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1. Introduction 

Let G(n) denote the number of non-isomorphic groups of order n. Various 
estimates for G(n) have been given by several authors. With the recent classific- 
ation of all finite simple groups, it is known that [4], 

log G(n) ~ (log n) 3 . (1.1) 

It therefore follows from (1.1) that 

log G(n) = O(x(logx)3). (1.2) 
n ~ x  

The purpose of this paper is twofold. Firstly, let us call a group a C-group if all 
its Sylow subgroups are cyclic. Denote by C(n) the number of non-isomorphic 
C-groups of order n. We give an explicit formula for C(n). Define v(/7/, m) by 

p~(eJ,,,) = I-I (/r/, q - 1), (1.3) 
qlm 

where p and q denote primes and j is a positive integer. We have: 

Theorem 1.1. 

C(n)= ~ I~ ( ~  p,,,pJ,,,/d)_p~p~-',,/n)) 
d,. r l t d ~ j = l  t d - l ( p  - 1) J" 

(d, n/d) = 1 

When n is squarefree, we get an explicit formula for G(n). 

Corollary (H61der [2]). For n squarefree, 

G(n) =d~l, 
vld k p - -  1 

By means of these formulas, we prove the following asymptotic formulas. 

* This research was supported by NSERC grant No. U0237 
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Theorem 1.2. A s  x ~ o o ,  

Y. l o g C ( n ) = ( ~  A ( n ) + o ( l ) ) x l o g l o g x ,  
,<=x ~=1 nq~(n) - 

where A is the yon Mangoldt function and r is the Euler function. 

Theorem 1.3. A s  x ~ o o ,  

y, #2(n) log G(n) = (C + _o(1))x log log x,  
n~x  

where 

C 6 [ _  logp "~ 
= =2/?_5 =y~- ,  / ~z \ p  p - -L /  

and the summation is over prime numbers. 

The paper is essentially divided into two parts. The first part is group theoretic, 
where we give presentations for all C-groups. This will enable us to enumerate 
them thereby obtaining Theorem 1.1. The second part consists of an arithmetical 
analysis of G(n) when n is squarefree. We isolate those integers n for which G(n) 
becomes large. 

2. Notation 

Throughout the paper, p, q, r denote primes. From the above definition, we find 

v(p,n)= E 1. 
qln 

q =- 1 (mod p) 

If G is a group and H is a subgroup, CG(H) denotes the centralizer of H in G. 
Finally, we define the "squarefree core" function: 7(n)= 1--I P. 

pin 

3. C-Groups 

In this section, we give a presentation for any C-group. Let G be a C-group of order 
n and let 

n=p]lp~22 ... p~r, Pl <P2 < -.. <Pr 

be the prime factorization of n. We fix this notation throughout this section. We 
recall that G is supersolvable [1, Theorem 9.4.3]. 

Lemma 3.1. There are elements X1, .... X n ~ G  of order Pl~, p2a2 . . . . .  Pr~r (respec- 
tively), such that 

X i - I X j X i = X ~  (i'j) , 1 < i < j < r .  

Here, the a(i,j) are integers satisfying 1 <a(i,j)<p~J, (a(i,j),pj)= 1. The {Xi} 
generate G. 
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Proof Since G is generated by its Sylow subgroups, the second statement is 
obvious. As G is supersolvable, there is a unique (i.e. normal) p,-Sylow subgroup S 
(say). Let X r be a generator of S, and let M be a complement of S. Then M is again a 
C-group. We may assume r > 1 as there is nothing to prove if r = 1. By induction, 
there are elements X 1 . . . . .  Xr_ 1 of the above type. The result follows. 

We make one choice of elements {Xi} as in Lemma 3.1 and fix them for the rest 
of this section. The following result is the essential ingredient which enables us to 
obtain an explicit formula for C(n). 

Lemma 3.2. Let i < j < k .  I f  a( i , j )# 1 then a(j, k)= 1. 

