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1. Introduction

A central problem in number theory is to establish the finiteness of integral or rational
solutions to a Diophantine equation. The proof of such finiteness results often gives an
upper bound for the number of solutions, while obtaining upper bounds for the size (or
more precisely, height) of the solutions is a much harder problem. Results of the latter
type are called effective since, in theory, a bound for the height of the solutions reduces
the search for solutions to a finite amount of computation. For later reference, we denote
the (logarithmic) height of a rational number q ∈ Q by

h(q) = log max
{
|a|, |b|

}

where a, b are coprime integers with q = a/b.
Effective results are difficult to obtain, and essentially the only general approaches are

Baker’s theory of linear forms in logarithms along with the p-adic and elliptic analogues
of it, and Bombieri’s improvement of Thue’s method [2].

The purpose of this note is to introduce another approach for obtaining effective
finiteness results. The technique that we present is based on the theory of modular forms,
and it originates in the known approaches to attack the ABC conjecture using elliptic
curves and modular forms, which we discuss below. Using this approach we provide
an ‘algebro-geometric proof’ of the following effective version of Mahler’s theorem [13,
p. 724] on the S-unit equation, a topic classically studied by means of analytic techniques.

Theorem 1.1. Let S be a finite set of primes in Z and let P be the product of the elements
of S. If U, V ∈ Z×

S satisfy U + V = 1 then

max
{
h(U), h(V )

}
< 4.8P logP + 13P + 25.

Here, Z×
S denotes the group of units of the ring ZS of rational S-integers. Moreover, as

we vary the set S we get

max
{
h(U), h(V )

}
< 4P logP + O(P log logP ).

The S-unit equation is a relevant case of finiteness result since several Diophantine
problems can be reduced to it. Although this is not the first ‘algebro-geometric’ proof of
finiteness of ZS-solutions to the unit equation (see the important work of M. Kim [11],
where the result is stated in terms of ZS-points of P1 − {0, 1,∞} and it is attributed to
Siegel), our method is effective and gives explicit constants.
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An equivalent way to state the previous theorem is the following partial result towards
the ABC conjecture.

Theorem 1.2. Let A, B, C be coprime non-zero integers with A + B = C. Let R =
rad(ABC) be the radical of ABC, where rad(N) =

∏
p|N p. Then

log max
{
|A|, |B|, |C|

}
< 4.8R logR + 13R + 25.

Moreover, as we vary the triple A, B, C we have

log max
{
|A|, |B|, |C|

}
� 4R logR + O(R log logR).

We remark that Theorems 1.1 and 1.2 do not give the sharpest effective bounds known
today. However, our bounds have similar shape compared to the previous results on the
ABC conjecture, all of them effective and obtained by means of the theory of linear forms
in logarithms:

• log max{|A|, |B|, |C|} � rad(ABC)15 by Stewart and Tijdeman in 1986, see [19],
• log max{|A|, |B|, |C|} � rad(ABC)2/3+ε by Stewart and Yu in 1991, see [20],
• log max{|A|, |B|, |C|} � rad(ABC)1/3+ε by Stewart and Yu in 2001, see [21].

Our bound log max{|A|, |B|, |C|} � rad(ABC)1+ε is better than the first bound obtained
by transcendental methods, but it is certainly worse than the subsequent improvements.

Let us now discuss in more detail our approach. After the work of G. Frey (see [7])
one knows that the following conjecture implies a version of the ABC conjecture.

Conjecture 1.3 (Height conjecture). For all elliptic curves E/Q one has hF (E) � logNE.
Here hF denotes the Faltings height, and NE is the conductor of E.

Conversely, the ABC conjecture implies the Height conjecture (see for instance Ex-
ercises F.4 and F.5 in [8]). By looking at proofs of these implications, it is clear that
any bound towards the Height conjecture would give a bound in the spirit of the ABC
conjecture. However the converse is not known to hold, for instance, it is not clear if
one can deduce from [21] a partial result for the Height conjecture for all elliptic curves
over Q. Nevertheless, the computations in the proof of Theorem 1 (ii) in [16] show that a
partial result for the ABC conjecture would give a partial result for the Height conjecture
restricted to Frey curves (that is, elliptic curves of the form y2 = x(x−A)(x + B) with
A, B coprime integers). In particular, for Frey curves one knows that hF (E) � N

1/3+ε
E

thanks to the results in [21]. No such bound is known to hold for the height of all elliptic
curves over Q.

