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1. Introduction 

Let f be a normalized Hecke eigenform of weight k for the full modular group and 
let a(n) denote its n th Fourier coefficient. Let us write, for each prime p, 

a(p) = 2p~ @ )  cos 0(p). 

Since we know the truth of the Ramanujan-Petersson conjecture, it follows that 
the 0(p)'s are real. 

Inspired by the Sato-Tate conjecture for elliptic curves, Serre [14] conjectured 
that the 0(p)'s are uniformly distributed in the interval [0, rc] with respect to the 

1 
measure -sin2OdO. Following Serre, we shall refer to this as the Sato-Tate 

r~ 
conjecture, there being no room for confusion. 

It has been known for a long time that the truth of this conjecture implies much 
about the oscillatory behaviour of the Fourier coefficients. In particular, the 
following is implied by the Sato-Tate conjecture. 

Theorem 1. For any normalized Hecke eigenform, 

a(n)=12+(n(~)L)exp( clogn / /  
- 

for some c > O. 
Theorem 1 has a long history. Hardy [2] proved that 

a(n) = f2 n - T -  

and Rankin [ I l l  showed 

la(n)l 
lim sup - -  = + oo. 
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Then Joris [5] showed that for 6 k = 6/k 2, we have 

This was improved in [1] to 6 k = 1/k. In the special case of k=  12, the authors in 
[1] showed 

for the Ramanujan z-function. This was improved upon slightly in [8]. For an 
arbitrary cusp form, which is not necessarily an eigenfunction, we have: 

Theorem 2. Let 

f (z )=  ~ a(n)e 2~inz 
n = l  

be a cusp form of weight k for the full modular group. Then 

k-1 [ clogn ~ 
a(n)=t2 n ~ e x p / ~ ]  ] 

for some c 1 >0. 

In view of Deligne's result, Theorems 1 and 2 reflect the best possible result, 
apart from the values of c and c r 

Theorem 2 has an interesting application to Kloosterman sums. Define 

2hi 
- - ( n a  + m~) 

S(n,m,c)= ~ e c 
a(c) 

a ~  l(c) 

Selberg [13] and Linnik [6] have independently conjectured that the sum, for 
1 

x >=(m, n)z  , 

~(x) = Y~ S(n, m, c) 
c<=x C 

is O(x~). We deduce from Theorem 2: 

ciogx  o.o,.ry 

The main ingredient in the proof of Theorems 1 and 2 is a recent result of 
Shahidi [15] which we now describe. 

Define for each integer m > 1, 
eiO(p)(m- 2j) / - 1 0o(1 

Clearly, Lm(s ) converges for R e s > l .  It is conjectured that each Lm(S ) has an 
analytic continuation to the entire complex plane. Moreover, the Sato-Tate 
conjecture is true if and only if Lm(l+it)#O for all real t and all m > l  (see 
Serre [14]). 
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The fact that Ll(s ) and L2(S ) have an analytic continuation to the entire 
complex plane is classical and due to Hecke and Rankin, respectively. Shahidi [15, 
Theorems 4.1.1 and 4.1.2] has shown that L3(s ), L4(s), and Ls(s ) have an analytic 
continuation to the entire complex plane and satisfy certain functional equations. 

We will need the non-vanishing of L3(s) and L4(s ) on the line Res = 1. Ogg [10] 
proved that if for each r < 2m, L,(s) has an analytic continuation to Res > � 8 9  for 
some 6>0 ,  then L,,(1 +it):l:O. Murty [9] showed that it suffices to have analytic 
continuation up to Res > 1 for the non-vanishing result to hold. As we do not have 
the analytic continuation of L,(s) for r > 6, we cannot deduce the non-vanishing 
theorem from the results cited above. We therefore prove: 

Theorem 3. I f  L,(s) has an analytic continuation up to R e s >  • for 1 <r<_2m, then ~ 2 '  

LEm- 1(1 + it):k O. I f  L2r(S ) has an analytic continuation up to Re s = 1, for 1 < r < m, 
then LEm(1 + it) =h O. 

