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Let G(n) denote the number of finite groups of order n (up to isomorphism). We 
prove that for n squarefree, G(n) =S)(n’-‘) for any c>O, and that for almost all 
squarefree integers n, log G(n) = (1 + o( 1 ))(log log n) z&log p)/( p - 1). If we let 
F,(x) be the number of n <s such that G(n) =k, then we prove Fk(x)= 
(c(a)+o(l)).u/(logloglog.~)“+’ for k = 2”, and c(a) is an appropriate constant, as 
.x + CC’. If k # 2”, then we show that F&Y) = O(.u/(log log x)’ -I). ‘1 1987 Academic 

Press. Inc 

1. INTRODUCTION 

Let G(n) denote the number of groups (up to isomorphism) of order n. 
With the recent classification of finite simple groups, we know that 

for some c > 0. (See Neumann [9].) This upper bound can be significantly 
improved if we confine our attention to certain classes of groups. For 
example, if n is squarefree, it was shown in [7] that 

* Research partially supported by NSERC Grant U0237 

360 
0022-314X/87 $3.00 
Copyright , 1987 by Academc Press. lnc 
All nghls of rcproduclm ,n any lnrrn rewved 



ENUMERATION OF FINITE GROUPS 361 

where cp is the Euler q-function. Moreover, it was proved in [S] that 

.$, ,a’(n) log G(n) = (1 + O( 1)) cx log log x 

as x + co, for a certain constant c. 
This was established by utilising the following beautiful formula due to 

Hiilder [6]. Let V,(n) denote the number of prime divisors of n which are 
= 1 (mod p). Then for n squarefree. 

(1) 

where the inner product runs over prime divisors p of d 
Formula (1) has other applications. It will be the essential ingredient in 

the proofs of the main theorems of this paper. 

THEOREM 1. For n squarefree, 

G(n) = Q(n’ -“) 

for ezlery .5 > 0. 

Remark. This theorem shows that the estimate G(n)< cp(n) for n 
squarefree, is nearly best possible. 

THEOREM 2. For almost all squarefree n, 

1% P logG(n)=(l+o(l))(loglogn)~-, 
pfn P - 1 

or in other words, 

1% G(n) 
log log n 

has a distribution .function. 

Remark. A weaker version of this result was proved in [7]. 

The main interest in formula (1) is that it can be utilised in obtaining 
information concerning the distribution of the values of G(n). To this end, 
let us define 

F,Jx) = card(n <x: G(n) = k). 

The following theorem shows that G(n) is a power of 2 more often than 
any other value. 
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THEOREM 3. Let a be a nonnegative integer. 

(i) ifk#2”, then Fk(x)< x 
(log log x)‘-c’ 

(ii) if k = 2”, then for c(a) = e-‘/a! 

(c(a) + o( 1))~ 
Fk(x) = (log log log x)LI+ ’ 

Remarks. (1) With a little more care, (i) can be improved to 

x 

O log logx . ( 1 

(2) It is conceivable that if k = 3, 

.Y 
F,(x) % (loglogx)‘+““” 

if hopeless, but obvious, conjectures concerning the distribution of primes 
are assumed. It is too early to predict the behaviour of Fk(x) when k is not 
a power of 2. 

(3) It should be noted that the constants implicit in (i) and (ii) above 
depend on k. 

(4) Spiro has recently found an infinite set S, which includes the 
Fibonacci numbers, such that for any E >O, and any kES, 
Fk(x) $k,E s(log x)“. In particular, this holds for k = 3. 

2. AN 52 RESULT FOR G(n) 

In this section, we prove Theorem 1. Let N and D be defined by 

logN= c logp, 
ps t 

and 

log D= c log p, 
P<L 

where y <x, and X, y shall be chosen later. Utilising the explicit formula 
(1 ), we find that 
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If we denote by x(x, q), the number of primes p <x, p z 1 (mod q), then it 
is easily seen that 

yw/~) = 4x, P) - 4.k PI. 

