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The Euclidean algorithm for Galois
extensions of Q

By David A. Clark at Montréal and Essen, and M. Ram Murty at Montréal

A Euclidean algorithm for an integral domain R is a map
¢:R\{0} - N,,

the set of nonnegative integers, such that for all a, b€ R, b % 0, there exist g, r € R with
a = qb + r and either ¢ (r) < ¢(b) or r = 0. One important property of integral domains
satisfying this condition is that all their ideals are principal. An integral domain equipped
with a Euclidean algorithm is called a Euclidean domain. Often we shall say that a field is
Euclidean if its ring of integers is a Euclidean domain. For algebraic number fields the
Euclidean algorithm that has usually been studied is the absolute value of the norm. We will
refer to such fields as being norm-Euclidean.

Introduction

Dedekind showed in Supplement XI to Dirichlet’s Vorlesungen iiber Zahlentheorie that
Q(‘/ci) is norm-Euclidean for d = —1, -2, -3, -7, —11, 2,3, 5,13. He also noted that
while the ring of integers of Q(]/—19) is a principal ideal domain it is not Euclidean for
the norm (this is also true for d = —43, —67, and —163). Hasse [5] asked if it is possible
to define Euclidean algorithms other than the norm when the ring of integers is a prin-
cipal ideal domain. Motzkin [9] showed that the ring of integers of Q(}/—19) is not
Euclidean for any algorithm, thus giving a negative answer to this question in general.
Previously, no examples of rings of integers of algebraic number fields were known which
were Euclidean but not norm-Euclidean.

Motzkin [9] constructed a special kind of Euclidean algorithm. Given a nonempty
collection of Euclidean algorithms ¢, on R, the map defined by

¢ () = min ¢, (r)
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is also a Euclidean algorithm on R. To check this, let a, b€ R, b + 0. Choose an a, such
that ¢ (b) = ¢,,(b). Since

O(r) = ¢,,(1) < b, (b) = 9 (),

¢ is Euclidean. If the minimum is taken over all the Euclidean algorithms of the ring R, the
resulting algorithm E is called the minimal algorithm.

Let E, = {0} u{re R: E(r) < n}. One can show that E is the set consisting of 0 and
theunitsof R. If b€ E, , , and a + Rbis any reside class mod Rb, then there exist ¢, r € R with
a=gb+r and E(r) < E(b) so that re E,. Thus, E, - R/Rb is surjective. Conversely,
consider b € Rsuch that E, - R/ Rbissurjective. If E(b) > n + 1 then a new map E’ could be
defined by E'(r) = E(r),forr + band E'(b) = n + 1. To see that E’ is an algorithm it suffices
to consider the cases when b occurs as either a divisor or a remainder. Since E, - R/Rb is
surjective, every residue class a + Rb has a representative such that a=gb+r,reE,
which implies E'(r)<n +1=E'(b). If a=qc+b with E(b) < E(c), then trivially
E'(b) < E(b) < E(c) = E'(¢).

The importance of the sets E, is that they can be constructed in any ring. If

1) R'= |JE, =R,

nz0

then R is Euclidean with algorithm defined by
¢(r) =min{n:rekE,}.

On the other hand, if R is Euclidean then every element of R is in some E,. So the con-
dition (1) is necessary and sufficient for R to be a Euclidean domain. Now it is easy to see

why Q(}/—19) is not Euclidean for any algorithm, the only units are + 1 and every nontrivial
ideal has norm greater than 4 so the construction of the sets E,, stops at E,. The same proof
works for the other three cases noted above.

Samuel [11] noted a similarity between the success of the construction of the minimal
algorithm and Artin’s Primitive Root Conjecture. Namely, if there are infinitely many
primes 7 such that a unit is a primitive root modulo =, then E, contains these primes. In

particular, Samuel asked whether Q(l/l_4) is Euclidean for some algorithm other than the
norm. (Q (1/1-4) is not Euclidean for the norm.)

Weinberger [12] made the connection with Artin’s conjecture more precise and showed
how the conditional proof of Artin’s conjecture by Hooley [6] could be modified to show
that under the assumption of the Generalized Riemann Hypothesis for Dedekind zeta func-
tions (GRH), the ring of integers of an algebraic number field with at least one funda-
mental unit is Euclidean if and only if it is a principal ideal domain. That is, assuming the
GRH, if K is an algebraic number field which is not an imaginary quadratic field and the
ring of integers is a principal ideal domain, then it is a Euclidean domain. Thus, conjectural-
ly, Hasse’s question can be answered affirmatively, with only the four exceptions noted above.
Lenstra [8] generalized this result to rings of S-integers, | S| = 2, where S is a set of primes
containing the infinite primes. R. Gupta, K. Murty, and R. Murty [4] removed the depen-
dence on the Generalized Riemann Hypothesis from Lenstra’s result for large enough | S|.
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Statement of the Theorem

In this paper we prove the following result.

