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1. Introduction

The concept of “number” has formed the basis of civilzation since time
immemorial. Looking back from our vantage point of the digital age, we
can agree with Pythagoras that “all is number”. The study of numbers
and their properties is the mathematical equivalent of the study of atoms
and their structure. It is in fact more than that. The famous physicist and
Nobel Laureate Eugene Wigner spoke of the “unreasonable effectiveness of
mathematics in the natural sciences” to refer to the miraculous power of
abstract mathematics to describe the physical universe.

Numbers can be divided into two groups: algebraic and transcendental.
Algebraic numbers are those that satisfy a non-trivial polynomial equation
with integer coefficients. Transcendental numbers are those that do not.
Numbers such as

√
2,
√
−1 are algebraic, whereas, numbers like π and e

are transcendental. To prove that a given number is transcendental can
be quite difficult. It is fair to say that our knowledge of the universe of
transcendental numbers is still in its infancy.

A dominant theme that has emerged in the recent past is the theory of
special values of zeta and L-functions. In this article, we will touch only the
hem of the rich tapestry that weaves transcendental numbers and values of
L-functions in an exquisite way. This idea can be traced back to Euler and
his work.

In 1735, Euler discovered experimentally that

1 +
1
22

+
1
32

+
1
42

+ · · · = π2

6
. (1)
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He gave a “rigorous” proof much later, in 1742. Here is a sketch of Euler’s
proof [8]. The polynomial

(1− x/r1)(1− x/r2)...(1− x/rn)

has roots equal to r1, r2, ..., rn. When we expand the polynomial, the coef-
ficient of x is

−(1/r1 + 1/r2 + · · ·+ 1/rn).

Using this observation, Euler proceeded “by analogy.” Supposing that
sinπx “behaves” like a polynomial and noting that its roots are at x =
0,±1,±2, ..., Euler puts

f(x) =
sinπx
πx

.

By l’Hôpital’s rule, f(0) = 1. Now f(x) has roots at x = ±1,±2, ... and so

f(x) = (1− x)(1 + x)(1− x/2)(1 + x/2)(1− x/3)(1 + x/3) · · · .

That is,
f(x) = (1− x2)(1− x2/4)(1− x2/9) · · · .

The coefficient of x2 on the right hand side is

−
(

1 +
1
4

+
1
9

+ · · ·+
)
.

By Taylor’s expansion,

sinπx = πx− (πx)3/3! + · · ·

so that comparing the coefficients, gives us formula (1).
The main question is whether all of this can be justified. Euler certainly

didn’t have a completely rigorous proof of his argument. To make the above
discussion rigorous, one needs Hadamard’s theory of factorization of entire
funtions, a theory developed much later in 1892, in Jacques Hadamard’s
doctoral thesis.

The next question is whether Euler’s result can be generalized. For ex-
ample, can we evaluate

∞∑
n=1

1
n3

or
∞∑

n=1

1
n4
.

Euler had difficulty with the first question but managed to show, using a
similar argument, that

∞∑
n=1

1
n4

=
π4

90

and more generally that
∞∑

n=1

1
n2k

∈ π2kQ.
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It is not hard to see Euler’s proof can be modified to deduce the above
results. Indeed, if i =

√
−1, then observing that

f(ix) = (1 + x2)(1 + x2/4) · · ·

we see that

f(x)f(ix) = (1− x4)(1− x4/24)(1− x4/34) · · ·

But the Taylor expansion of f(x)f(ix) is(
1− π2x2

3!
+
π4x4

5!
− · · ·

) (
1 +

π2x2

3!
+
π4x4

5!
+ · · ·

)
.

Computing the coefficient of x4 yields
∞∑

n=1

1
n4

=
π4

90
.

Continuing in this way, it is not difficult to see how Euler arrived at the
assertion that

∞∑
n=1

1
n2k

∈ π2kQ.

Euler’s work is the beginning of a modern theme in number theory, namely
the transcendence of special values of L-series.