By elementary estimates, it follows that 

logG(Wa c .(~C(?~,~)-n(.l?,p)}logp+O(y). 
P<? 

We need the following lemmas: 

LEMMA 1. 

c 7c(x,p)logp=(1+0(l))x as x+co. 
p<r 

ProoJ: It is easy to see that 

1 log(q - 1) = 1 { n(x, p) + n(x, pZ) + . . .} log p, 
4<r p < .x 

where the sum on the left-hand side of the above equation ranges over 
primes q < x. 

Using the trivial estimate, 

we find 

c c d-'c, P") 1% P = 0 

cl>2 (logr)4<f<_-r ( ) (lo;x)2 . 

On the other hand, by the Brun-Titchmarsh inequality, 

1 c ~(x~P*)logP=O kx . 
1> 2 p’s(l0g.r)” ( 1 

This proves that 

X 
c 7r(x,p)logp=x+O - 

p s .x ( > log x 

since by the prime number theorem 

1 log(q-1)=x+0 & . 
Y < J ( > 
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LEMMA 2. There is an absolute constant c > 0, .SUC/I thut 

c 7l(.u,p)logp~(1-cE).u 
p< I’- 

as .‘i + cc, for anj’ E > 0. 

Proc$ By Lemma 1, we see that it suffices to show that 

,-, ,c 4-Y, PI log P -6 E-Y. 
<pc \ 

Indeed, 

~, c n(s, p) log p d log .Y 1 n(.u, p). 
‘CP<\ \I -, <,I< \ 

The last sum can be written as 

where N(.u, t) is the number of solutions p of p - 1 = qt? where p and q are 
prime numbers. By any sieve method, 

N(x, t) = 0 
c 

.Y 

cp(f 1 hT2(.ulf 1 i . 

This estimate now yields the desired result, as 

I ;y, $j = O(E log x). 

We can now complete the proof of our theorem. We find by Lemma 1, 
that 

log G(N) 2 1 n(.u, p) log p + O(y). 
psi 

Choosing y =x’ ‘, yields, by Lemma 2, 

logG(N)>(l-ce)x+O(x’ -“) 

as .Y + co. By the prime number theorem, 

log N=(l +o(l))x, 

and hence, 
logG(N)3(1 -ce+o(l))logN, 

as desired. 
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3. PROOF OF THEOREM 2 

We want to establish that log G(n) has a distribution function for 
squarefree n. Recall that in [7], it was shown that for square-free n, 

G(n) 6 n pC-‘. 
An 

Therefore, 

log G(n) 6 C v,(n) log p. 
PIPI 

Consider the set 

L, = (n d x: V,(n) 3 1 for some p 1 n, p > (log log x)}. 

We begin by showing that I L,I = o(zc). We need 

LEMMA 3. Let p he a prime. Then 

.for some absolute constant C. 

Proof: See [3]. 

LEMMA 4. 

IL,I=O x ( log log log x > 

Proof. Clearly, the size of L, is bounded by 

and by Lemma 3, this is dominated by 

c 
X(1% lw x + log P) = o 

( 
X 

P > (loglog 1) P2 log log log x > 

as desired. 
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We may therefore assume that V,(n) = 0 for all p / n, with 17 > log log II, 
so that for almost all squarefree II, 

G(n)< 1 V/An 1 log p. (2) 
PI” 

,’ < loglop,i 

We show next that V,,(n) 6 2 (log log n)/p for almost all n, uniformly for 
p < log log il. 

LEMMA 5. Let P he a .yet of primes satisfj~ing I,,, ,.pcp( l/p) = tr, with 
f \ + ,x2 us .K + x 

Set wp(n) = C,,i,r.pt p 1 and ,fi.y 1: > 0. The number of integers n < .x ,for 
I~+ich the inequalities: 

(1 -r:)t,<top(n)<(l +r:)t, 

s exp( - qt, ), 

where q = V(F) is II positive constunt which depends only on E. 