Proof. Let a(i,j)= a # 1 and a(j, k)= b. Suppose b # 1. Set a(i, k)= d, and e = b a. 
Then, 

X~ = X~  a x k x  7 = ( X ;  l X / ' X , ) X k ( X ?  IXjX,)  
= X i -  I X ~  I x d ' x j x i  -~- X i  1 y b d ' v  -- "yb xx k l . i - -  ~'J-k, 

where dd "= - l(modp~,k). Therefore b a -  b(modp~,k). But we know from a(j, k)= b that 

b~ "~-- l(modpk* ) 

and as b ~  1, we must have (a -1 ,p~O> 1. Hence, a - l ( m o d p j ) .  It follows that 

a p . . . .  1 
a -  1 --p~'(modpj). 

We also know from a(i,j)= a that 

a p'a'= l(modp~0. 

Therefore, as i # j ,  we deduce 

a = l(modp~0. 

But this contradicts our assumption that a # 1. 

Lemma 3.3. Let A denote the set 

{pi~ there is a pi-Sylow subgroup S,~ ICa(S,)[ =0 (mod j[I_>_, P~J)}- 

Then 
(i) Pi q~ A if and only if  a(i,j) # 1 for some j > i. 

(ii) I f  p~ ~ A, there is a unique p~-Sylow subgroup. 

Proof. Suppose that piq~A. Let S~ denote the subgroup generated by Xv Then 

IC~(S,)I ~ 0 (mod FI pT~ 
\ j>i  / 

and in particular, X~ does not commute with some Xj(j > i), i.e. a(i,j) # 1 for some 
j > i. Conversely, suppose a(i,j) # 1 for somej > i. Again, let S i denote the subgroup 
generated by Xv By Lemma 3.2, a(k, i) = 1 for all k < i. Thus X~ commutes with all 
Xk, k <i. If 

IC~(Si)]=O(m~ ) , 
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this would imply that Si is contained in the center of G, contradicting a(i,j) # 1. 
Since ]CG(SI)I is the same for all pi-Sylow subgroups, it follows that piCA. This 
proves (i). 

Ifp~ e A, then by (i), a(i,j) = 1 for allj  > i. Since Xi is normalized by all X j , j  < i, it 
follows that X~ generates a normal p~-Sylow subgroup. This proves (ii). 

We can now make the following definitions. The active divisor d G of G is 

d = d a =  [71 p~'. 
p i  q~ A 

We also call n/dG the inactive divisor of G. 

Lemma 3.4. Let G be a C-group of  order n, with active divisor d, and put de = n. Then 
there is a unique normal, cyclic subgroup K o f  order e. 

Proof  As the Hall subgroups of a solvable group are conjugate, and as (d, e) = 1, 
any normal subgroup of order e must be unique. Let K be the subgroup generated 
by {X~ ~ p ~ A }  ={Xi~p~le }. From Lemma 3.3 (i), we see that ifpi, p j e A ,  then X i 
and Xj commute. Therefore, K is abelian, and as all its Sylow subgroups are cyclic, 
K is in fact cyclic. That K is normal follows from Lemma 3.3 (ii). 

Let d be a divisor of n such that (d, e) = 1, e = n/d. Let r be an integer such that 
1 < r < e ,  and the order of r(mode) divides d, and is divisible by ?(d). Then 

G(d, r) = <x, y" x d = ye = 1, x -  lyx  = yr) 

is a C-group of order n with active divisor d. 

Lemma 3.5. Let  G be a C-group of  order n. Then there is a divisor d of  n with 
(d,e)= 1, e=n/d ,  and an integer 1 <=r <e  whose order (mode) divides d, and is 
divisible by y(d), such that G_~ G(d, r). 

Proof  Let Q be the subgroup of G generated by {Xi]Pi (~ A}. Ifp~, pjr  A,  Pi <P j, then 
a(i,j) = 1. This follows from Lemmas 3.2 and 3.3 (i). Thus these X~ commute, and so 
Q is cyclic of order da. Let K be the subgroup of G described in Lemma 3.4. As G is 
supersolvable, K has a complement, which must be a conjugate of Q. Hence G has 
a presentation 

(x ,  y:  x dG = y,/dG = 1, X-  l yx  =yr )  

with r an integer such that 1 < r < e, and r(mode) has order dividing d and divisible 
by 7(d). Thus G ~ G(d G, r). 

Remark. This result should be compared with another presentation given in Hall 
[-1, Theorem 9.4.3]. That presentation, however, does not lead to an easy 
enumeration of C-groups. 