As explained at the outset, a complex number α is called algebraic if it is
the root of a monic polynomial with rational coefficients. It is a well-known
fact of algebra that the set of all algebraic numbers forms a field, usually
denoted by Q. The elements of C\Q are called transcendental numbers. For
example,

√
2 is algebraic since it is the root of x2 − 2. So is 51/3/3 since

it is the root of x3 − 5/27. On the other hand, numbers such as π and e

are transcendental and this is due to Lindemann and Hermite, respectively.
Once a number is suspected to be transcendental, it is often difficult to show
that it is so. For example, it is unknown if

∞∑
n=1

1
n3

is transcendental, though it is conjectured to be so. In 1978, Roger Apéry [1]
surprised the world by proving that it is irrational. There are other familiar
numbers about whose arithmetic nature nothing is known. For instance,
Euler’s constant γ defined as

γ := lim
x→∞

∑
n≤x

1
n
− log x


is conjectured to be transcendental. We do not even know if it is irrational.
More will be said about such questions later in this article.
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Historically, it took mathematicians quite a long time to show that tran-
scendental numbers exist. This was the question back in 1844. In that year,
Liouville showed that if α ∈ C\Q and

inf{qn|α− p/q| : p/q ∈ Q} = 0

for all natural numbers n, then α is transcendental. Using this criterion,
he gave an explicit construction of certain transcendental numbers. For
instance, he showed that

∞∑
n=1

1/2n!

is transcendental.
In retrospect, it is easy to see that a simple countability argument es-

tablishes the existence of transcendental numbers, but this argument, due
to Cantor, came much later, in 1874, when he introduced notions of count-
ability and uncountability. Incidentally, Cantor was born on March 3, 1845,
one year after the publication of Liouville’s paper.

In 1873, Hermite showed that e is transcendental and in 1882, Linde-
mann, using Hermite’s technique, showed that π is transcendental. Linde-
mann’s theorem, was important for resolving the problem of “squaring the
circle.” This problem, arising in ancient times, is to construct a square,
using only a straightedge and compass, with area equal to that of a circle of
radius 1. In other words, one must construct a line segment of length,

√
π.

One can show that if α > 0 and we can construct a line segment of length
α using only a straightedge and compass, then α must be algebraic. In fact,
the field Q(α) generated by α must have degree equal to a power of 2. More
precisely, there is a tower of successive quadratic extensions

Q = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn = Q(α)

with [Ki+1 : Ki] = 2. In fact, the converse is also true and this gives a
characterization of constructible numbers. From this result, we deduce that
if
√
π is constructible, then it must be algebraic. Consequently, π is alge-

braic, contrary to Lindemann’s theorem. Thus, the problem of “squaring
the cirlce” is impossible.

Let us observe that the ancient problem of doubling the cube, that is, the
problem of constructing a cube whose volume equals that of a cube of length
1 is equivalent to constructing 21/3. Since this number generates a field of
degree 3 over Q, it cannot be contained in a tower of fields as described
above. Therefore, it is not constructible. A similar form of reasoning dis-
misses the problem of trisecting an angle using straightedge and compass.
Indeed, the problem of trisecting π/3 is equivalent to constructing cosπ/9
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and one can show that this number is the root of

4x3 − 3x− 1/2.

This polynomial is irreducible over Q and so, cosπ/9 generates a cubic
extension of the rationals.

These two problems of doubling the cube and trisecting an angle, were
first treated in this algebraic setting by P. Wantzel in 1837 [21].

Shortly after Lindemann’s paper appeared, Hermite obtained the follow-
ing extension. For any algebraic α 6= 0, eα is transcendental. As a corollary,
we deduce that for any algebraic number α 6= 0, 1, logα is transcendental.
Since eπi = −1, this shows that π is transcendental.

In his 1882 paper, Lindemann stated without proof that if α1, ..., αn are
distinct algebraic numbers, then

eα1 , ..., eαn

are linearly independent over Q (see page 100 of [14]). In 1885, Weierstrass
published a proof of this by showing the stronger result that if α1, ..., αn are
linearly independent over Q, then

eα1 , ..., eαn

are algebraically independent over Q. In other words, there is no non-trivial
polynomial

P (x1, ..., xn) ∈ Q[x1, ..., xn]

such that

P (eα1 , ..., eαn) = 0.