In this paper we prove a partial result towards the Height conjecture, which holds
for all elliptic curves over Q. Namely, we prove hF (E) � NE logNE . We also work
out explicit values of the involved constants, obtaining Theorem 7.1. To the best of
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our knowledge, this is the first unconditional result for the Height conjecture for all
elliptic curves over Q, not only Frey curves. From it, we deduce a partial result for
the Szpiro conjecture, from which our effective bounds on the ABC conjecture and the
S-unit equation follow (after making explicit the constants involved at various steps of
the reduction from the Height conjecture to the ABC conjecture).

More precisely, since all elliptic curves over Q are modular (see [23] and [22] for the
semi-stable case) well-known arguments of [7] and [16] show that for our purposes of
bounding the Faltings height in terms of the conductor, it suffices to bound the modular
degree. To bound the latter in terms of the conductor, it is enough to bound certain
number called the congruence number of a modular form in terms of the level (here,
we perform these arguments in a slightly different and more careful way in order to get
explicit constants). However, it is not clear how to bound the congruence number in
terms of the level with a bound of the expected order of magnitude, namely, polyno-
mial. Instead, we prove a bound for the congruence number which is exponential on the
level. The technique that we use to get this bound originates in ideas of [16] (however
our proof is different, it corrects some imprecisions of [16] and has better dependence
on the level). Namely, we show that the congruence number divides certain index iN
related to the Hecke algebra, and finally we bound the latter by the covolume of a spe-
cific lattice which can be estimated in terms of the level. This last bound follows from
classical estimates related to the Fourier coefficients of modular forms. It is this relation
to the index of the Hecke algebra what allows us to give a partial result for the Height
conjecture.

Let us remark that when we prove that the congruence number divides the index iN ,
a new invariant n′

f arises in a natural way. We discuss this in Section 4. The invariant n′
f

is related to the coprime Hecke algebra T′
N in the same way that the congruence number

(resp. the modular degree) is related to the Hecke algebra TN (resp. the endomorphism
ring EndJ0(N)). This analogy leads us to formulate a conjectural bound for n′

f which,
if true, would imply the ABC conjecture.

Finally, to make clear the approach in this work, note that the way in which the
known partial results for the Height conjecture have been proved goes as follows: apply
linear forms in logarithms to the equation A+B = C which gives an effective result for
the ABC conjecture, and then apply the resulting bound on Frey elliptic curves. Our
approach, instead, goes the other way around: we apply the theory of modular forms to
get a result for the Height conjecture on all elliptic curves over Q (and this bound turns
out to be effective), then we use it in the special case of Frey curves, and an effective
bound for the ABC conjecture and the S-unit equation follow.

2. The index of the coprime Hecke algebra

Let N be a positive integer such that the space of weight two modular forms for Γ0(N),
denoted by S2(Γ0(N)), is non-trivial. Let T′

N be the coprime Hecke algebra generated
over Z by the Hecke operators Tn with (n,N) = 1 acting on S2(Γ0(N)).
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Let N (N) denote the set of normalized newforms of weight 2 for Γ0(N), and let
N ∗(N) =

⋃
d|N N (d). For f ∈ N ∗(N) let Kf be the number field generated over Q by

the Fourier coefficients of f . We adopt the following notation valid for all the remaining
sections.

Notation 2.1. The cardinal of N ∗(N) is r = r(N), and the elements of N ∗(N) are
f1, . . . , fr where the indices are arranged in such a way that f1, . . . , fc (for some c � r)
form a set of representatives of Galois conjugacy classes in N ∗(N). Whenever we fo-
cus our attention into a single rational newform f , we will implicitly assume that it is
f = f1.

One has a Q-vector space isomorphism

T′
N ⊗Q →

c∏
i=1

Kfi

given by Tn �→ (an(fi))i. Moreover, the image T ′
N of T′

N is a full-rank subgroup of
O′

N :=
∏

Oi, where Oi is the ring of integers of Ki = Kfi . The coprime Hecke index is
defined by

iN =
[
O′

N : T ′
N

]
.