Theorem. Let R be a principal ideal domain whose quotient field K is a totally real
Galois extension of Q of degree ng. Suppose that a collection S of m = |ng — 4| + 1 non-
associate prime elements n,,m,, ..., n, of R can be found so that for all nonnegative inte-
gers a;, i =1, ..., m, the unit group of R maps onto (R/(n% --- n®))*, then R is a Euclidean
domain.

Since the unit group is the product of ng cyclic groups, one expects to be able to find
ng prime elements 7, i = 1, ..., ng satisfying the condition stated in the theorem. Hence, this
theorem should apply to rings such that n, > 3.

In the special case of totally real quartic Galois fields, to show that the ring of inte-
gers is a Euclidean domain requires only the existence of a single prime element # such that
the unit group maps onto (R/(n™))* for all nonnegative integers m. This case was treated
in detail by Clark [3]. Call these prime elements Wieferich primes. We conjecture, by analogy
to Artin’s Primitive Root Conjecture, that there is a positive density of Wieferich primes.
Computations support the validity of this conjecture.

In Clark [3], Wieferich primes were found in each of the 165 totally real quartic Galois
fields of class number one with discriminant less than one million, which were determined by
Buchmann, Ford, Pohst, and von Schmettow [1], [2], and the required primes were also
found for the real cubic Galois fields with discriminant less than 500,000 with class number
one. Some examples will be given in the last section.

Proof of the Theorem

Let S be a set of prime elements of K. In analogy to the minimal algorithm, we define
the S-minimal algorithm as follows. Let U be the multiplicative monoid generated by the
units and the prime elements in S. Define sets ES inductively as follows,

E§={0}uUs, and ES, =ESu{a:E’— R/(a)is onto}.

Define the S-minimal algorithm as we did earlier for the minimal algorithm. In general, the
S-minimal algorithm is not a Euclidean algorithm. However we have:

Lemma 1. If each prime element of R is contained in E3, and if, for each u € Uy, the
units map onto the prime residue class group (R/uR)*, then R is a Euclidean domain.

Proof. (i) E3 < R’: For a e Ug, let v(a) denote the sum of the exponents in the prime
factorization of a. Then v(a) = 0 iff a is a unit, in which case clearly a € R". Otherwise we
proceed by induction on v(a) = n > 0. By hypothesis, each a’ e Ug satisfying v(a’) <n is in
R'. Consider an arbitrary residue class b + aR modulo a; we need to show that it contains
an element of R’. This is clear for the class 0 + aR and for the invertible residue classes, each
of which contains a unit of R by assumption. In the remaining case, d = gcd(a, b) (it does
not matter which of the pairwise associate greatest common divisors is selected) lies in Uy
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and satisfies 0 < v(d) <wv(a), and the invertible residue class (b/d) + (a/d) R modulo
a/de Ug contains a unit u; therefore b + aR = du + aR with due R’ by the inductive
hypothesis.

(ii) The difference set E \ ES consists of prime elements: For any element a of this
set, the nonzero residue classes mod a form a multiplicative monoid which is an epimorphic
image of Us.

(iii) All the primes of R are contained in R’: This is clear for the primes = € S; for
ne ES\E} it follows from (i) and (ii), and any prime not in E? is in ES by assumption and
thus has all its residue classes represented by elements of ES, but we know at this point that
EcR.

Now let v(a), for arbitrary nonzero a € R, denote the sum of the exponents of primes
7 € Sin the factorization of a (as above), and v’(a) and v” (@) the sums of the exponents of the
prime factors in ES \ E§ and in E} \ E}, respectively; furthermore, put w(a) = v’(a) + v”(a).
The remainder of the proof proceeds by inductian on the lexicographically ordered triples

(w(a), v(a), v" (a)).