This is usually referred to as the Lindemann-Weierstrass theorem.
All of these results comprise the first phase in the development of tran-

scendental number theory. The second phase begins with Hilbert’s prob-
lems. In 1900, at the International Congress of Mathematicians, Hilbert
posed 23 problems for the 20th century. His 7th problem asked if a number
like 2

√
2 is transcendental. More generally, he asked if α is algebraic 6= 0, 1

and β is an algebraic irrational, then is αβ transcendental? If the answer is
yes, then we can deduce that numbers like eπ are transcendental by taking
α = −1 = eπi and β = −i. This specific case was proved by Gelfond in
1929. Extending these techniques, Gelfond and Schneider, independently,
in 1934, proved the following:

Theorem 1. (Gelfond-Schneider, 1934) If α, β ∈ Q, with α 6= 0, 1 and
β /∈ Q, then αβ is transcendental.



50 M. RAM MURTY

In 1966, Baker [2] derived a generalization of this theorem. He showed
that if α1, ..., αn, β0, β1, ...βn ∈ Q with α1 · · ·αnβ0 6= 0, then

eβ0αβ1
1 · · ·αβn

n

is transcendental. He proved this by showing that the linear form

β0 + β1 logα1 + · · ·+ βn logαn

is either zero or transcendental. In 1970, Alan Baker was awarded the Fields
medal at the ICM in France for this work.

For later reference, we state Baker’s theorem precisely.

Theorem 2. If α1, ..., αn ∈ Q\{0} and β1, ..., βn ∈ Q, then

β1 logα1 + · · ·+ βn logαn

is either zero or transcendental. The former case arises only if logα1, ...,

logαn are linearly dependent over Q or if β1, ..., βn are linearly dependent
over Q.

Proof. This is the content of Theorems 2.1 and 2.2 of [2]. Let us note that
here and later, we interpret log as the principal value of the logarithm with
the argument lying in the interval (−π, π]. �

2. The Riemann zeta function and its’ special values

Interesting transcendental numbers arise as special values of L-series.
The prototypical case is that of the Riemann zeta function. This function,
originally defined as

ζ(s) =
∞∑

n=1

1
ns
,

for <(s) > 1, can be extended analytically to the complex plane and shown
to satisfy the functional equation

π−
s
2 Γ(

s

2
)ζ(s) = π−

1−s
2 Γ(

1− s

2
)ζ(1− s),

where

Γ(s) =
∫ ∞

0

e−tts−1dt,

for <(s) > 0 and extended as a meromorphic function to the entire complex
plane via the familiar functional equation Γ(s+ 1) = sΓ(s).

The famous theorem of Euler described in the introduction is that ζ(2k) ∈
π2kQ so that ζ(2k) is transcendental for all natural numbers k ≥ 1. A
natural question that arises is: what is the nature of ζ(3), ζ(5), ...? It is
conjectured that the numbers π, ζ(3), ζ(5), ... are algebraically independent
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numbers. In particular, ζ(3), ζ(5), ... are all conjectured to be transcenden-
tal.

As mentioned earlier, Roger Apéry showed in 1977 that ζ(3) is irrational.
His proof, involving complicated recurrences, has received considerable at-
tention and simplification. Most recently, Rivoal [19] was able to extend his
technique to show that infinitely many ζ(2k + 1) for k ≥ 1 are irrational.

3. Apéry’s theorem

Here is a brief sketch of Apéry’s proof. His starting point was the re-
markable formula

ζ(3) =
5
2

∞∑
n=1

(−1)n−1

n3
(

2n
n

) .
Consider the recurrence

n3un + (n− 1)3un−2 = (34n3 − 51n2 + 27n− 5)un−1.

Let an be the sequence satisfying this recurrence with the initial conditions
a0 = 0 and a1 = 6. Let bn be the sequence satisfying this recurrence with
the initial conditions b1 = 1, b1 = 5. Apéry showed that all the bn are
integers, which is rather surprising since in the recurrence, we are dividing
by n3 to get the expression for un. Even more remarkable is that the an’s
are rational numbers such that 2[1, 2, ..., n]3an is an integer for all n. (Here
[1, 2, ..., n] denotes the least common multiple of the numbers, 1, 2, ..., n.)
With these sequences in place, Apéry shows that

lim
n→∞

an

bn
= ζ(3).

More precisely,

|ζ(3)− an

bn
| ≤ 6

b2n
.

He now invokes an elementary lemma that is easy to prove: if there are
infinitely many rational numbers pn/qn such that

|θ − pn/qn| ≤ 1/q1+δ
n ,

for some δ > 0, then θ is irrational. In our case, the denominator of an/bn
is easily estimated and the irrationality of ζ(3) follows from the elementary
lemma.