The fields Ki are totally real, so the canonical embedding from algebraic number
theory is

Ki → R[Ki:Q] =: Ei.

Let E =
∏c

i=1 Ei, then E = Rr with r as defined above. We have an embedding∏c
i=1 Ki → E which allows us to see T ′

N and O′
N as full-rank sub-lattices of E.

We put the usual Lebesgue measure on E and we write CovolV for the covolume of
a full-rank lattice in a given real vector space V .

Lemma 2.2. We have iN · CovolE(O′
N ) = CovolE(T ′

N ) and CovolE(O′
N ) � 1. In partic-

ular

iN � CovolE
(
T ′
N

)
.

Proof. We only need to justify the assertion CovolE(O′
N ) � 1. The covolume of Oi in Ei

is
√
|Δi| where Δi is the discriminant of Oi. Thus CovolE(O′

N ) =
∏c

i=1
√
|Δi| � 1. �

We want to bound CovolE(T ′
N ). For this, let I = {1, . . . , r} and for any J set of r

positive integers coprime to N define the square matrix AJ = [aj(fi)](i,j)∈I×J . Then we
have
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Lemma 2.3. If J is a set of r positive integers coprime to N such that detAJ �= 0 then

CovolE
(
T ′
N

)
� |detAJ |.

Proof. Up to reordering the rows of AJ , we see that the columns of AJ are elements of
T ′
N ⊆ E because N ∗(N) is stable under the Galois action on Fourier coefficients. On the

other hand, the condition detAJ �= 0 implies that these columns form an R-basis for E.
The result follows. �

In the next section we study detAJ more closely.

3. Bounding detAJ

Let sf(N) be the square-free part of N , which is the product of the primes dividing N

with exponent exactly 1. By properties of the killing operators (see pp. 142–143 in [1])
we know that the rule

f =
∑
n�1

anq
n �→ t(f) =

∑
(n,N)=1

anq
n

defines a linear map

t : S2
(
Γ0(N)

)
→ S2

(
Γ0

(
N sf(N)

))
.

Define the following subspaces of S2(Γ0(N))

H(N) =
⊕
d|N

S2
(
Γ0(N/d)

)new ⊆ S2
(
Γ0(N)

)
,

K(N) =
{∑

p|N
gp(pz) ∈ S2

(
Γ0(N)

)
: gp ∈ S2

(
Γ0(N/p)

)}
.

Note that dimH(N) = r; indeed, the set N ∗(N) is a basis for H(N).

Proposition 3.1. The kernel of t is K(N), which is equal to the set of all f ∈ S2(Γ0(N))
with an(f) = 0 for (n,N) = 1. Moreover, S2(Γ0(N)) = H(N) ⊕ K(N). In particular,
t is injective on H(N).

Proof. The inclusion ker t ⊇ K(N) is clear. The reciprocal inclusion follows from Atkin–
Lehner theory (more precisely, Theorem 1 in [1]). That S2(Γ0(N)) = H(N)⊕K(N) also
follows from Atkin–Lehner theory. �

In particular, if f ∈ S2(Γ0(N)) has an(f) = 0 for all n coprime to the level N , then
f ∈ K(N). For our purposes, the following effective version is needed.
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Proposition 3.2. Let g1, . . . , gr ∈ S2(Γ0(N)) be a basis for H(N), and let

I = {1, . . . , r}, J ′ =
{
j: 1 � j � ρ(N) and (j,N) = 1

}

where

ρ(N) = N sf(N)
6

∏
p|N

(
1 + 1

p

)
.

Then the matrix [aj(gi)](i,j)∈I×J ′ has rank r.

Proof. By Proposition 3.1 we know that t(gi) are linearly independent elements in
S2(Γ0(N sf(N))). Hence, if β1, . . . , βr are complex numbers not all zero then h =∑

1�j�r βjt(gj) ∈ S2(Γ0(N sf(N))) is a non-zero element, so that its order of vanish-
ing at i∞ is at most 2g(N sf(N)) − 2, where (see Theorem 9.10 in [12])

g(m) := dimC S2
(
Γ0(m)

)
� 1 + m

12
∏
p|m

(
1 + 1

p

)
.