Corollary. La(1 +it):k0, L4(1 +it):k0, for all teF,. 

Remark. This result is partially contained in Shahidi [15, Theorem 5.3]. Our proof 
is different. For our application, the fact that La(1)4:0 is crucial and this is not 
contained in [15]. 

At this stage, it seems relevant to ask the following: if it is known that L,(s) has 
an analytic continuation up to Res = 1 for r <  R, then what can be deduced about 
the oscillatory behaviour of the a(n)'s. An answer is supplied by the following. 

Theorem 4. Suppose that L,(s) has an analytic continuation up to Res>�89 for all 
r < 2m + 2. Then, each of the statements 

2 
(i) for any 6>0 ,  - 6 < 2 c o s 0 ( p ) <  6(m+2~--~' 

(ii) for any e > O, 

12cosO(p)l>]~ e, 
V m + 2  

(iii) for any e>0,  2cosO(p)>flm-e, where 

1 

{ 1 (2m+2]~ 2''+ 1 
tim= ~ \ m + l / J  

(with a corresponding result valid for negative values of  a(p)), holds for some set of 
primes of  positive density. 

Setting 6 = 7m-- ~ in (i), we deduce: 

Corollary 1. There is a positive density of  primes p satisfying 

_ 2 < 2cos0(p)< +2"  
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If in theorem (ii), we set m = 1, we have: 

Corollary 2. For a positive density of primes p, we have 
k - 1  

la(p)l > ( 1 / ~ -  e)p 2 

It is then an easy matter to deduce the O-theorem from this fact. The O• 
theorem for the Fourier coefficients of an eigenform requires a further analysis of 
the sign changes of the a(p)'s. 

Theorem 5. Let 

flz)= ~ a(n)e 2~'"z 
n = l  

be an arbitrary cusp form belonging to any congruence subgroup. Then either Rea(p) 
or Ima(p) changes sign infinitely often. Moreover, there exists a small positive 
number 0 such that the number of sign changes for p < x  is at least ax ~ for some 
a>0 .  

If all the zeroes of Ll(s ) lying in the critical strip have real part =�89 then the 
number of sign changes can be improved to >>x +-~. 

Finer theorems concerning the sign changes of the a(p)'s demand an exam- 
ination of the real zeroes of Ll(s ). The following conjecture can be proved in many 
special cases. 

Conjecture 1. Let 

f (z)= ~ a(n)e z~'"z 
n = l  

be arbitrary cusp form with real coefficients and of weight k for the full modular 
group. Then, 

(i) ~', a(p)p -~k- 1)/2 = f2+(xl/2 log log logx/logx), 
p<.x 

ii) a(n) = O• ~k- 1)/2 exp(c logn/log logn)), 
for some c > O. 

The first part of the conjecture would follow if Ll(s ) has no real zeroes in 
�89 < s < 1. The second part would follow if we knew that the 0(p)'s are independently 
distributed for the various eigenforms. These possibilities are explored in the latter 
sections of the paper. 

2. Non-Vanishing of L,(s) 

We first prove Theorem 3. We need the following lemma. 

Lemma 1 (Murty [9]). Let f(s) be a function satisfying the following hypotheses: 
(a) f(s) is holomorphic in tr > 1 and non-zero there, 
(b) on the line tr= 1, f is holomorphic except for a pole of order e>O at s= 1, 
(c) for tr> 1, logf(s) can be written as a Dirichlet series 

b(n)n -~ 
r l = l  

with b(n) >->_0. 
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Then, any zero of  f(s) on a = 1 has order < e .  
- 2  

Proof  o f  Theorem 3. We first show L2m(1 +it)~-O. Consider 

.f {s) = LoL2 ...L2m . 