Proqf: This result follows easily from the method of Hardy and 
Ramanujan [S] combined with Brun’s method. As the derivation closely 
follows the method of [S], we suppress the details. (The referee informs us 
that a sharper version of this lemma appears in K. K. Norton. Illinois J. 
Math. 20 (1976), 681-705.) 

COROLLARY. Unifornzl>, ,for p < (log log X) ’ ‘., 

log log x 
(l--E) p-* < V,(n)<(l +E) 

log log x 

P-1 

is satisfied ,fbr all n 6 .K with at most O(x/(log log x).“) exceptions, .for any 
A >O. 

Proqf By Lemma 5, 

log log .Y 
(1-e) p-, < V,(n)<(l +E) 

log log x 

P-1 

is satisfied for all n <x apart from 

0 xexp -q ( ( log log 5 

P !> 

exceptions. We sum this over p < (log log x)‘-‘. to obtain the desired 
result. 
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LEMMA 6. The number qf n <x divisible by a prime p in the range 
(log log .K)’ ML < p <log log x is 0(&x). 

Proqf: The number of such n < x is clearly bounded by 

where the dash on the sum indicates that p is in the specified range. 
Using the elementary fact 

The result follows immediately. 

From (2) we find from the preceding that apart from O(G) squarefree 
numbers n d x, we have 

log G(n)< 1 
log log n 

Plrl 
(1+41)) p-l l%P. 

p < (logloglr)’ -I 

For the lower bound, set 
d = rI P. 

p < (&ig,,,l 1 

With the exception of O(X) of the n 6 x, 

Therefore, 

c 1 4 log log log log n. 
4” 

q<lloglogrlP’ 

V,(n/d) = V,(n) + O(log log log log n). 

Now, by Holder’s formula (1) and the corollary to Lemma 5, we get 

+ O( (log log log n )(log log log log n)2) 

3 (1 + a( 1 ))(log log x) c (log PMP- 1) 
Ph 

p < (loglogn)‘-‘ 

except possibly for O(X) of the squarefree n d x. 
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Let S,:(s) denote the set of integers tz with ,,& < n d .Y for which 

c - log p > c, 

/‘> (loglog,,)’ ’ p - 1 PI” 