Lemma 3.6. G(d, r) ~- G(d', r') if and only if d = d" and r ~ =- r'(mode) for some 
coprime to d. 

Proof  We write e = n/d and e '=  n/d' and 

G = G(d, r) = <x, y : x d = ye = 1, x -  Xyx = yr) 

G ' = G ( d ' , r 3 =  ( X ,  Y: x d ' =  Y~'= 1 , X - 1 Y X =  Y~') .  
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Let qg:G(d,r)~G(d',r') be an isomorphism. We show that if pJd then pld'. By 
symmetry, this will show that d = d'. If G or G' is abelian, this is obvious. So we may 
suppose that they are both non-abelian. 
Choose a prime divisor p (respectively q) of d (respectively e) and a generator xp 
(respectively xq) of a p- (respectively q) Sylow subgroup of G, such that 
x~ ~xqxp = x~, c~ :# 1. If p•d', q~(Xp) generates a normal p-Sylow subgroup S~, in G'. 
Since xq generates a normal subgroup in G, ~o(xq) generates a normal q-Sylow 
subgroup S'q in G'. Since 

~o(xp)- l~o(x~)~o(x~)~o(x~)- x = ~(x~)~-  ~ ~ s'~ns'~ = { 1 } ,  

we see that ~ = 1, contradicting our choice. Thus pld'. As remarked above, this 
shows that d = d'. 

Since Hall subgroups are conjugate, there is a 9 ~ G' and integers ~, and fl such 
that 

q~(x) = 9-  ~X~a, q)(y) = ra. 

Note that e is coprime to d. 
Then x -  ~yx = y~ implies that 

(g- ~X-~g)YZ(g- ~X~g) = ya~. 

As ( Y )  is normal, it follows that X - ~ Y r X ~ = Y  ~" where 9 y a g - l =  y< Thus 
(r')~7 ---- rymode ). As (fl, e) = l, so also (7, e) = 1. Thus (r') ~ -  r(mode). 

Conversely, ifr and r' satisfy (r') ~ -  r(mode), with ~ coprime to d, we can define 
an isomorphism 

qo : G(d, r)~G(d, r') 

by sending q~(x)= X ~ and ~o(y)= Y. 

4. Proof of Theorem 1.1 

Let Cd,,~(n) denote the member of C-groups G of order n such that G ~_ G(d, r) with 
some r(mode) of order m. Then, using Lemma 3.6, 

C(n)= E Z C,,,~(n). (4.1) 
din ~(d)lmld 

(d,e)= 1 

(Here, e = n/d 0 Since G(d, r)~ G(d, r') if r and r' generate the same subgroup 
(mode), we see that 

Cd, r~(n) = ~ {r(mode)  of  order m}/~(m) 

= jlFIm ( " {r '(m~ ~ ~ P/}).  tp(pj) (4.2) 

Now, the number of %(mode)~ r~ j -  = 1 (mode) is 

pV(p~,e)= H (~, q -  1). 
qle 

Hence, the number of %(mode) of order p2 is 

pV(pJ, e)_p~(pJ ~,~) (4.3) 
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Now, putting (4.1)-(4.3) together, we find that 

C(n)= Z 
din 

(d, e) = 1 

din 
(d, e) = 1 

rta)l,nld p 

( ~  pV(pJ,e)__pV(pJ-Le)) 

p~lid \ j=  1 ~(p3) ' 

as desired. This completes the proof. 
In case n is squarefree, the inner sum is 

pOtp, e )  _ _  1 

p--1 ' 

where v(p,e) is the number of prime factors of e which are = l(modp). The 
corollary now follows immediately. 

To conclude this section, we show that 

C(n) < 1-[ (n, p -  1). (4.4) 
pin 

This bound will be utilized in the proof of Theorem 1.2. 
In any C-group G of order n, the p,-Sylow subgroup (Pr is the largest prime 

factor of n) Sr is normal in G. As Sr has a complement in G, G is then a semidirect 
product of S~ and a C-group H of order m = n/p~ r. To bound C(n), therefore, we 
need to count the number of homomorphisms 

O : H--, Aut(S , )  . 