Then, in view of the identities 

and 

we see that 

�89 + cos0 + cos20 + ... + cos nO = 

Therefore, as 

sin(n+�89 

2 sin 

sinn0 
c o s 0 + c o s 3 0 +  ... + c o s ( 2 n -  1)0= 2sin0 

sin(r + 1)nO(p) 
, np "s" 

sin30 sin50 s in (2n-  1)0 (sinnOl2 ' 
1 + ~ + ~ + . . .  -~ sin0 - \ s-~-0-n0 ] 

we find that logf(s) is a Dirichlet series with non-negative coefficients. Moreover, 
the Euler product for L,(s) shows that f(s) does not vanish in a > 1. An application 
of Lemma 1 with e < 1 gives the result. Now consider 

g(s) = ( LoLj . . .Lz,,_ 1 ) 2 L 2 m  . 

An easy computation reveals, 

logo(s)= ~ ((2m+ 1)+ 
n,  ff \ 

Since, 

(2m+ 1) + 

2 r a -  1 

j = O  

2(/+ 1)cos(2m-j)nO(p)) l , ~ .  

2 m - -  1 
Z 2(/+ 1) cos (2m-j )0  = { sin(m + �89 ' 

i=~ sin~ 

log0(s) is a Dirichlet series with non-negative coefficients. If L2r n_ 1(1 + it)= O, t ~-0, 
then g(s) has a zero of order > 2. As O(s) has a pole of order 2 at s = 1, we get a 
contradiction by Lemma 1. If Lzm_ 1(1)= 0, then g(s) is regular. By the well-known 
theorem of Landau, log0(s) has a singularity at its abscissa of convergence. As 
Lo(s)=((s) has zeroes in Res>�89 O(S) has zeroes in this half plane. Therefore, the 
abscissa of convergence of logo(s) is % > �89 and as g(s) is analytic in Res_>_�89 a o is a 
zero of O(s). But then g(a)> 1 for a > %. We get a contradiction by letting a ~ a ~ .  
This completes the proof of the theorem. 
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3. Various Bounds for Fourier Coefficients 

The non-vanishing of Lr(S) on a =  1, allows us to deduce the following lemma 
which we need for the proof of Theorem 4. 

Lemma 2. Suppose L,(s) has an analytic continuation up to Re s > �89 for all r < 2m + 2. 
Then 

(i) for r < m +  l, 

(2cosO(p)) z '=  1--~--(2r/(1 +o(1))]o~x 
p=<x r + l  \ r ]  

as x ~ oo and 
(ii) for r < m, 

(2COS0(p))2r+ 1 = O(X/Iogx) 
p~_x 

a s  X--~ O0. 

Proof. From Theorem 3, we know that Lr(s ) does not vanish on the line t7 = 1. 
Therefore, by the Wiener-Ikehara Tauberian theorem, we deduce for 
1 < r < 2 m + 2 ,  

sin (r + D0(p) 
Y" sin0(p) p<x 

as x ~  ~ ,  on using the identity 

sin(r+ 1)0 -- ~ ei(r-  2j) 0 
sin0 j=o 

sin(n + 1)0 
Writing U.(cos 0) = sin 0 

__<2m+2, 

= o(x/logx) 

because of the identity 

Also, 

and T,(cos 0) = cos nO, for n > 1, we find for 2 < r 

T~(cosO(p))=o(x/logx), 
p<-x 

2T.(x) = U. (x ) -  U._ 2(x). 

1 X 
Z T2(c~ O(p)) = ( -  2 + o(1))iogx 

p<x 

and 

Tl(COsO(p))=o(x/logx) , 
P6x  

as L1(s ) is regular and non-vanishing for R e s >  1. 
If we define To(x ) = �89 the inverse relation for Chebychev polynomials gives (see 

Riordan [12, p. 54]), 
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where r '=  [r/2]. Therefore, 

('1 z (2 cos O(p))" = 2 T,_ 2k(COS 0(p)). 
p__<~ k k = 0 \  Ip<--x 

By the above remarks, the inner sum is o(x/logx) unless r -  2k = 2 or 0. Hence (ii) is 
deduced without difficulty. In the other case, we find 

p~<=x(2COSO(p))2r=(--(r~_._l)"]-(2;))(l'~-o(l))]OX~g x 

, 
as x ~  m. The term in brackets is easily seen to be r +  1 , as desired. 