Then 

log log log .Y 

~~~(logiogx)~-'-~ 

Thus, we have 

c l”gp l‘< c log P log P 
,,,,#P-I- ” -<I--- Pi” P-1 ,‘< 1loglogl,l’ ’ ,‘,I, P - 1 

except for O(EX) of the n d s. The function 

1% P c- ,‘,‘, p - ’ 
is additive, and by Theorem 5.1 of [2], it has a continuous distribution 
function. Thus, the same can be said of 

and of (log G(N))/log log M. This completes the proof of Theorem 2. 

4. AN UPPER BOUND FOR F,(x) 

Let 

F,= (nd.x:G(n)=kf 

and denote by p,, the smallest prime divisor of n. Let E > 0 be arbitrary. Let 
us write 

F, = S, u Sz. 

where in S,, P,~ < (log log x)’ PI and in Sz, p,, > (log log I)’ ‘. We use 
Brun’s method to estimate IS,I. 
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LEMMA 7. Let c he a fixed positive integer and suppose that 
p < (log log x)’ -I’. Then 

card(n ,< X: p j n, and V,,(n) <c) 

0 
( 
4 (log log x)’ exp 
P 

(JO”~~X))~ 

Proqf By Brun’s sieve, the number with V,,(n) = c is 

where < = ~y\.l’bl%\, It follows that this is bounded by 

d{ 2,. i[ exp(-log:fgl). 
q= Itmodp) 

By well-known estimates (see [3]) it follows that the above is 

6- 
P 

,-“, ,, (log log x)’ exp 
(-log~-y). 

Proqf’ of’ Theorem 3(i). Let p = p,! and suppose that P’,(n) 2 k + 1. It 
follows from Theorem 1 .I of [8] that 

Hence, if G(n) = k, we must have k’,(n) 6 k. By Lemma 7 (or by the 
corollary to Lemma 5), it follows that for any A > 0, 

Now we write 

sz = s, v s,, 

where S, consists of squarefree numbers and S4 consists of those elements 
with a squared prime factor. As p,? > (log log x)‘~‘, for elements of S,, we 
find 

I&I G 1 &J 
( 

x 

I’> Iloglogr)’ ‘ p ) (log log X)’ --t 
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It remains to estimate Sj. If n E S,, then for any p 1 II, V,,(n) d 1. For if 
V,,(n) > 2 then 

k=G(n)3p 
I p(fl) -1 

P-1 3 p,, > (log log s)’ 

a contradiction for sufficiently large s. 
For the sake of convenience, we introduce for every natural number )I, 

the graph C$ n, denoted by g(n). The vertices of this graph are the prime 
divisors of n, and two prime divisors p, q of n are joined if p 1 (q - 1). If 
g(n) has connected components given by g(n,), then it follows from 
Holder’s formula that 

G(n) = n G(tz,) 

when n is squarefree. 
The fact that V,,(n) d 1, means that for n E S,, g(n) consists of disjoint 

segments of the type 

If the subgraph 

does not appear in g(n), then g(n) consists of 

I I I ,, ,I 
in which case G(n) is a power of 2, contrary to hypothesis. Hence, for 
n E S,, g(n) contains the subgraph 

Thus, 

Lemma 3 applies, and we get 

IS314 1 ~(loglogx+logq)=z, +c, (say). 
p> (loglog\-)I -c pq 

ye Ilmodp) 



ENUMERATION OF FINITE GROUPS 371 

Then. 

P-,1@ 1 
x log log x 

p, (loglog il’ ’ p3t* . 
r> I 

The latter sum is easily seen to be 

0 
( 

.Y 

> (loglogx)‘-‘” 

The term Z2 with the (log q)/q2 term is handled similarly. This completes 
the proof of (i). 

Remark. The above argument shows that 

for any li > 1, and any A > 0. It is equally clear that 

IS,1 = 0 ( 
.Y 

(log log x) - c 1 

for any k3 1. 

5. THE ASYMPTOTIC FORMULA FOR Fk(x), k=2” 

By the remarks following the proof of (i), it is clear that we need to 
establish an asymptotic formula for the number of squarefree n <x, whose 
graph g(n) has exactly a connected components of the form 

together with a finite set of disjoint vertices. The case k = 1, when a = 0, has 
already been dealt with in Erdos [3]. We begin by considering the case 
k = 2, corresponding to a = 1. We must enumerate squarefree numbers 
n < x of the form n = pqm, where (m, q(m)) = 1, q = 1 (mod p) and 
(pm, cp(pm))== 1, (qm, cp(qm))= 1. For any fixed pair of primes p, q, with 
q = 1 (mod p), let A,,(x) denote the number of squarefree n f x satisfying 
the above conditions. It is also clear that we need only consider PI E S,, by 
the remarks at the end of the last section. Hence we may take 