Indeed, if ζ(3) was rational and equal to A/B (say) with A,B positive
integers, then

|Bζ(3)bn − an| = |Abn − an| ≤ 6/bn.

Multiplying through by 2[1, 2, ..., n]3 clears all denominators. By the prime
number theorem, this is asymptotic to

2e3n+o(n).
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On the other hand, bn = αn+o(n) where α = (1 +
√

2)4 = 17 + 12
√

2, by
a routine calculation. Since e3 < (1 +

√
2)4, we deduce that an = Abn for n

sufficiently large and this is quickly checked to be a contradiction.
Attempts to generalize this argument to other odd values of the zeta

function have not succeeded. In this direction, Rivoal showed in 2000, that
infinitely many of the numbers ζ(2k+1) are irrational. In 2001, Rivoal and
Zudilin [20] showed that at least one of ζ(5), ζ(7), ζ(9), ζ(11) is irrational.
In 2003, Ball and Rivoal [4] showed that the Q-vector space spanned by
ζ(3), ζ(5), ... has infinite dimension.

Related to this is a curious formula of Ramanujan. In his notebooks,
Ramanujan wrote

ζ(3) + 2
∞∑

n=1

1
n3(e2πn − 1)

=
7π3

180
.

Presumably, Ramanujan had a proof but the first rigorous proof was
given by Grosswald [9] in 1970. Hence, at least one of the two terms on the
left hand side is transcendental!

4. Multiple zeta values

To understand the arithmetic nature of special values of the Riemann
zeta function, it has become increasingly clear that multiple zeta values
(MZV’s for short) must be studied. These are defined as follows:

ζ(a1, ..., ak) =
∑

n1>n2>···nk>0

1
na1

1 n
a2
2 · · ·nak

k

,

where a1, a2, ..., ak are positive integers with the proviso that a1 6= 1. The
last condition is imposed to ensure convergence of the series.

There are several advantages to introducing these multiple zeta functions.
First, they have an algebraic structure which we describe. It is easy to see
that

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2).

Indeed, the left hand side can be decomposed as∑
n1,n2

1
ns1

1 n
s2
2

=
∑

n1>n2

1
ns1

1 n
s2
2

+
∑

n2>n1

1
ns1

1 n
s2
2

+
∑

n1=n2

1
ns1

1 n
s2
2

from which the identity becomes evident. In a similar way, one can show
that ζ(s1)ζ(s2, ..., st) is again an integral linear combination of multiple zeta
values (MZV’s). More generally, the product of any two MZV’s is an integral
linear combination of MZV’s. These identities lead to new relations, like
ζ(2, 1) = ζ(3), an identity which appears in Apéry’s proof of the irrationality
of ζ(3).



TRANSCENDENTAL NUMBERS AND ZETA FUNCTIONS 53

If we let Ar be the Q-vector space spanned by

ζ(s1, s2, ..., sk)

with s1 + s2 + · · ·+ sk = r, then the product formula for MZV’s shows that

ArAs ⊆ Ar+s.

In this way, we obtain a graded algebra of MZV’s. Let dr be the dimen-
sion of Ar as a vector space over Q. For convenience, we set d0 = 1 and
d1 = 0. Clearly, d2 = 1 since A2 is spanned by π2/6. Zagier [13] has made
the following conjecture: dr = dr−2 + dr−3, for r ≥ 3. In other words, dr

satisfies a Fibonacci-type recurrence relation. Consequently, dr is expected
to have exponential growth. Given this prediction, it is rather remarkable
that not a single value of r is known for which dr ≥ 2!

In view of the identity, ζ(2, 1) = ζ(3), we see that d3 = 1. What about d4?
A4 is spanned by ζ(4), ζ(3, 1), ζ(2, 2), ζ(2, 1, 1). What are these numbers?
Zagier’s conjecture predicts that d4 = d2 + d1 = 1 + 0 = 1. Is this true?

Let’s adapt Euler’s technique to evaluate ζ(2, 2). As noted in the intro-
duction,

(1− x/r1)(1− x/r2) · · · (1− x/rn)

has roots equal to r1, r2, ..., rn. When we expand the polynomial, the coef-
fcient of x is

−(1/r1 + 1/r2 + · · ·+ 1/rn).

The coefficient of x2 is ∑
i<j

1/rirj .