(iv) Assume contrary to the assertion of the lemma that R\ R’ is nonempty. Select
those of its members for which w(a) is minimal, pass to the subset of this set for which
v(a) is minimal, and pick from the latter subset an element a for which v”(a) is minimal.
If every residue class mod a had a representative in R’, then a would be in R’; therefore
we can pick a residue class b + aR which does not intersect R'. By (iii), this class contains
no prime elements, and obviously it is not the zero class. Nor can it be an invertible class —
these contain primes by the Cebotarev density theorem. Put again d = ged(a, b); we then
have v(d) = v(a), w(d) £ w(a) and even 0<uv(d)+ w(d) <v(a)+ w(a). Decompose
a=da’ and b = db’, then a’ and b’ are coprime.

If now w(a’) =0, i.e. a’ € Uy, the residue class b’ + a’ R would contain a unit u, im-
plying du e (b + aR) n R’ by inductive hypothesis (that is to say, by our minimal choice
of a), contradicting the choice of b. Thus w(a’) > 0.

Appealing again to the Cebotarev density theorem, we can find a prime 7€ b’ + a’R
and such that n is not among the finitely many primes of S. The product dx is in
(b + aR)\R'. By the inductive hypothesis,

w(dn) 2 w(a) = w(d)+w(a'),
vdn)=v(d)2v@) =vd)+v(d),

showing that w(n) = w(a’) =1 and v(a’) = 0. Therefore, a’ is a prime element in ES, not
in E§, and it cannot be in E? either, since this would imply that 5’ + a’R contained some
ue Uy, entailing w(du) = w(d) <w(a) and dued(b'+ a’'R)nR' * 0.

We thus arrive at v”(a’) = 1. By definition of E3, this means that n can actually be
chosen in E}. This gives w(dn) = w(a), v(dn) = v(a) and v"(dn) = v"(d) <v”(da’). The
inductive hypothesis now yields the final contradiction, dn € (b + aR) n R’. This concludes
the proof of Lemma 1.
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The method for proving the theorem is similar to that used by R.Gupta, K. Murty
and R. Murty [4]. First, we interpret the problem in terms of class field theory. Let © be
a prime element not in S, we want to show that = is contained in E3.

Let F be the ray class field of modulus (n). That is, F is the largest extension field of
K (in some algebraic closure) with the properties

(i) F/K is abelian,
(i) the conductor of F/K is equal to (7) (since R is a pid),
(i) Gal(F/K) = (R/(m)*/y(U),

where U is the unit group of K and v is the map R — R/(rn) sending an element to its
reduction modulo 7. To show that = is contained in Ej it is sufficient to find, for each ae R
not congruent modulo 7 to 0 or to an element of Uy, a prime element @ having Artin symbol
(w, F/K) = o, where ¢ is the element of Gal(F/K) corresponding to a + Rn under the
isomorphism (iii), and such that the map Ug — (R/wR)* is onto.

Fix n, F, a, and ¢ for the remainder of the proof. We are going to need a couple of
notations. Let F, be a finite Galois extension of some number field F; and D a union of
conjugacy classes of Gal(F,/F;). Denote by t(F,/F,, D) the set of rational primes ¢ such
that Q({,) € F, and t|q, =1 for all T€ D. Let K, denote the extension of K formed by
adjoining the ™ roots of a set of representatives of U/U?’, the field L = K, will be an
abelian (Kummer) extension of K. Let L, be the compositum of L and F and let L, be the
Galois closure of L, over Q. Then let

C,={teGal(L,/K):t|F=o0,1| +1},

let C, be the inverse image of C, in Gal(L,/K), and let C} be the smallest subset of
Gal(L,/Q) containing C, closed under conjugation.

First, we show that LN F = K. The primes of K which ramify in L are all divisors of
2, while = is the only prime of K which ramifies in F. Since K has no unramified proper
abelian extensions, L N F cannot be larger than K unless = is itself a divisor of 2. But in
this case [F: K], which divides Nn — 1, is odd, while [L : K] is a power of 2. This implies
that L n F = K and, furthermore, that C, is nonempty.

Let us show that ¢(L,/K, C,) = {2}: The group Gal(L,/K) is isomorphic to the
direct product of the elementary abelian 2-group Gal (L/ K), which has at least four elements
unless K = Q (in which case there is nothing to prove), and the group Gal(F/K) of order
dividing Nn — 1. If ¢ were an odd prime in ¢(L,/K, C,), the field L, would contain a root
of unity ¢, of that order, fixed by all automorphisms (z, ¢) € Gal(L/K) x Gal(F/ K) with
t© + 1. But then {, is also fixed by (1, 0), since the identity element of an elementary 2-group of
order at least four can always be written as a product of N7 = 2 nonidentity elements. Then
(1,07 1) also fixes {,, and so does (t,1) = (t,0) o (1,0~ *) for each 7 € Gal(L/K). By Galois
theory, this would force K({,) to be contained in F, which is absurd since F is totally real.