We will need the following combinatorial identities. 

Lemma 3. 

(i) ~, ( _ l ) j ~ ) ( 2 j /  1 2 _ 2 J _ 2 _ 2 , _ l / 2 r + 2  / 
~=0 \ j  ]j--~ - k r + l ]' 

' . r 2 j+2 1 -2j -z,  1 2 r + 2  

Proof. (i) can be found in Riordan [12, p. 120], (ii) can be deduced easily from (i) in 
the following way. Denote the sum in (i) by S(r). Considering S(r+ 1)-S(r)  and 
using the identity 

(r~' 1) -- <~) = ( j 5  1)' 

(ii) is deduced easily after a change of variable and some simplifications. 

Proof of Theorem 4. (i) Consider the polynomial 

Pro(x) = (x 2 - 4)m(x -- ~)(X -- fl), 

where ~, fl will be suitably chosen later. By Lemmas 2 and 3, 

( 2 m + 2 / ( ~ _  1 ) logx ~ p~.(2cosO(p))~(_ l)m\ m+ l J +-~+-5 " 
X p<-x 

Examining the graph of Pm(X) and choosing ~,/3 so that 

2 
~/3> m + 2 '  

if m is even, and 
2 

~fl< m + 2 '  

if m is odd, we set ~ = - 6  to get the desired result. 
(ii) Consider Q,,(x)=x2m(x2-7) where 7 shall soon be chosen. By Lemma 2, 

logx ~ Qm(2CosO(p)) l_~(2m+. ? I 1 [2m'~ 
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Examining the graph of Qm(x), we note that if 

we obtain (ii). 
(iii) Since 

Y= m - ~  m + l  ) = m+2 

Z 12c~ 2m+ 1 > 1 p<=x = 2 ~ (2cosO(p))2m+ 2 
p<-_x 

we have by Lemma 2, 

4 ~ (2cosO(p))Zm+I> 1 (2m+2] x 
p< ~ m + 2 k m + l / l o g x  

a(p) > 0 

as x ~ .  Thus for a positive proportion of the primes, 

1 
~ 1 (2m+2//2m+1 - 

2cos0(p)> t ~ \  m+ 1 ]J e. 

This completes the proof of the theorem. 

Remark .  We note that time2, as m~ ~ .  It is an interesting question to ask for the 
optimal value of tim under the hypothesis of the theorem. By considering various 
polynomials, one can show 

2 cos O(p) > 1.14 - e 

for a positive density of primes, with the present state of knowledge. V. Kumar 
Murty has informed me that if L6(s ) has an analytic continuation up to Res>�89 
then one can show 

2cos0(p) > 1.33 - 

for a positive density of the primes. 

4. Sign Changes of a(p) 

The classical method of analytic number theory gives a zero-free region of the type 

cr > l - A/log(lt[ + 2) , A > 0 ,  

for Ll(s)  and L2(s). This fact enables us to deduce: 

L e m m a  4. L e t  

f (z)= ~ a(n)e 2ninz 
n = l  
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by a Hecke eigenform of  weight k for the full modular group. Then, there is a v>0, 
such that if h = x ~ v < 0 < 1, we have 

(i) ~ a(p)p- tk- 1)/2 = o(h), 
x<--_p<=x+h 

(ii) ~ a(p)2p-ck- 1 ~>> h. 
x < - p 6 x + h  

Proof. (ii) is contained in Moreno [7], and (i) is easily obtained from methods of 
that paper. 

Let g be another normalised Hecke eigenform of weight k for the full modular 
group. Let g have Fourier expansion 

g(z)= ~ b(n)e 2"i"z. 
n = l  

Then, Rankin showed that the series 

L(s, f ,9)  = ~ a(n)b(n) n-s-k+ 1 

n = l  

has an analytic continuation to Re s > �89 and satisfies a functional equation. 
For any eigenform with Fourier expansion 

h(z)= ~ c(n)e 2ninz, 
n = l  

define L2(s, h) as the L2(s ) defined in Sect. 1. The next lemma concerns the non- 
vanishing of L(s,f, g) on tr = 1. 