With this observation, we see from the product expansion

f(x) =
sinπx
πx

= (1− x2)(1− x2/4)(1− x2/9) · · ·

that the coefficient of x4 is precisely ζ(2, 2). An easy computation shows
that

ζ(2, 2) = π4/5!.

It is now clear that this method can be used to evaluate ζ(2, 2, ..., 2) =
ζ({2}m) (say). By comparing the coefficient of x2m in our expansion of
f(x), we obtain that

ζ({2}m) =
π2m

(2m+ 1)!
.

We could have also evaluated ζ(2, 2) using the identity

ζ(2)2 = 2ζ(2, 2) + ζ(4),

but we had opted to the method above to indicate its generalization which
allows us to also evaluate ζ(2, 2, ..., 2). What about ζ(3, 1)? This is a bit
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more difficult and will not come out of our earlier work. In 1998, Borwein,
Bradley, Broadhurst and Lisonek [5] showed that ζ(3, 1) = 2π4/6!. What
about ζ(2, 1, 1)? With some work, one can show that this is equal to ζ(4).
Thus, we conclude that d4 = 1 as predicted by Zagier.

What about d5? With more work, we can show that

ζ(2, 1, 1, 1) = ζ(5); ζ(3, 1, 1) = ζ(4, 1) = 2ζ(5)− ζ(2)ζ(3).

ζ(2, 1, 1) = ζ(2, 3) = 9ζ(5)/2− 2ζ(2)ζ(3).

ζ(2, 2, 1) = ζ(3, 2) = 3ζ(2)ζ(3)− 11ζ(5)/2.

This proves that d5 ≤ 2. Zagier conjectures that d5 = 2. In other words,
d5 = 2 if and only if ζ(2)ζ(3)/ζ(5) is irrational.

Can we prove Zagier’s conjecture? To this date, not a single example is
known for which dn ≥ 2. If we write

(1− x2 − x3)−1 =
∞∑

n=1

Dnx
n,

then it is easy to see that Zagier’s conjecture is equivalent to the assertion
that dn = Dn for all n ≥ 1. Deligne and Goncharov [10] and (independently)
Terasoma [22] showed that dn ≤ Dn.

5. Dirichlet L-functions

The Riemann zeta function is only a tiny fragment of a galaxy of L-
series whose special values are of deep interest. The success of Euler’s
explicit evaluation of ζ(2k) can be extended to a class of series known as
Dirichlet L-functions. These functions are defined as follows. Let q be a
natural number and χ : (Z/qZ)∗ → C be a homomorphism of the group of
coprime residue classes mod q. For each natural number n ≡ a(mod q) with
a coprime to q, χ(n) is defined to be χ(a). If n is not coprime to q, we set
χ(n) to be zero. With this definition, we set

L(s, χ) :=
∞∑

n=1

χ(n)
ns

.

If χ is the trivial character, then L(s, χ) is easily seen to be

ζ(s)
∏
p|q

(
1− 1

ps

)
,

so that this is (upto a known factor) essentially the Riemann zeta function.
If χ is not the trivial character, then it turns out that one can evaluate
L(k, χ) explicitly in certain cases. To elaborate further, we say a character
χ is even if χ(−1) = 1 and odd if χ(−1) = −1. For k = 1, L(1, χ) has been
studied extensively and summarized in the celebrated formulas of Dirichlet.
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For k ≥ 2, it turns out that L(k, χ) ∈ πkQ if k and χ are both even or
both odd. When k and χ are of opposite parity, the arithmetic nature is a
complete mystery, as enigmatic as the values of the Riemann zeta function
at odd arguments. The simplest case of this mystery is to determine if

G := 1− 1
32

+
1
52
− 1

72
+ · · ·

is irrational. If χ is the non-trivial character (mod 4), then χ is odd and G =
L(2, χ). Attempts to generalize Apéry’s argument to show the irrationality
of G have failed. However, Rivoal and Zudilin [20] have shown that at least
one of L(2k, χ) with 1 ≤ k ≤ 10 is irrational.

6. Chowla’s conjecture

Inspired by the nature of Dirichlet’s L-functions and the mystery sur-
rounding their special values, Sarvadaman Chowla [6] considered Dirichlet
series of the form

L(s, f) :=
∞∑

n=1

f(n)
ns

,

where f is an algebraic-valued periodic function, with period q. It is not
hard to see that the sum converges at s = 1 if and only if

q∑
a=1

f(a) = 0.