p > (log log x)’ ~ ‘, and assume that all prime divisors of m are greater than 
(log log X)’ -I:. 
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LEMMA 8. 

c ,‘>~loglogti’-’ A&) = 0 ((log;:g l)>.) 
Proof: By Lemma 3, we have 

and this latter sum is O(.u/(log log x)‘) by an easy computation. 
The lemma shows that we may take p satisfying (log log s)’ ” < p < 

(log log s) ’ +” in the following discussion. We need: 

LEMMA 9. Let p be (I prim < (log .u)’ (bthere c is un arhitrar! constant). 
Then 

Proof: This is a straight forward consequence of the Siegel-Walfisz 
theorem and the BrunTitchmarsh inequality on the number of primes in 
an arithmetic progression. 

Renzark. The referee informs us that the result is true without the 
restriction on p (see, e.g., the paper of Norton mentioned earlier or 
C. Pomerance, J. Reine Anger. Math. 293/294 ( 1977), 217-222). 

COROLLARY. Let 5 = s ’ We@ ‘. Then 

uniformly* for p < (log log .Y)~, jbr any constant A > 0. 

Proqf: As 

1 ~~log~og~~plo~log~ogx+o(~) 

t/-c; q 
y- Ilmodp) 

the result follows easily from Lemma 9. 
We may also take q < 15 as our next lemma shows. 
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LEMMA 10. 

Proqf: Clearly A,,,(x) 6 x/pq. Since p < (log log x)’ + ‘, the corollary to 
Lemma 9 implies that the above sum is bounded by 

c x log log log x 

p>(loglagY)‘-~ P2 > 

=O ( (loglo~;x)‘-” > 
We state the following version of Brun’s sieve for the sake of con- 

venience. 

LEMMA 11. The number qf n 6 x not divisible by any of the primes 
p, ,..., p., , where p, < 5 is 

(1 -to(l))x. fi (1-i). 
,= I I 

Pro(?f: See Halberstam and Richert [4]. 

Below, we shall sometimes write I, for log,x, the m-fold iterate of log x. 

LEMMA 12. For (loglogx)‘P”<p<(loglog.u)““, 

1 A/&)=(1 +0(l)) 
Ye ~ i’ log log x 
- 

Y<5 p2 log log log x 

xexp(-log~gx)+O(~). 

ProoJ: By Lemma 11, the number of pqm <x with all the prime factors 
of m > (log log x)’ --I: and no prime factor s < 5 which is E 1 (mod p) is 

(1 +om; 
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and by familiar estimates of number theory, we find 

s 
(1 -E)Ap,(.U,~(l+O(l))- 

e 1 -.’ exp(~log:pBI), 
pq (log log log xl 

If we exclude those r?z 6 x/pq which have a prime factor s = 1 (mod q) or 
a prime factor r = 1 (mod p) with r > 5, we find that 

‘&(.~)22(‘+4’)) 
se ,’ 

pq log log log s 
exp(-log~g~Y)-EP~(.Y), 

where 

s 12+logq+I; 

“ii i 4 P 

by Lemma 3 and the corollary to Lemma 9. Summing over q < 5, we find 

and therefore 

c A,,(x) = (I + o( 1)) ;l;g:ooggl;ge; 
lf<t 

This completes the proof of the lemma. 

Proqf cf Theorem 3(ii). We can now give the asymptotic formula for 
F,(x). Indeed, by Lemma 12, we have 

F,(x)=C’U +o(‘)) 
xemYloglogx 

P p2 log log log x 

xexp(-logFgx)+O(&), 

where the dash on the sum indicates that 

(log 1% xl ’ -“<p<(loglogx)‘f”. 
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Let J = log log x. By partial summation, the sum 

can be replaced by the integral 

Making the substitution u = j~/t, it becomes transformed into 

1 
4 

1.’ du 

I’ I.-’ exp( -u) (log y/u) 

and integrating by parts shows that it is 

Thus, 
-; 

F,(x)=(l +0(l)) e -K 
(log log log x)*’ 

In the general case of k = 2”, the main contribution comes from squarefree 
n <I which have the form 

with 4, = 1 (mod pi). (m, p(m)) = 1 and the graph of n is isomorphic to 

where the last set of disjoint vertices correspond to the prime divisors of WI. 
By the preceding results, we make take (log log x)’ --” < pi < (log log x)’ +‘, 
for 1 d id a. Furthermore, we may take qi < 5 for 1 < i < Q, by the method 
of proof of Lemma 10. Hence, by Brun’s sieve, the number of integers n ,< x 
of the form 

with (m, q(m)) = 1, q, = l(mod p,), 1 d i<a, and no other relations in 
g(n), is 

(1+0(l)) xe-’ 
1 

(P,41)...(P,4,)logloglogxeXP ( ( 
-I, ;+ ... +I 

0 >> 