Hence, the number of possible O's is 

I-I ( q ~ , p ~ - ' ( p , - l ) ) =  [ I  (qP, p ~ - l ) = ( n ,  p r - 1 ) .  
q~ II m a ~ II ,n 

Therefore 

C(n) ~ C(n/p~O . (n, P r -  1), 

and an easy induction argument completes the proof of (4.4). 
We further remark that C(n) < (p(n) and so, by the methods of [3], C-groups are 

scarce. But this bound is insufficient for us to deduce Theorem 1.2. 

5. Arithmetical Lemmas  

We record in this section all the results which are of an arithmetical nature that will 
be used in the proofs of Theorems 1.2 and 1.3. 

Lemma 5.1. 

1 log logx + logd Y - 4  
q___x q q~(d) 

q~- l(d) 
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Proof We split the sum into Z, and Z 2 where in S 1, q < d  2, and in Z2, q>d 2. 
Clearly, 

logd < logd 

Z~l ~ d = tp(d) " 

As for $2, we have by partial summation and the Brun-Titchmarsh theorem 

log log x 
Z2@ 

~ ( d )  

This proves the result. 

Lemma 5.2. Let p be a prime. Then 

1 loglogz 
Z - + O 0 ) ,  

q<~ q p - -  1 
q~ l(p) 

where the constant implied is absolute. I f  furthermore, p <(logz) c (where c is an 
arbitrary constant) then 

Z - + o  . 
q<~ q p--  1 

q~ l(v) 

Proof. The result follows easily from the Siegel-Walfisz theorem, partial summa- 
tion and the Brun-Titchmarsh theorem. 

Lemma 5.3. Let a be a squarefree number and denote by Q(x, a) the number of 
squarefree numbers n < x such that din. Then 

where 

f ( a )  =I-I  (p+  1) -1 
p]a 

and d(a) denotes the number of divisors of a. 

Proof We have by familiar properties of the M6bius function, 

Q(x,a)= Z Zu(d)= E ~(d) Z EU(6) 
n<_x/a dZ[n d2<x/a n<<_x/a 

The inner sums become 

~ ' 6 "  x/a ut ~ + O(d(a)), 
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where the symbol [a, b] denotes the least common multiple of a and b. We 
therefore get 

Q(x,a)= Z #(d)(~(a)x ~ (  ~ )  
e2 <= x/a dSaZa2 + u d(a) 
(d, a) = 1 

since 
Z ~,(6) 
6la [ d2,  6 ]  

is zero unless (a, d) = 1 in which case it is ~(a)/d2a. Finally, we deduce 

Q(x, a 2 1 -  + 0 d a) 

which gives us the desired result. 

Lemma 5.4. Uniformly for p < logx, 

Proof We have 

Z vZ(P, n) p3 
n<_x 

Z v(p,n)Z= Z Z E 
n<_x n<<-x qln r[n 
p~n Pin q~ l(p) r~  l(p) 

by Lemma 5.1. 

x(log logx) 2 

x x(log log x) 2 

q~_ l (p) r ~ l (v) pqr p3 
q < x  r<=x 

[,emma 5.5. The number of n< x such that pin and havin9 no prime divisor 
= l(modp), is 

X 
- ( log  logx)-a  
P 

for any fixed A > 0, uniformly for 

Proof The number of integers in 

p < (log logx) ~/2. 

question is, by Brun's sieve 

~ - H  l -  
p q-z l~p) 

q<z 

for z = x  ~)2. By Lemma 5.2, this is 

x (  lo  ogz  
,~ - exp 

p p - 1  J 

X 
- e x p (  - ( log  logx) l/z) 
P 

as p < (log logx) 1/2. The lemma clearly follows from this. 
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6. The Upper Bound Asymptotic Formulas 

Let 

g(n) = 1 7  (n,  p - 1 ) .  
pin 

We have seen that C(n) < g(n) and so we begin by finding asymptotic formulas for 

Z logg(n) 
n~<x 

and 

Clearly 

Z //2(t/) logg(n). 
n<x  

Z logg(n)= Z Z E A(d). 
n<=x n<=x pin din 

al(p- x) 

On interchanging summation, the above sum becomes 

U Z ^(d) Z =x l+x2 ,  
d<x p < x  

p-z l(d) 

where in Z 1, d<loglogx and in Z2, d>loglogx.  Then, by Lemma 5.1, 

^ (d) 
Z2 ~ ~ ' s ~ ,  ,, (log logx + logd) 

d aqg~a) 
where in the summation, d>loglogx.  It is now easy to see that 

Z z = _o(x log logx), 

as  X--~ 00 .  