With m = N sf(N) we get

2g
(
N sf(N)

)
− 2 � N sf(N)

6
∏

p|Nsf(N)

(
1 + 1

p

)
= ρ(N).

Therefore (aj(h))j∈J is not the zero vector, which shows that the rows of [aj(gi)](i,j)∈I×J ′

are linearly independent. �
We will also need a bound for r = dimH(N). From Theorem 4 in [14] one deduces

Proposition 3.3. We have

dimH(N) � N + 4
12 .

Now we can bound detAJ for suitable J .

Proposition 3.4. There exists a set J of r positive integers coprime to N such that
detAJ �= 0 and

log|detAJ | <
1
5N logN.

Moreover, as N → ∞ this choice of J (depending on N) gives

log|detAJ | � 1
6N logN + O(N log logN).
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Proof. We need a suitable set J such that the determinant of the matrix AJ =
[aj(fi)](i,j)∈I×J is not zero and we can estimate it. Proposition 3.2 applied to the basis
N ∗(N) implies that there is a subset J ⊆ {1, 2, . . . , ρ} such that detAJ �= 0, where
ρ := ρ(N). Consider such a set J .

Since fi are normalized eigenforms of weight 2, one has the bound |aj(fi)| � j1/2σ0(j)
where σ0 is the number of divisors. Therefore

|detAJ | � r
∏
j∈J

j1/2σ0(j) � rρr/2
∏
j∈J

σ0(j).

The trivial upper bound σ0(j) � 2
√
j is sufficient for our purposes, and we obtain

|detAJ | � rρr/2(2ρ)r/2. (1)

On the other hand, it is easily seen from the definition of ρ = ρ(N) that

ρ � 1
6N sf(N)(1 + logN) � 1

6N
2(1 + logN).

Plugging this bound and the bound for r given by Proposition 3.3 into (1) one gets

log|detAJ | � r log ρ + log 2
2 r + log r

� N + 4
12

(
2 logN + log(1 + logN) − log 18

2

)
+ log N + 4

12 .

It is a calculus exercise to check that the last expression is strictly less than 0.2N logN
when N > 30.

Finally, for N � 30 with S2(N) �= (0) one can directly check the existence of a set of
indices J with the desired properties by looking at tables of modular forms. Namely, the
following table gives suitable sets J for such N , along with the related quantities:

N J log|detAJ | 0.2N logN

11, 14, 15, 17, 19, 20, 21, 22, 24, 27, 28 {1} log 1 = 0 � 5.27
23 {1, 2} log

√
5 < 0.81 � 14.42

26 {1, 3} log 4 < 1.39 � 16.94
29 {1, 2} log 23/2 < 1.04 � 19.53
30 {1, 7} log 4 < 1.39 � 20.4

The Fourier coefficients necessary for computing this table have been obtained using
Sage. �

From Proposition 3.4 and Lemmas 2.2 and 2.3 we conclude

Theorem 3.5. We have

log iN � 1
N logN.
5
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Moreover, as N → ∞

log iN � 1
6N logN + O(N log logN).

4. The congruence number and the modular degree

Let f be a rational newform in S2(Γ0(N)). The congruence number of f , denoted
by nf , is the largest positive integer M satisfying the following: there is a cusp form
g ∈ SZ such that (f, g) = 0 and f ≡ g mod M . Here, ( , ) denotes the Petersson inner
product and f ≡ g mod M means that for each n � 1 one has an(f) ≡ an(g) mod M .

We have a ring homomorphism TN → Z defined by T �→ a1(Tf). Let If be the kernel,
then one constructs the Shimura quotient

qf : J0(N) → Ef = J0(N)/IfJ0(N)

where J0(N) is the Jacobian of the modular curve X0(N). Here we are using the canonical
rational model of X0(N) and we take the embedding j∞ : X0(N) → J0(N) using the
cusp at infinity which is Q-rational. One gets that Ef is an elliptic curve defined over Q
and qf is a morphism of abelian varieties defined over Q. Let φf = qf ◦j∞ : X0(N) → Ef

be the modular parametrization. The modular degree mf is defined as mf = degφf .
The integers mf and nf are related by the following result attributed to Ribet (see [3]):

Theorem 4.1. If f is a rational newform, then mf |nf .