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as s + co. We sum this over the distinguished pairs of primes (p,, q,) to 
obtain 

(*+4*)) 
xe :‘(log log x)” 

a! (log log log x) 

x(exp(-loglog.Y(i + ... +;))/P:-P:), 

where the a! is to take into account the different orderings of the a prime 
pairs. In order to evaluate the asymptotic behaviour of the sum of this 
expression over the primes p, in the interval (log log x)’ ” < 
p, < (log log x)’ +‘:, we again use partial summation to write the sum as a 
product of a integrals. Each of the integrals is of the type considered in the 
case a = 1. Applying the same method to each in turn, we find that 

F3”(x)=(l+0(l)) 
c(a)s 

(log log log .Y )I’ + ’ . 

In fact, the above yields e(u) = L’ “/a!, which holds for a>O. This com- 
pletes the proof of Theorem 3(ii). 

We include here the following curious observation. Suppose the graph of 
II, g(n) has connected component 

consisting of a chain of length k. We claim that G(n) = Fk, where Fk 
denotes the kth Fibonacci number. Indeed, if n = p, ... pk, then 

G(n)= c $pL’;“‘l-l)+; ;(pL’;r’l-‘). 
41 rid 
Pll(j Plld 

The second sum is G(n/p,), whereas the product in the first sum vanishes 
unless d 1 (n/p*). As p, 1 d in the first sum, we find that this sum is 
G(n/p, pz). An easy induction argument utilising G(n) = G(n/p,) + 
G(n/p, pJ now gives the result. 

6. CONCLUDING REMARKS 

If n is squarefree and G(n) = 3, then it is easy to see that n = pqrm where 
q=l (modp), r- ( 1 mod q), (m, y(m)) = 1 and no other relations hold. If 
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there are at least cx/(log x)” primes p < x such that 2p + 1 is also prime, 
then it is easy to see from the preceding discussion that for at least 

cx 
(log log x)’ ~ E 

numbers n d I, we have G(n) = 3. This should not be expected for all values 
of k. 

Concerning the size of G(n) for squarefree n, we ask the following: is it 
true G(n) = o(cp(n)) as n runs over squarefree integers? (see the Note added 
in proof). In this connection, it will be recalled that in [7], it was shown 
that if 

.fbl) = n (n, p - 11, 
PI,7 

then 

G(n) <f(n) 

for all squarefree n. It is curious to note that G(n) = q(n) can hold only for 
finitely many squarefree integers. Indeed, from the above, we find that for 
each p 1 n, ( p - 1) also divides n in such a case. We claim that n must be 
composed of 2, 3, 6,43 only and a quick computation yields that 
lr = 2, 6, 42, 1806 are the only solutions. To see this, suppose that a prime 
p # 2,3,7,43 divides such an n. Then letting p be the least such prime, we 
find (p - 1) / n. But then p - I must be composed of 2,3,7 or 43. 

An immediate check of the corresponding squarefree products gives the 
result. This elegant elementary result appeared earlier (see Dyer-Bennet 
[ I] ) in a different context. It is likely that our question has an affirmative 
solution. 

We have proved that for n squarefree, 

log G(n) 
log log n 

has a continuous distribution function. The above function has the same 
distribution as 

logftn) 
log log n' 

It would be desirable to obtain nontrivial upper and lower bounds for 

C f(n) 
ns v 

and 
,,& I’ G(n). 
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The second sum would be more difficult. Using the methods of [7] and 
[S] and Theorem 2, it follows that for any c > 0, 

After this paper was written, Ram Murty and Srinivasan proved that 

for some c’> 0. Carl Pomerance informs us that for c > $$, he can prove 
that 

He can also give a heuristic argument to show that the upper bound is 
essentially best possible. 

No@ added in pru~$ The fact that G(n)= o(cp(n)) has been subsequently proved by 
M. Ram Murty and S. Srinivasan. In a forthcoming paper entitled, “On the number of groups 
of squarefree order,” they show that for square free n. 

G(n) = O((o(n)/(log n)4’o~‘“~“‘~n) 

for some constant A > 0. 
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