156 Clark and Murty, Euclidean algorithm

Furthermore, #(L,/K,C,) € t(L,/K,C,) = t(L,/Q, C}). In fact, we have equality
throughout: If 7 is an odd prime such that L, contains a root of unity {, ¢ L, of order ¢, the
group Gal(L,/K) must contain automorphisms fixing L, and moving {, (because {, ¢ L,),
and therefore also elements inducing any prescribed automorphism of L, /K and still not
fixing {,. In particular, it is impossible that all elements of C, fix {,. Thus 2 is still the only
member of ¢(L,/Q, C¥).

Now we can apply sieve methods to the problem of finding prime elements w in K
with Artin symbol (w, F/K) = 0. Let o/ be a finite sequence of integers, # a sequence of
rational primes, z a real number greater than 2, and

P)=1]]p,

p<z
peP

then
S(s#,2,2) = |{ae o (a, P(2)) =1}|

is the number of elements of .o/ whose prime factors which belong to £ are all greater than
z. For d a square-free integer define

oy ={ae:a=0(modd)}.

If we are given a quantity X which approximates |.o/|, the number of elements in &/, and
for each prime p e # a number w(p) such that (w(p)/p) X approximates |2/, |, then the
error of this approximation is measured by the numbers

w(d
R,,=|.;z¢d|-——(72.X,

where we have put w(1) =1 and w(p) =0 for primes p¢ % and finally, for arbitrary
square-free integers d,

w@d) =[] o(p).
pld
Let
W= ] <1—2)—(—‘Q>.
p<z p ‘
We also require the functions
2e’

F@ ==, fw=0, 0<us2,

where y is Euler’s constant. For u > 2, F, f are solutions to the differential-difference
equations

 WF@) =fw—1), Wf@) =Fu—1).
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In particular, f is defined by

2e?
@) == logu~1),

for2<u<4.
We will use the linear sieve in the form given by Iwaniec [7].

Lemma 2. Assume that 0 < w(p) < p and that there is a constant A = 2 such that

forall z>w2z=2,
-1
I (1=27) < (ioga) (1+ i)
wep<z p logw logw

then for £2 = z there is the lower bound

1 2 B
S(M'QZ) 2 XW(Z) {f( IOOggi ) - (logé)lﬂ} - d<zg2 ‘Rd| s
d|P(z)

where B is some positive constant.

We apply this lemma to sequences & = {p —1 < x: (p, L,/ Q) e C;}. For this case,
we have

|G
[L,: Q] ¢d)

| Ryl £ R,(x,d) = max max
(a,d)=1 ysx

”a()’,d,a)— ll(y)|’
where 7,(y, d, a) is the number of primes p < y such that p is congruent to a modulo

d and (p,L,/Q)eC}. As customary, we obtain estimates using the function

v,(r,d,a)= Y logp, where the sum extends over powers of the primes p counted by
s
m,, and then estimate the remainder terms by partial summation.

We use a variant of the Bombieri-Vinogradov theorem given by K.Murty and
R. Murty [10], Theorem 7.3.

Lemma 3. For every ¢>0 and A >0,

|
' max max|y,(y,d, a)— y| < ,
Zy 5T w4 016 | Togtx

1_
where Q = x" %, n = max (ng — 2,2).

Lemma 3 is the only place we use the assumption that K/Q is Galois. Lemmas 2 and
3 yield the following

Lemma 4. For any ¢ > 0 there exists a positive constant &, depending on & such that
there are more than

8,x/(log x)?