Following an approach similar to [16] we prove

Theorem 4.2. We have nf |iN . In particular mf |iN .

Proof. We assume f = f1 ∈ N ∗(N). By definition of iN we know that iNe1 ∈ T ′
N

where e1 = (1, 0, . . . , 0) ∈ O′
N . Let T ∈ T′

N be such that T = iNe1 in
∏

i Ki. This
means that T (f) = iNf and T (fi) = 0 for i = 2, . . . , c. The Hecke action commutes
with the Galois action on Fourier coefficients and therefore T (fi) = 0 for i = 2, . . . , r.
Moreover, since T ∈ T′

N we know (by Atkin–Lehner theory) that the action of T on
S2(Γ0(N)) is diagonalizable and the eigenvalues of T on S2(Γ0(N)) are the same (with
possible repetitions) as the eigenvalues of the fi ∈ N ∗(N) with respect to T . Therefore
T (f) = iNf and T annihilates the orthogonal complement of f in S2(Γ0(N)).

Let g ∈ S2(Γ0(N)) be a cusp form with integral Fourier coefficients which is orthogonal
to f = f1, and such that aj(f) ≡ aj(g) mod nf for all j � 1. In particular T (g) = 0.

The n-th Fourier coefficient of T (g) (which is 0) satisfies

an
(
T (g)

)
≡ an

(
T (f)

)
mod nf

because T ∈ T′
N and g ≡ f mod nf . Since T (f) = iNf we get an(T (f)) = an(iNf) =

iNan(f) from which we conclude that nf |iNan(f) for all n. In particular, with n = 1 we
get nf |iN . �
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From Theorem 3.5 we deduce the following bound for the modular degree and the
congruence number.

Theorem 4.3. We have

logmf � log nf � 1
5N logN.

Moreover, as N → ∞ one has

logmf � lognf � 1
6N logN + O(N log logN).

The rest of the discussion in this section will not be used in other parts of the paper,
but it can be of independent interest. Looking at the proof of Theorem 4.2 it is natural
to define n′

f as the least positive integer n such that ne1 ∈ T ′
N (from the proof, it follows

that n′
f exists). Equivalently, let pf be the orthogonal projection from S2(Γ0(N)) onto

C · f , then n′
f is the least positive integer n such that npf ∈ T′

N ; that is, n′
f is the

denominator of pf with respect to T′
N . This quantity n′

f satisfies nf |n′
f and n′

f |iN . We
conjecture

Conjecture 4.4. The quantity n′
f satisfies log n′

f � logN .

Let give some justification for this conjecture. Recall from [3] that mf (resp. nf ) is
the denominator of pf with respect to EndJ0(N) (resp. TN ) acting on S2(Γ0(N)). One
has the chain of inclusions T′

N ⊆ TN ⊆ EndJ0(N) and therefore mf |nf and nf |n′
f . The

conjecture logmf � logN is due to Frey (see [7]), and Murty formulated the conjecture
log nf � logN (see [16]); both of these conjectures imply a version of the ABC conjec-
ture. Therefore, after the analogous characterizations of mf , nf , n′

f as denominators, we
think that it is natural to formulate Conjecture 4.4.

Since mf |n′
f and n′

f |iN we obtain the following result about Conjecture 4.4.

Theorem 4.5. Conjecture 4.4 implies Frey’s modular degree conjecture, hence, the Height
conjecture, the Szpiro conjecture and a version of the ABC conjecture. Unconditionally,
the estimate log n′

f � N logN holds.

We do not know if a sufficiently strong version of the ABC conjecture implies Con-
jecture 4.4, and we believe that the invariant n′

f deserves a more detailed study.