Lemma 5. For f, g orthogonal, normalised Hecke eigenforms of weight k, 
(i) L(1 +it, f g)4:0, 

(ii) L(s, f g ) * O  for tr> 1 -  C/log(lt[+ 2), for some C>0,  
(iii) there is a v such that if h = x ~ v < 0 < 1, we have 

a(p)b(p)p-tk- 1)= o(h). 
x<=p<=x+h 

Proof We shall prove (ii) from which (i) follows. (iii) is then easily deduced from the 
methods of Moreno [7]. 

Consider 

D(s) = (2 (s) L2(s, f )L(s  + it, f, g)L(s - it, f, g)L 2(s, g) . 

Then, an easy verification shows that 

logO(s) = ~ C(n, p)n- lp-.S, 
n,p 

where C(n, p) = 8(cos nO(p)) (cos n~b(p)) (cos nt logp) + 2 cos 2nO(p) + 2 cos 2ink(p) + 4. 
In view of the identity 

C(n, p) = 4[cos O(p) - pi, cos ~b(p)l 2 
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we see that logD(s) is a Dirichlet series with non-negative coefficients. Therefore, 
for t r> l  

D(tr) = ~2(tr)L2(tr, f)L(tr + it,f 9)L(a-  it, f 9)L2(a, g) >= 1 

taking logarithmic derivatives and using the fact that L2(s,f), L(s , f  9), L2(s, 9) are 
regular in a>�89 we find by the standard method that L(s, f  9) is zero-free in a >  1 

Ca for s o m e  C 1 >0. This completes the proof. 
log(Itl + 2)' 
We now prove Theorem 5. 

Proof of Theorem 5. For suitable complex numbers ei, i=  1,..., d, where d = dimS k 
(the space of cusp forms of weight k for the full modular group), we can write 

d 

a(p) = Z e,ai(P), 
i=1 

where 

f/(z)= ~ ai(n)e z€ 
n = l  

is a normalised Hecke eigenform. 
Suppose that neither Rea(p) nor Ima(p) changes sign in x < p < x + h, for h = x ~ 

where 0 satisfies the conditions of Lemmas 4 and 5(iii). Put av=a(p)p-~k-1~/2. 
Then, 

~,__<~+h R e a v p < : ,  = ,,<=v<=,,+h~ [Reavl 

and 

Therefore, 

< Z = x ~ x + h  " x=p_~x+h Ima. Ilma.[ 

(IRe av[ +[Im a.[) =_o(x~ (1) 
x<-_p<x+h 

On the other hand, by the estimate of Deligne, the left hand side of (1) is 

~> E I%12= ~ e,~j ~ a,(p)aj(p)p-tk-1)>>h--x ~ 
x~p<=x+h l<i,j<-d x<-p~x+h 

by Lemma 4(ii). This is a contradiction to (1). Therefore, at least one of Rea(p) or 
Ima(p) changes sign in the interval x < p < x + h .  This completes the proof of 
Theorem 5. 

5. Main Theorems 

By Corollary 2 of Theorem 4, we have 
k - 1  

la(p)l > ( V ~ -  e)p 2 
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for a positive proportion of the primes. So we must have 

k - 1  

a~)>(l/2-~)p 
o r  

(1) 

Let 

fj(z)= ~ a(n,j)e z"i"=. 
n = l  

The matrix (a(j,/)) for j < r, i < r is a non-singular matrix; for if not we can find 
d 1 . . . .  , d, not all zero such that 

a , f ,  + ... + a , f , = f o  

has a zero of order > r +  1 at ioo. The dimension formula shows that f o - 0 .  But 
then, this contradicts the independence of the f /s .  Hence, we can find mp. . . ,  m, so 
that 

a(j,i)mj={~ i=1  
s = l  i4:1. 