In [6], Chowla asked if there exists a rational-valued function f , not identi-
cally zero, with prime period, such that

∞∑
n=1

f(n)
n

= 0. (2)

In [3], Baker, Birch and Wirsing answered this question using Baker’s
theory of linear forms in logarithms. In the general case when q is not
necessarily prime, and f is algebraic-valued, they showed that the sum (6)
in question can be written as a Q-linear form in logarithms of algebraic
numbers. They considered functions f satisfying f(a) = 0 whenever 1 <

(a, q) < q. In the case that the q-th cyclotomic polynomial is irreducible
over the field generated by the values of f , they showed that the sum is non-
zero. By Baker’s theorem, Theorem 2, we deduce the sum is transcendental.
Several interesting corollaries can be deduced from this work, as noted in
[16]. As indicated there, Chowla’s question can be connected with the
theory of the Hurwitz zeta function in the following way. The Hurwitz zeta
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function, defined for 0 < a ≤ 1, as

ζ(s, a) =
∞∑

n=0

1
(n+ a)s

has an analytic continuation to the entire complex plane with a simple pole
at s = 1. Its’ Laurent expansion at s = 1 is given by

ζ(s, a) =
1

s− 1
− ψ(a) +O(s− 1),

where ψ(a) is the digamma function, Γ′(a)/Γ(a). As proved in [16], we have
∞∑

n=1

f(n)
n

= −1
q

q∑
a=1

f(a)ψ(a/q).

By choosing appropriate test functions f , one can show that there is at
most one a/q such that ψ(a/q) is algebraic.

7. Generalized Euler constants

Following Lehmer [15], we can define generalized Euler’s constants γ(a, q)
by

γ(a, q) = lim
x→∞

 ∑
n≤x

n≡a(mod q)

1
n
− log x

q

 .

Then, it is not hard to show that

qγ(a, q) = γ −
q−1∑
b=1

e−2πiba/q log(1− e2πib/q).

Apart from the γ term on the right hand side, this expresses the general-
ized Euler constants as a Q-linear form of logarithms of algebraic numbers.
Thus, Baker’s theorem can be applied to study them. In addition, we can
relate these constants to Chowla’s question. Indeed, as noted in [16], we
have:

Lemma 3. If f is as above and
q∑

a=1

f(a) = 0,

then
∞∑

n=1

f(n)
n

=
q∑

a=1

f(a)γ(a, q).

This result allows us to state that all of the generalized Euler constants
are transcendental with at most one possible exception.
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8. The Chowla-Milnor conjecture

In [7], Paromita and Sarvadaman Chowla, considered the question of
non-vanishing of L(s, f) at s = 2 for rational valued functions f . In the
case q is prime, they conjectured that L(2, f) 6= 0 unless

f(1) = f(2) = · · · f(q − 1) =
f(q)

1− q2
.

This can be formulated equivalently as the following conjecture on special
values of the Hurwitz zeta function, as noted by Milnor [12]: the numbers

ζ(2, 1/q), ζ(2, 2/q), ..., ζ(2, (q − 1)/q)

are linearly independent over Q. This suggested to Milnor the more general
conjecture: for any natural number q, and k ≥ 2, the numbers

ζ(k, a/q), 1 ≤ a < q, (a, q) = 1

are linearly independent over Q. We refer to this as the Chowla-Milnor
conjecture.

The difficulty of this conjecture is partly seen by the following theorem:

Theorem 4. (S. Gun, M. Ram Murty and P. Rath, 2008) The Chowla-
Milnor conjecture for the single modulus q = 4 is equivalent to the irra-
tionality of ζ(2k + 1)/π2k+1 for all natural numbers k ≥ 1.

Proof. See [11]. �

There are other implications of the Chowla-Milnor conjecture to many
classical questions related to special values of Dirichlet L-functions and these
are expanded upon in [11].

9. Concluding remarks

We hope that the reader is convinced that this is only a shadow of a richer
theory that is yet to unfold. We refer the reader to [11] for yet more con-
nections between transcendental numbers and zeta functions that emerge
from Chowla’s conjectures and their generalizations.

Acknowldegement: I would like to thank Kumar Murty and Purusottam
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