5. The height and minimal discriminant of elliptic curves

Let Δ(z) be the Ramanujan cusp form, which is given by

Δ(z) = q
∏(

1 − qn
)24

, q = e2iπz.

n�1
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Given E an elliptic curve defined over Q, we denote its minimal discriminant by ΔE

and we let τE be a point in the upper half plane h such that E(C) is biholomorphic to
the torus C/(Z + τEZ). Of course there are infinitely many choices for τE , all of them
SL2(Z)-equivalent, but in the discussion below the choice of τE is irrelevant as we will
be concerned with the quantity |Δ(τE)|(�τE)6 which is SL2(Z)-invariant.

In his solution to the Mordell conjecture [6], Faltings introduced a notion of height
for an abelian variety defined over a number field (which we call Faltings height). The
precise definition is better understood in terms of Arakelov geometry and we do not
recall it here. For our purposes we will only need the Faltings height hF (E) of an elliptic
curve E defined over Q, and the following fact (cf. [17]):

Theorem 5.1. If E is an elliptic curve defined over Q, then its Faltings height satisfies

12hF (E) = log|ΔE | − log
(∣∣Δ(τE)

∣∣(�τE)6
)

+ 12 log(2π).

Since Δ(z) is a weight 12 cusp for SL2(Z) it is a standard fact that the quantity
|Δ(τE)|(�τE)6 has a uniform upper bound on h. From the next two lemmas we get an
explicit such bound.

Lemma 5.2. Let 0 < r < 1. If |q| � r then we have

∣∣Δ(τ)/q
∣∣ <

(
1

1 − r

)1/(1−r)
.

Proof. Since Δ(τ) = q
∏

n�1(1 − qn)24, we find (for the branch of log with log 1 = 0)

log q − log Δ(τ) = −24
∑
n�1

log
(
1 − qn

)
=

∑
n�1

∑
k�1

qkn

k
=

∑
k�1

∑
n�1

qkn

k

thus

∣∣log Δ(τ) − log q
∣∣ �

∑
k�1

∑
n�1

rkn

k
=

∑
k�1

1
k

rk

1 − rk
<

1
1 − r

∑
k�1

rk

k
= 1

1 − r
log 1

1 − r
. �

Lemma 5.3. If τ ∈ F then

log
∣∣Δ(τ)�(τ)6

∣∣ < −6.272.

Proof. Observe that if τ ∈ F then |q| = e−2π�(τ) � r := e−π
√

3 so that the previous
lemma gives

∣∣Δ(τ)�(τ)6
∣∣ <

(
1

)1/(1−r)
e−2π�(τ)�(τ)6.
1 − r
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The function x �→ e−2πxx6 attains its maximum on the interval [
√

3/2,∞) at the point
x = 3/π so that for τ ∈ F we get

∣∣Δ(τ)�(τ)6
∣∣ <

(
1

1 − r

)1/(1−r)
e−6

(
3
π

)6

that is

log
∣∣Δ(τ)�(τ)6

∣∣ < 1
1 − r

log 1
1 − r

+ 6 log
(

3
eπ

)
= −6.272343 . . .

giving the claimed bound. �
Plugging this result into Theorem 5.1 we obtain

Theorem 5.4. If E is an elliptic curve defined over Q, then its Faltings height satisfies

12hF (E) > log|ΔE | + 28.326.

6. The height and modular degree of elliptic curves

Let E/Q be an elliptic curve of conductor N . By the modularity theorem, there is a
rational newform f ∈ S2(Γ0(N)) such that E is isogenous to Ef over Q (we use the no-
tation from Section 4). By results of Mazur [15] and Kenku [10] we know that there is an
isogeny ψ : Ef → E defined over Q of degree at most 163. Let pE = ψ◦φf : X0(N) → E.
We can assume that φf (∞) = 0 and ψ(0) = 0, then the same argument as in Proposi-
tion 1 of [5] gives the following result (which does not need our assumption on the degree
of ψ).

Theorem 6.1. Let ω be a minimal differential on E with respect to a global minimal
Weierstrass form. Let f be the newform associated to E and denote the composition
h → Γ0(N)\h ↪→ X0(N) by u. Then u∗p∗Eω = 2πicEfdz on h, where cE is a non-zero
integer. In particular |cE | � 1.