k - 1  

a(p) < ( -  l /~-  e,)p 2 (2) 

for a positive proportion of the primes. Without loss, suppose that (1) is true. 
Let 

n=  l-I* P, 
p<=x 

where the product is over those primes satisfying (1). 
Then 

k - 1  

a(~) > ~ ' ( 1 / 5 _  ~?x/,o,,, 

for some 6>0 .  As logn,,~6x we get 

( clog. 1 
a(n) >n T exPkloglogn] 

for some C > 0  and an infinity of n. If q is a prime such that a(q)<0 [which exists 
either by Theorem 4(iii) or Theorem 5], the n's constructed above are coprime to q 
and hence 

k- t  [ Clogn 
-aq,=(-a,)a,>>n - T - e x p t ~  ) ,  

which completes the proof of Theorem 1. 

Proof of Theorem 2. Let f l ,  ...,f, be a basis of eigenforms. Then there are complex 
numbers C1,..., C, such that 

f(z) = ~ C,f~(z). 
i = I  
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Now consider 

g(z)= ~ miTi(f), 
f = l  

where T~ is the i th Hecke operator. Then 

i=1  j = l  

= 

j = 1  i = i  

On the other hand, the n th Fourier coefficient of 9(z) is 

= ~, ml Z a(ni/d2) dk-1 
i = 1 dl(n, i) 

by noting what the Hecke operators do to the Fourier coefficients. Now suppose, 
that for all n sufficiently large, 

k-1 [ Clogn 
[a(n)[<~n ~ e x p / ~ ) .  

Then, if d(i) denotes the number of divisors of i, 

k-1 [ Clogn 
ICla(n' l )] <i= , [milik- Sed(i)n ~ e x p / ~ )  

k--1 { Clogn \ 
' ~ 8 n 2  e x p i ~  ) 

which contradicts our previous theorem for suitable C and e. 

Remark. Conjecture 1 is certainly true whenever k=12,16,18,20,22,26 (see 
Sect. 6). In case k=24,  one can compute m s and m 2 above and find that m s >0,  
m 2 > 0. This enables one to show Conjecture l(ii) by the above method, in this case 
also. 

We can now prove the corollary on Kloosterman sums. 

Proof of Corollary. It is well:know that the Poincar6 series 

G,(z)=�89 ~ ( c 2 - ] - d ) - k e  2nit(az+b)/(cz+d) 

(c, d) = S 

for 1 < t < r, where r is the dimension of the space of cusp forms of weight k, span 
this space. Moreover, the n th Fourier coefficient of Gt(z ) is 

(nt) 5 6,, + 1 ~  - -  " J k -  1 
c = l  C 

where S(t, n, c) is the Kloosterman sum defined previously and ar k denotes the usual 
Bessel function. Set 

H(x) = ~ S(n, m, e). 
C~3r 
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Now suppose the corollary is false. Then, given e >0, 

/ C logx \ [G(x)l<eexp(~) 

for all x sufficiently large and by partial summation, 

C log x IH(x) l~xexp(~) .  

It is easy to see that 

c>V~ C 

( [4n~t~ (~@_)) 
= 2 G(C) J k - l ~ ' l - ]  --Jk-1 

c>V~ 

where ~ce ( 4 n l / ~  4 n - ~ - /  \ c + l  ' c ]. AS J'k_l(X)4~X -1/2, we find that the above sum is 

~ eClogt/loglogt 
en- 1/4 dt. 

V~ t3/2 

An integration by parts reveals that it is 

[ Clogn 
e e x p / ~  ] �9 

As there are no cusp forms of weight 10, it follows from the above that 

E S(FI, t,c)J9 ~ e e x p / ~  ). 
c<V-ff C 

Now 

c<V~ c< l /~  ~ 

for some ~c~ \ c +  1 ' c ]. By our supposition, this sum is 

~n_Z/4 y, H(c) ~ [Cllogn~ 
c ~  ~ 

as J~,_ t(x),~x- 1/2. But then, in view of the identity. 