In S1, we apply Lemma 5.2 and the Brun-Titchmarsh inequality to deduce 

/" ^ (d) "~ 
Z I = ~ a Z d ~ + o ( 1  ) )x log logx .  

7'his proves the upper bound asymptotic formula in Theorem 1.2. Similarly, to 
handle the squarefree case, we utilise Lemma 5.3 to deduce 

f 6 logp 
Y~ lF(n)logg(n)= Z i(d) Z Q(x, pd)= [ , - ~ ~ - 1  +o(1) /x log logx .  

n<x d<x  p<=x 
p-~ l(d) 

a s  X - +  00.  

7. Lower Bound Asymptotic Formulas 

It is in the lower bound asymptotic formula, that the explicit formula for C(n) 
becomes important. 
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Let S denote the set of natural numbers n for which v(p, n) > 1 for every pin 
satisfying the inequality p < (log logn) 1/2. Put 

d .=  l-I P~. 
p~ltn 

p~ < (log logn) 1/2 

Then, for n ~ S, it is easy to see that 

i / c t  ov(PJ,n/d~)__Dv(PJ- 1,n/dn)X~ 

c(~)> fI I Z -  ~ST~ ~ 
p " l l d ~ \ j = l  P" ( P - -  ) / 

>= 2-  vtd")~p(dn)- x 1-[ P vtp~' n/an), 
p~'lld. 

where v(n) denotes the number of prime factors of n. Hence 

logC(n)> ~ ~ v(p~,n/d.)logp - ~, log(2Vta")~0(d~)). 
n<x  n<x  p~l]dn n <x  

n~S 

Clearly, the last sum on the right is 

Z l o g d , = Z  Z ^(e) 
n<x  n<x  eld,~ 

E A (e)x/e 
e < (log logx) 1/2 

which is easily seen to be o(xloglogx) as x~oo.  
Now, since v(f ,  n/d,) ~ v ( f  , n) <__ av(p, n), we have 

Y~ ~, v(p~,n/d.) logp<(logloglogx) 2 ~ ~ v(p,n). 
n<=x p~lld, n<x  pin 
ntiS n ES p < ( loglogn)U2 

This last sum is _o(xloglogx) by a straightforward application of the Cauchy- 
Schwarz inequality and Lemmas 5.4 and 5.5. Therefore 

E logC(n)> ~ E v(ff ' ,n/d,,)logp+o_(xloglogx). 
n<x  n < x  P~lldn 

The sum on the right hand side of the inequality is evidently 

>_- Z Z Z Z ^ (a) 
n<x  p~ltdn q[n diP ~ 

q > (log logx) 1/2 dl(q- 1) 

d < (log logx) 1/2 q ~. 1 (d) 
(log logx)1/2 < q < x 

^ (d) x log logx 
= ~ +_o(x log logx) 

after an application of Brun-Titchmarsh theorem and Lemma 5.2. Thus, 

f 0o A (n) } 
logC(n)~ ~ ~ n - ~  +9(1) xloglogx 

n ~ x  n 1 

a s  X---~ 0 0 .  
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The corresponding formula for squarefree numbers can be proved by utilising 
Lemma 5.3 in the penultimate step of the above proof  and is entirely analogous. 
This completes the proofs of Theorems 1.2 and 1.3. 

8. Concluding Remarks 

Further results of a similar nature can be proved. We only give one example. 
Let G*(n) be the number of non-isomorphic groups of order n which are 

nilpotent. Then G*(n) is a multiplicative function. Therefore 

logG*(n)= ~ /_~/logG(p~).  
n<x p~<=xLP d 

~ > 2  

Utilising (1.1) we deduce easily: 

Theorem 8.1. There exists  a constant c > 0 such that 

~. logG*(n) = (1 +_o(1))cx 
n~x 

aS X----~ O0. 

With regard to improving (1.2), we conclude by asking: 

Question. Does there exist a constant c > 0 such that 

log G(n) > cx  logx 

as x ~ o e ?  
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