The integer cE is the Manin constant of the modular parameterization pE (this is
a slight abuse of notation; cE depends on pE not only on E) and we can assume it is
positive by changing ω to −ω if necessary; we keep this assumption during the present
section. It is conjectured that if pE induces an optimal quotient J0(N) → E (i.e. pE is
a strong parameterization) then cE = 1, but for general pE this does not need to be the
case.

The Faltings height hF (E) is related to modular parameterizations by (cf. [17] where
the hypothesis of pE being strong is unnecessary for this formula):
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Proposition 6.2. With the above notation, we have

1
2 log deg pE = hF (E) + log‖f‖ + log cE

where ‖f‖ denotes the Petersson norm of f .

It is easily seen that

‖f‖ � e−2π

2
√
π
, hence log‖f‖ > −7.549.

This estimate is far from optimal with respect to the dependence on the level (see [9]), but
it is sufficient for our purposes since it is explicit. Also, we have cE � 1 by Theorem 6.1,
and the results of Mazur and Kenku mentioned above give

1
2 log degφf � 1

2 log deg pE − 1
2 log 163 >

1
2 log deg pE − 2.547.

Plugging these estimates into Proposition 6.2 yields

Proposition 6.3. With the above notation, we have

1
2 log degφf > hF (E) − 10.096.

7. A bound for the Szpiro conjecture and the Height conjecture

In this section we put together the various results of the previous sections in order to
get an explicit effective bound towards the Szpiro conjecture and Frey’s height conjec-
ture. We remark that such bounds can be obtained by other means, for example, using
results from [21] (at least in the case when E has rational 2-torsion, i.e. Frey curves).
However, our approach gives an effective result with explicit constants without using
results from the theory of linear forms in logarithms (which is the goal of the present
work).

Theorem 7.1. Let E be an elliptic curve defined over Q with minimal discriminant ΔE,
conductor N and Faltings height hF (E). Then we have

hF (E) < 0.1N logN + 11

and

log|ΔE | < 1.2N logN + 93.

Moreover, as we let E vary, we have
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hF (E) < 1
12N logN + O(N log logN)

and

log|ΔE | < N logN + O(N log logN).

Proof. Using Proposition 6.3 and Theorem 4.3, we get

hF (E) < 1
2 logmf + 10.096 � 1

10N logN + 10.096.

Using this bound and Theorem 5.4 we conclude

log|ΔE | <
12
10N logN + 92.826

and the first part of the result follows. The second part is proved in the same way. �
8. Effective bounds for the ABC conjecture and the S-unit equation

Finally, using Frey elliptic curves we derive the explicit effective bound for the ABC
conjecture and the S-unit equation stated in the introduction.

Proof of Theorem 1.2. Given A, B, C non-zero coprime integers with A+B+C = 0 we
can assume that A ≡ −1(4) and B is even. As usual, we consider the Frey–Hellegouarch
curve

E: y2 = x(x−A)(x + B).

Then E the minimal discriminant of E satisfies 28|ΔE | � (ABC)2 (see p. 257 in [18])
and the conductor of E satisfies NE |24 rad(ABC) (see [4]). Write R = rad(ABC), then
applying Theorem 7.1 to E we get

log(ABC)2 − 8 log 2 < 1.2 · 24R log
(
24R

)
+ 93

hence

2 log|ABC| < 19.2R logR + 53.234R + 98.546.

Now, say that 1 � |A| � |B| � |C|, then max{|A|, |B|, |C|} = |C| � |C · 2B|1/2 �
|2ABC|1/2 and we have

4 log max
{
|A|, |B|, |C|

}
− 2 log 2 < 19.2R logR + 53.234R + 98.546

from which the first part of the result follows. For the second part one does the same
computation using the second part of Theorem 7.1 instead. �
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Proof of Theorem 1.1. Let U, V ∈ Z×
S with U + V = 1, then we can write U = −A/C,

V = −B/C for A, B, C non-zero coprime integers whose prime factors belong to S (in
particular rad(ABC) divides the product of the primes in S) and A+B +C = 0. Then
one concludes by observing that

max
{
h(U), h(V )

}
= log max

{
|A|, |B|, |C|

}
. �
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