20Jl~ - J 9 ( x )  + Jz l(x), 
x 



444 M. Ram Murty 

we find, 

~, S(n,t,c__~) J l l  4~__~____ ~ e e x p / ~ )  
c=<n C 

for some constant C 1 >0. This contradicts Theorem 2, which completes the proof 
of the corollary. 

6. Real Zeroes and Oscillations 

By standard techniques of analytic number theory, it is possible to show the 
following (see Ingham [3, 4]). 

Theorem 6. Let f be a normalized eigenform of weight k, with Fourier expansion 

~ a(n)e 2~i"z �9 
n = l  

Suppose Ll(s) has no real zero in the interval �89 s<= l. Then 

~, a(p)p -~k- t)/2 = ~_+(xl/2 logloglogx/logx).  
p<.x 

Remark. Even if L1(�89 it is of no consequence to the f~ result because the 
contribution from the zero is O(xl/2/logx). It is easily seen that whenever k = 2  
(mod4), L1(�89 for instance. 

One can show by means of the formula 

voo+vi/2+vv/3+ ~ vp=k/12,  (3) 
P~i ,p  

where % denotes the order of the zero of f at P, i and p denote IS  ~ ]  and e 2ni/3, 
respectively, that L~(s) has no real zero in �89 < s < 1 for k < 24 and k = 26. For k = 24, 
it is possible to show the existence of at least one eigenfunction satisfying the 
hypothesis. We briefly indicate how this is done. Consider 

(27r)- ~ + 4tk-  )r(s + �89 - �89 1 (s) = S f(iy)y (k - 1)/2(y~ + ikyl - s) dy. (4) 
1 Y 

It is then easy to show that the integral is non-negative for the specified values of k 
using (3). For example, if k=22, 

Vi/2+Vp/3+ E Vp=5/6, 
P=~i,p 

which clearly implies f(iy) > O. For k = 26, f is up to a constant multiple equal to 
AE]E6 where A denotes Ramanujan,s cusp form, E 4, E 6 denote usual Eisenstein 
series. As we know the location of the zeroes of E 4 and E6, the desired result 
follows in this case also. Moreover, (4) can be used to show that 

is a monotone increasing function for s >�89 just by expanding the integral about 
s = �89 In fact, it seems reasonable to make the following conjecture. 
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Conjecture 2. I f  f is a normalized Hecke eigenform, then 

is a monotone increasing function of s for s > �89 

Indeed, if Ll(s) satisfies the analog  of the R iemann  hypothesis, the conjecture is 
true (see Stark and  Zagier [16]). 

7. Concluding Remarks 

We discuss Conjecture l(ii) as the first par t  of Conjecture 1 has been dealt with in 
the previous section. 

The t ruth  of the conjecture would follow if we postulate that the angles O(p, i) 
for i = 1,.. . ,  r corresponding to the basis of normalized Hecke eigenforms f t  . . . .  ,fr, 
respectively, are independent ly  distributed, with respect to the Sato-Tate measure. 
This can be cast, in the familiar way, in terms of L-series. For  m = ( m  1, ..., m,), let 

f(p, m) = Z (m s -  2j,)O(p, a) 
4 = 1  

and  consider 

_ 1 Lm(s)= jlIq=0"'j 
For  m = (m, 0 . . . . .  0) we retrieve Lm(S ) as 

Lm_(S)=(Lm(s)) r 

elf(p.m_).l- 1 

Clearly, L,,(s) defines an analyt ic  funct ion for R e s >  1. 

Conjecture 3. Each Lm_(S ) has an analytic continuation to the entire complex plane 
and Lm(1 + it) # O, for m 1 + ... + m, > 1. 

It may be remarked that  if m t + ... + m r = 2 ,  then L~_(s) is essentially the 
familiar convolu t ion  of L-series. Lemma  5 gives the non-van ish ing  of these 
L-series on a = 1. 
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