(4) 𝑀1 =
∑

𝐴≤𝑎≤2𝐴

∑
𝐵≤∣𝑏∣≤2𝐵

∑
𝑙2∣(𝐻(𝑎,𝑏),𝑃 2)

𝜇(𝑙) =
∑

𝐴≤𝑎≤2𝐴

∑
𝑙∣𝑃

𝜇(𝑙)
∑

𝐵≤∣𝑏∣≤2𝐵

𝐻(𝑎,𝑏)≡0mod 𝑙2

1.

Let

𝜌𝑎(𝑝) = ∣{𝑏mod 𝑝 ∣ 𝐻(𝑎, 𝑏) ≡ 0mod 𝑝}∣.

Clearly 𝜌𝑎(𝑙) is a multiplicative function of 𝑙. For a prime 𝑝 ∤ 𝑎𝑛(𝑛− 1) and an
integer 𝛼 ≥ 1,

𝜌𝑎(𝑝
𝛼) = 𝜌𝑎(𝑝) ≤ 2𝑛− 2.

We divide the sum over 𝑏 in (4) into intervals of length 𝑙2. We see that this sum is

2𝐵𝜌𝑎(𝑙
2)/𝑙2 +𝑂(𝜌𝑎(𝑙

2)).
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Thus, ∑
𝑙∣𝑃

𝜇(𝑙)
∑

𝐵≤∣𝑏∣≤2𝐵

𝐻(𝑎,𝑏)≡0mod 𝑙2

1

= 2𝐵
∑
𝑙∣𝑃

𝜇(𝑙)
𝜌𝑎(𝑙

2)

𝑙2
+𝑂(

∑
𝑙∣𝑃

𝜇(𝑙)𝜌𝑎(𝑙
2))

= 2𝐵
∏
𝑝∣𝑃

(
1− 𝜌𝑎(𝑝)

𝑝2

)
+𝑂(𝜏 (𝑃 ))

= 2𝐵 exp

⎛
⎝−

∑
𝑝

𝜌𝑎(𝑝)

𝑝2
+𝑂

⎛
⎝ ∑

𝑝>log𝐵

1

𝑝2

⎞
⎠
⎞
⎠+𝑂(𝐵𝜖)

= 2𝑐𝐵 + 𝑜(𝐵) (for some constant 𝑐 > 0),

where 𝜏 (𝛼) denotes the divisor function, and we use the observation that 𝑃 ≍ 𝐵.
Summing over all choices of 𝑎, we get from (4):

𝑀1 = 2𝑐𝐴𝐵 + 𝑜(𝐴𝐵) (for some constant 𝑐 > 0).

Let ℳ2 be the set of pairs (𝑎, 𝑏), 𝐴 ≤ 𝑎 ≤ 2𝐴 and 𝐵 ≤ ∣𝑏∣ ≤ 2𝐵 such that
𝐻(𝑎, 𝑏) is divisible by the square of a prime 𝑝 ∈ (log𝐵,𝐵]. Also let 𝑀2 = #ℳ2.
Then

𝑀2 =
∑

𝐴≤𝑎≤2𝐴

∑
log𝐵<𝑝≤𝐵

∑
𝐵≤∣𝑏∣≤2𝐵

𝐻(𝑎,𝑏)≡0mod 𝑝2

1

= 2𝐵
∑

𝐴≤𝑎≤2𝐴

∑
log𝐵<𝑝≤𝐵

𝜌𝑎(𝑝
2)

𝑝2
+𝑂

⎛
⎝ ∑

𝐴≤𝑎≤2𝐴

∑
log𝐵<𝑝≤𝐵

𝜌𝑎(𝑝
2)

⎞
⎠ .

The first term is

≪ 𝐴𝐵
∑

𝑝>log𝐵

1

𝑝2
≪ 𝐴𝐵

log𝐵
= 𝑜(𝐴𝐵).

The 𝑂-term is estimated as

≪ 𝐴
∑

log𝐵<𝑝≤𝐵

1 ≪ 𝐴𝐵

log𝐵
= 𝑜(𝐴𝐵).

Then ℳ1 ∖ℳ2 is the set of pairs (𝑎, 𝑏), 𝐴 ≤ 𝑎 ≤ 2𝐴 and 𝐵 ≤ ∣𝑏∣ ≤ 2𝐵, such that
both 𝑇 (𝑎, 𝑏) and 𝑇 (−𝑎, 𝑏) are not divisible by the square of a prime 𝑝 ≤ 𝐵. We
observe that #(ℳ1 ∖ℳ2) ≥ 𝑀1 −𝑀2.