11 Journal fiir Mathematik. Band 459
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rational primes p with the properties
M p=x,
@ (», L,/ Q) e CS,
Q) if £l(p—1), then £e€t(L,/Q,C}¥) or £ > x!?n"¢,

Proof. Consider the sequence .« with 2 the set of odd primes. The Cebotarev den-
sity theorem suggests the choices X = |C¥|/[L,: Q]li(x) and w(p) =1. The first con-
dition of Lemma 2 is obvious, and the second condition is well-known. Since

|CSI
[R;| = max max|y,(y,d,L,/Q)— ———y ]|,
ol = max max| w04 L/ D) = 1701 6@y

Lemma 3 implies that

Y IRyl < x/(logx)?.

d<xlim-e
d|P(z)

Choose z = x'/?""¢ and ¢% = x/"~¢, Apply Lemma 2 to obtain

log &2 B
Mt %D 2 IV {f ( ;)fgéz ) - (logé)‘”} -0 (@%) '

Lemma 5. For every ¢ > 0 and for a suitable positive constant &, depending on ¢, there
are more than

3, x/(logx)?

prime elements w of K with the properties

(1) Nw = p £ x for some rational prime p,

(2 (w, F/K)=o,

3) (w,K,/K)#*1 forall et(F|K, o),

@) if£'|(p—1), then £'e t(F/K,0) or £' > x'/?17¢,

Proof. Consider the rational primes p found in Lemma 4. Choose a prime element
II of L, lying above p. For some t € Gal(L,/Q), (I*, L,/ Q) € C,. If w is a prime element
of K lying below IT°, then w has properties (2) and (3). The automorphism (I1°, L,/ Q)
fixes K pointwise, which means that K is contained in the decomposition field of IT*. Thus,

w has residue class degree one over p, which gives properties (1) and (4).

The last lemma we require states that there are many prime elements @w so that
Y, (Us) is large.
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Lemma 6. Let s = S|+ ny—1, then the number of prime elements w of K for which
lp, (Us)| <y is << ys* s,

Proof. The number of integer s-tuples (a,, a,, ..., a,) with

3) lay |+ lay| + -+ +]a,| S ybs

. s+1
is less than % v If |9, (Us)| < y, then
ngwgz . w:s = wblx wgz v wf’(mod m) ,

for some pair of s-tuples satisfying (3) with the w; either units or prime elements in S.
Then, w divides the numerator of

wa—blwgz*bz ...w;ls—bs__ 1.

The number of primes dividing each such element is bounded by a constant times y!/s,
where the constant is independent of y. Thus, the total number of primes w such that
|y, (Us)| < y is bounded by a constant times y®* /s,

Now, to prove the theorem, consider the primes w found in Lemma 5. For these
primes either |y, (U)| < x* ~!/27*¢ or the only divisors of

(4) |(R/R@)*/p, (V)]

are powers of 2, since this index, if nontrivial, must be divisible by a prime divisor of
p — 1. For similar reasons, the same alternative holds with Uy in place of U. Our choice

of s implies
(1——1 +s><s 1><1,
2y s

assuming ¢ is chosen small enough. Putting y = x* ~!/2"*¢ in the previous lemma, we see
that the primes w satisfying |y, (Us)| <y may be disregarded as x — co. On the other
hand, for any prime ¢ dividing the group index in formula (4), @ must be fully decom-
posed from K to K,, since (R/Rw)* is cyclic and the residue field extension is generated
by ¢ roots of members of the subgroup of index Z, which exist already in the field R/ Rw.
This cannot happen, however, with the prime ¢ = 2, because (w, L,/K) € C, restricts to a
nontrivial automorphism of L and thus the decomposition field cannot contain L. Thus the
index

) |(R/ Rw)*/ v, (Us)|,

which divides the index (4), must be odd. Hence, for each of the infinitely many nonassociate
primes w which have |y, (Us)| larger than the upper bound, the index (5) equals one i.e.
w e E}, which completes the proof of the theorem.
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Examples
The following proposition is helpful for verifying that the unit group maps onto
(R/(mg* -~ mpm)*,
for all nonnegative integers a;, i =1, ..., m.

Proposition. Suppose that m,,...,n, are non-ramified prime elements of residue
class degree one in R not lying above 2. If a multiplicative submonoid M of R maps onto
(R/(n?n2 -+ n2))*, then M maps onto (R/(n 73 --- n%))* for any choice of nonnegative
integers a;, i=1,...,s.

Proof. Suppose the claim has been proved for all products =" --- nl*, such that
m; S n;fori=1,...,s with at least one of the inequalities strict. Use the inductive assump-
tion to find an element ¢, of M, ¢, such that ¢; = 1(mod n¥) for i=2,...,s and ¢, has
order p?*~2(p, — 1) modulo n%*~!x%--- ", where Nn, = p,. Then,

PPt 3 (e 1) n—2_ny, ., ons
811 = 1+k1’[11 7'[22 TIS ’

8{’1“ e =1 4 k'n? (mod 7~ iz -+ ;)

where ©, ¥k, k' which implies that e has order pj'~!(p, —1) modulo =f}'n3---nl.
Similarly, elements ¢; € M can be found such that ¢; = 1(mod n}’) for j + i and ¢; has order
pr~Y(p; — 1) modulo n7'n%--- . Then the multiplicative group generated by ¢, ..., &,
maps onto the coprime residue classes modulo nj! -« 7)’s.

r

Remark. A similar result holds for prime elements lying above 2 and prime elements

with residue class degree greater than one. In these cases (R/(n"))*, n =

14 .
, is th
—q> Is the

product of f+ 1 or f cyclic groups, according as R does or does not contain the p™ roots
of unity, where Nn = p/ with p a rational prime. Thus, this more general result is less
useful for applications of our theorem.

Our first example is K, the splitting field of x* — 18 x2 + 4 of discriminant 6162. K has
an integral basis {1, a, «%/2, a®/2}, where « is a root of the polynomial. The unit group of
K is generated by

—9+4a2/2, 1—-2a—0a%/2, 30+63a—3a2/2—-Ta3/2.

We consider the prime ideals of K with norm less than or equal to 7. Compute the fac-
torizations of x* — 18 x2? + 4 modulo p for p < 7.

x*—18x% + 4 = x*(mod 2)
= (x? + x4+ 2)(x? + 2x + 2)(mod 3)
= (x? + 3x + 3) (x* + 2x + 3)(mod 5)
= (x+3)*(x +4)*(mod 7).
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Using these factorizations, we can determine the image of the unit group modulo the
prime ideal (7, a + 3).

—9+a*/2=-2+0a?/2+7a?/2= -2+ 4a?> = -2+ 2a = —1(mod (7, a + 3)),
1-2a0—a?/2=1-20+30*=1-11la=1—-4a= —1(mod (7, a + 3)),
30+ 630 —3a*/2—-Ta/2=2—-30%/2=2+4+20> =2+ 0o = —1(mod (7,a + 3)).

Therefore, the image of the unit group modulo (7, a + 3) is { +1}. There is only one non-
trivial ideal of norm less than 7, namely (2, o) = (x) of norm 4. Only the classes +1, +3
modulo (7, a + 3) contain elements of norm less than 7. Hence, the norm ist not a Eucli-
dean algorithm for the ring of integers of K. But, since

—9+a?/2 =102(mod (13, « + 12)?),

and 102 is a primitive root modulo 132, the theorem implies that the ring of integers of K
is Euclidean.

Next, consider the field with generating polynomial x3 — x2 —24x 4+ 27 and dis-
criminant 732. An integral basis is 1, a, y = (— 15 — « 4+ «2)/3. The unit group is generated
by 41 — 10 + 6y and 31 + 16 + 10y. As above, one can show that the ring of integers is
not Euclidean for the norm by considering the residue classes modulo the ideal (2). Let
n;,=8—a—3y of norm 7 and n, =1+ 3a+y of norm 83. The unit group maps onto
(R/(n?7m2))*. Hence, the theorem implies that R is Euclidean.

We cannot apply the theorem to Z [[/ﬁ]; however, for p a rational prime which does
not splitin K= Q (‘/ﬁ), consider the ring R =Z [l/ﬁ] [1/p]. We will choose p later on.
The positive fundamental unit of K is ¢ =15 +4[/ﬁ. Let n, = 5—]/14 of norm 11,
n, =27+ 7]/§ of norm 43, and n; = 3 — 2‘]/1_4 of norm 47. ¢ has order 110 modulo #?,
order 1806 modulo 72, and order 1081 modulo n2. —¢ has order 55 modulo =3, order 903
modulo 72, and order 2162 modulo n3. Thus, one can verify that the image of the multi-
plicative group generated by +e& in (R/(n?n2n2))* has index 2. The residue class
310417515 of order 2 modulo n?n2 =2 is not contained in the image of the units. Now
choose p = 1298852237 which is contained in this residue class and does not split in
Q (]/ﬁ), then the units of Z [l/ﬁ] [1/p] map onto (R/(r?n2n3))*. To see that R is not
Euclidean for the norm, note that up to multiplication by units, there is only one element of
norm less than 4, 4 + ]/1'4 The units all map to 1 modulo (2). The residue class 1 + V1—4

modulo (2) contains no elements of norm less than 4; hence, R is not Euclidean for the
norm.
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