We call a pair (𝑎, 𝑏) “good” if 𝑇 (𝑎, 𝑏) is not divisible by the square of a prime
𝑝 > 𝐵; otherwise (𝑎, 𝑏) is called “bad”.

Now we claim that (𝑎, 𝑏) and (−𝑎, 𝑏) cannot both be bad. Suppose both are bad.
Then there are primes 𝑝, 𝑞 > 𝐵 such that

𝑇 (𝑎, 𝑏) = 𝑝2𝑑1, 𝑇 (−𝑎, 𝑏) = 𝑞2𝑑2.

Since 𝑛 is odd we get by multiplying that

(5) 𝑇 (𝑎, 𝑏)𝑇 (−𝑎, 𝑏) = 𝑛2𝑛𝑏2(𝑛−1) − (𝑛− 1)2(𝑛−1)𝑎2𝑛 = 𝑝2𝑞2𝑑1𝑑2.
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If 𝑝 = 𝑞, then 𝑝 divides 𝑇 (𝑎, 𝑏)+𝑇 (−𝑎, 𝑏) implying 𝑝 ≤ 𝐵, a contradiction. Thus 𝑝,
𝑞 are distinct. Using the 𝑎𝑏𝑐 conjecture on the equation (5), we get for any 𝜖 > 0,

𝑝𝑞 ≪ (𝐴𝐵)1+𝜖,

which is a contradiction, as 𝑝, 𝑞 both are > 𝐵 and 𝐵 > 𝐴1+𝛿0 for a fixed 𝛿0 > 0.
Hence among the pairs in ℳ1∖ℳ2, half of them are good, and hence squarefree,

as they are not divisible by the square of a prime ≤ 𝐵. Thus∑
𝑑≤𝑋

𝑅0(𝑑) ≥ 1

2
(𝑀1 −𝑀2) ≫ 𝐴𝐵.

This completes the proof. □

5. Proof of Lemma 5

Let 𝑎1, 𝑎2 be in [−2𝐴,−𝐴] ∪ [𝐴, 2𝐴] and 𝑏1, 𝑏2 be in [−2𝐵,−𝐵] ∪ [𝐵, 2𝐵]. Then∑
𝑑≤𝑋 𝑅0(𝑑)(𝑅0(𝑑)− 1) is bounded by the number of (𝑎1, 𝑎2, 𝑏1, 𝑏2) with (𝑎1, 𝑏1) ∕=

(𝑎2, 𝑏2) and 𝑇 (𝑎1, 𝑏1) = 𝑇 (𝑎2, 𝑏2). Then

(𝑛− 1)𝑛−1𝑎𝑛1 + 𝑛𝑛𝑏𝑛−1
1 = (𝑛− 1)𝑛−1𝑎𝑛2 + 𝑛𝑛𝑏𝑛−1

2 ,

which implies that

(𝑛− 1)𝑛−1(𝑎𝑛1 − 𝑎𝑛2 ) = 𝑛𝑛(𝑏𝑛−1
2 − 𝑏𝑛−1

1 ).

Thus, for fixed (𝑎1, 𝑎2), the number of possible 𝑏1 and 𝑏2 is ≪ 𝑋𝜖. Hence∑
𝑑≤𝑋

𝑅0(𝑑)(𝑅0(𝑑)− 1) ≪ 𝑋𝜖𝐴2.

Therefore, we have ∑
𝑑≤𝑋

𝑅0(𝑑)
2 ≪ 𝑋𝜖𝐴2 +𝐴𝐵 ≪ 𝐴𝐵,

completing the proof of Lemma 5.

6. Proof of the theorem and the corollary

Let 𝒟(𝐴,𝐵) be the set of (𝑎, 𝑏)’s chosen exactly one for each 𝑑 counted in
𝐷(𝐴,𝐵). Thus 𝐷(𝐴,𝐵) = ∣𝒟(𝐴,𝐵)∣. Clearly

𝒯 (𝐴,𝐵) ∩ 𝒟(𝐴,𝐵) ⊂ ℳ(𝐴,𝐵).

Hence the theorem follows from Propositions 1 and 2.
The corollary is a direct consequence of the theorem with 𝐴 = 𝑋1/𝑛/(4𝑛) and

𝐵 = 𝑋1/(𝑛−1)/(4𝑛2) and Lemma 3 with 𝑐 = 1.
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